Microwave engineering I (MiWE I)

Interactive lecture 2 of Topic 3 Scattering parameters February 17, 2022

The main learning outcome of the course is to create readiness to work in microwave engineering related tasks and projects and enable further studies and continuous learning in microwave engineering.

Topic 3: Learning outcomes and content

- The student can
- analyze the operation of basic microwave circuits and resonators based on calculations and simulations (AWRDE).
- model and analyze the operation of microwave circuits and resonators with suitable circuit parameters, especially the scattering parameters (S-parameters).
- Series and parallel resonant circuits (Pozar chapter 6.1)
- The scattering matrix (Pozar chapter 4.3)
- The transmission (ABCD) matrix (Pozar chapter 4.4

These lecture slides and notes are not designed for self-study. Please, use the course book chapters 4 and 6 for self-study.

amplitude of oscillation Low quality FAcTOR

In-class task in Breakout rooms

$$
\begin{array}{l|l}
\begin{array}{l}
G=\frac{1}{50} \mathrm{~S} \\
B=\frac{1}{100} \mathrm{~S} \\
C=6.3 \mathrm{pF}
\end{array} & Z_{1}=Z_{0} \frac{Z_{R}+\mathrm{j} Z_{0} \tan (\beta l)}{Z_{0}+\mathrm{j} Z_{R} \tan (\beta l)} \\
Z_{0}=50 \Omega & \beta l=\frac{2 \pi}{2} \cdot \frac{\lambda}{4}=\frac{\pi}{2} \tan \left(\frac{\pi}{2}\right)=\infty \\
& z_{1}=z_{0} \frac{j z_{0}}{j z_{R}} \cdot \frac{z_{0}^{2}}{z_{R}}=Z_{0}^{2} y_{R}
\end{array}
$$

a. Calculate analytically or graphically using the Smith chart (see the next page), at which frequency the circuit is in resonance - ie., calculate at which frequency $Z_{\text {in }}=Z_{0}$.
b. Explain, how is it possible that the circuit is in resonance even though there are no inductive components in the circuit.
c. If you have time, simulate the input reflection coefficient with AWRDE in the frequency range of $0.5-1.5 \mathrm{GHz}$.
d. Return your effort (e.g., analytic calculation) in MyCourses latest at 12:30.

In-class task $G=\frac{1}{50} s ; B=\frac{1}{105} s$

$$
Z_{1}=Z_{0} \frac{Z_{R}+\mathrm{j} Z_{0} \tan (\beta l)}{Z_{0}+\mathrm{j} Z_{R} \tan (\beta l)}
$$

$$
\begin{aligned}
& Y_{R}=G+j B=\left(\frac{1}{50}+j \frac{1}{100}\right) S ; z_{R}=\frac{1}{y_{R}} \\
& \tan \left(\frac{2 \pi}{a} \cdot \frac{a}{4}\right)=\tan \left(\frac{\pi}{2}\right)=\infty
\end{aligned}
$$

$\tan (B)$
$\begin{aligned} \text { a) } z_{1}=z_{0} \cdot \frac{z_{R}+j z_{0} \tan (\beta l)}{z_{0}+j z_{R} \tan (\beta l)}-z_{0} \frac{\frac{z_{R}}{\tan ()}+j z_{0}}{\frac{z_{0}}{\tan (l)}+j z_{R}} \cdot z_{0} \cdot \frac{j z_{0}}{j z_{R}}=\frac{z_{0}^{2}}{z_{R}} & =z_{0}^{2} \cdot y_{R}=(50 l)^{2} \cdot\left(\frac{1}{50}+j \frac{1}{100}\right) \mathrm{s} \\ & =50+j 25 \Omega\end{aligned}$
The circuit is in resonance if $-\frac{1}{\omega C}=-25 \Omega \Leftrightarrow f=\frac{-1}{-25 \Omega \cdot 2 \pi \cdot 6 \cdot 3 \cdot 10^{-12 F}}=1.0 \mathrm{GHz}$
b) $\lambda / 4$ long transmission line moves a capacitive impedance z_{R} into an inductive impedance z_{1}. Inductance comes through the phasing of the transmission line.

In-class task

$$
\begin{aligned}
& G=\frac{1}{50} \mathrm{~S} ; B=\frac{1}{100} \mathrm{~S} \\
& C=6.3 \mathrm{pF} ; Z_{0}=50 \Omega
\end{aligned}
$$

$$
Y_{R}=G+j B ; y_{R}=\frac{Y_{R}}{y_{0}}=\frac{\frac{1}{50}+j \frac{1}{100} S}{\frac{1}{50} S}=1+j 0.5
$$

rotate $a / 4$ towards the load in position y_{1}
then rotate another $\lambda / 4$ to the impedance scale

$$
\begin{aligned}
& z_{1}=1+j 0.5 \Rightarrow z_{1}=z_{1} \cdot z_{J}=50+j 25 \Omega \\
& \text { Hence }-\frac{1}{\omega C}=-25 \Omega \Rightarrow q=-\frac{1}{(-25 \Omega) \cdot 2 T \cdot 6.310^{-12} \mathrm{~F}}=1.0 \mathrm{GHz}
\end{aligned}
$$

Q1: A 2-port with lumped impedance Z is connected between two transmission lines (with Z_{0}). What is the input impedance $Z_{\text {in }}$ seen in Port 1 to the right (towards Port 2)? Assume the transmission lines semi-infinite long
$\stackrel{\text { FIRST VOEE }}{\downarrow}$

21\%1. $Z_{i n}=Z \quad 0 \%$
0% 5. $Z_{\text {in }}=\infty$ (open circuit) 0% 4%. I don't know

Q2: This LC series circuit topology might work at $\omega_{0}=\frac{1}{\sqrt{L C}}$ as ...

$$
\begin{aligned}
& z=j \omega L+\frac{1}{j \omega C} \\
& \text { at } \omega_{j}=\frac{1}{\sqrt{L C}} ; \quad z=0 ; z_{\text {in }}=z_{0}
\end{aligned}
$$

0% 1. Low-pass filter below ω_{0}
10% 2. High-pass filter above ω_{0} 69% 3. Band-pass filter around ω_{0}
F\% 4. Band-stop filter around ω_{0} 3% 5. I don't know

Q3: This LC series circuit topology might work at $\omega_{0}=\frac{1}{\sqrt{L C}}$ as ...

3% 1. Low-pass filter below ω_{0}
0% 2. High-pass filter above ω_{0}
$10 \% \quad 3$. Band-pass filter around ω_{0}
77% (4.) Band-stop filter around ω_{0}
10% 5. I don't know

The scattering parameters deal with voltage waves that incident $\left(V^{+}\right)$and scatter (V^{-}) in the designated ports
$V_{1}^{+}=$voltage waves 1 N to the port t
$V_{1}^{-}=$voltage waves OUT of the port

$$
S_{11}=\frac{\text { scattered (restected) voltage }}{\text { incident voltage }}=\frac{V_{1}^{-}}{V_{1}^{+}}=\Gamma_{\text {in }}=\frac{Z_{\text {in }}-Z_{0}}{Z_{\text {in }}+Z_{0}}
$$

trachtional SINGLE PORT \rightarrow ONE SINGLE VALUE S_{11} (complex reflection number) coot.

The S matrix describes the full relationship between designated ports in terms of voltage waves

The scattering parameters can be measured with vector network analyzer (VNA), simulated with circuit or EM simulator or calculated pen \& paper method

$$
\begin{aligned}
& {\left[\begin{array}{l}
V_{1}^{-} \\
V_{2}^{-}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1}^{+} \\
V_{2}^{+}
\end{array}\right]=0} \\
& \left\{\begin{array}{l}
v_{1}^{-}=S_{11} \cdot v_{1}^{+}+0 \\
v_{2}^{-}=s_{21} v_{1}^{+}+0
\end{array}\right. \\
& \Rightarrow\left\{\begin{array}{l}
s_{11}=\frac{v_{1}^{-}}{v_{1}^{+}} \text {when } v_{2}^{+}=0 \\
s_{21}=\frac{v_{2}^{-}}{v_{1}^{+}} \text {, when } v_{2}^{+}=0
\end{array}\right.
\end{aligned}
$$

If $Z_{L} \neq Z_{0}$ in port 2 , the input reflection $\Gamma_{i n} \neq S_{11}$

If $Z_{L} \neq Z_{0}$ in port 2 , the input reflection $\Gamma_{\text {in }} \neq S_{11}$

The scattering matrix of active components is non-reciprocal and non-symmetric

E.g., a transistor amplifier at f :

$$
S=\left[\begin{array}{ll}
0.10 \angle-137^{\circ} & 0.010 \angle 27^{o} \\
4.0 \angle-36,18^{o} & 0.10 \angle-88^{\circ}
\end{array}\right]
$$

Matching: $\left|S_{11}\right|=\left|S_{22}\right|=0,10=10 \log _{10}\left|S_{11}\right|^{2}=20 \log 0.10=20 \log 10^{-1}=-\underline{\underline{20 d B}}$
$\begin{aligned} & \text { Power gain } \\ & (1 \rightarrow 2):\end{aligned} \quad G_{21}=\frac{\frac{\left|V_{2}^{-}\right|^{2}}{2 z_{0}}}{\frac{\left|V_{1}^{+}\right|^{2}}{2 z_{0}}}=\left|\frac{V_{2}^{-}}{V_{1}^{+}}\right|^{2}=\left|S_{21}\right|^{2}=10 \log \left|S_{21}\right|^{2}=\underline{\underline{12 \mathrm{~dB}}}$
Isolation

$$
\left.\begin{aligned}
& \text { Isolation } \\
& (2 \rightarrow 1):
\end{aligned}\right|_{12}=-10 \log \left|S_{12}\right|^{2}=-20 \log 10^{-2}=+40 \mathrm{~dB}
$$

Q4: Which of the alternatives is/are false concerning the two-port in the figure? (select one or more)

1. When inductors are ideal, the circuit is 24% lossless, and the S matrix satisfies $[S]^{H}[S]=[I] \quad$ TRUE
34^{\prime} 2. The circuit is not perfectly matched;
$S_{11} \neq 0$ and $S_{22} \neq 0$ TRUE

34% 4. The circuit is reciprocal; the S matrix is symmetric $[S]=[S]^{T} \quad$ TRUE $\quad S_{21}=S_{12}$
$3 \|^{\Pi} .5$. Power into port i given by $\longrightarrow P_{i}^{+}=\frac{\left|V_{i}^{+}\right|^{2}}{2 Z_{0}}$
31% 6. Power out from port i is given by
10^{\prime}.7. I don't know

$$
\begin{aligned}
& +=\text { signal } 1 \mathrm{~N} \\
& -=\text { Signal oUT }
\end{aligned}
$$

$$
\left[\begin{array}{l}
V_{1}^{-} \\
V_{2}^{-}
\end{array}\right]=\left[\begin{array}{ll}
S_{11} & S_{12} \\
S_{21} & S_{22}
\end{array}\right]\left[\begin{array}{l}
V_{1}^{+} \\
V_{2}^{+}
\end{array}\right]
$$

In-class task: combine pairs!

Consider all circuits consist of ideal components and lines!
I. Does any of the circuits (1.-3.) have resistive losses? If yes, which? Which (a.-d.) is the corresponding S matrix?
II. Is any of the circuits (1.-3.) non-symmetric? If yes, which? Which (a.-d.) is the corresponding S matrix?
III. Is any of the circuits (1.-3.) non-reciprocal? If yes, which? Which (a.-d.) is the corresponding S matrix?
IV. Is any of the circuits (1.-3.) lossless and symmetric? If yes, which? Which (a.-d.) is the corresponding S matrix?
Extra: is any circuit simultaneously lossless, matched and reciprocal?
a. $\left[\begin{array}{lll}0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array} \quad\right.$ b.
$S_{a}=\left[\begin{array}{ccc}0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
C.
$S_{c}=\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$
$S_{b}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

d.

$$
S_{d}=\frac{1}{2}\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

In-class task: combine pairs!

Consider all circuits consist of ideal components and lines!
I. resistive losses? Circuit 2. contains resistors - i.e., is lossy. So is matrix d: $\left|S_{i i}\right|^{2}+\left|S_{2 i}\right|^{2}+\left|S_{3 i}\right|^{2}=\frac{1}{2} \neq 1$
II. non-symmetric? Circuit 1. is non symmetric. So is matrix a: $S_{11} \neq S_{22}$. (The circuit is lossless and so is its S matrix.)
III. non-reciprocal? All circuits contain only passive, non-isotropic components \rightarrow none of the circuits are non-reciprocal. Matrix b. is non-reciprocal.
IV. lossless and symmetric? Circuit 3. is lossless and symmetric. Its matrix is c.

Extra: lossless, matched and reciprocal? There is no three-port which is lossless, matched and reciprocal. See Pozar C. 7.1.
a. $\quad S_{a}=\left[\begin{array}{ccc}0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$
b. $\quad S_{b}=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
C. $S_{c}=\frac{1}{3}\left[\begin{array}{ccc}-1 & 2 & 2 \\ 2 & -1 & 2 \\ 2 & 2 & -1\end{array}\right]$
d. $\quad S_{d}=\frac{1}{2}\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$

