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I. INTRODUCTION

In this lecture we will review key concepts from quantum mechanics, electromagnetism,

and solid-state physics which will be essential for this course.

II. MOTIVATION

Moore’s Law — Doubling of the number of transistors per chip every 18-24 months.

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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FIG. 1. Moore’s Law

dimension of gate = 5 nm presently! Very near the molecular scale and approaching

atomic scale, where quantum effects (tunneling) will become important.

— density: with 5 nm technology has ~ 108 /mm?.
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— power density, i.e., how much heat they generate. Presently approaching 6 W/mm? =

600 W/cm?.
Compare with a light bulb ~ 0.01 W/mm? =1 W/em? and our Sun = 60 W/mm?.
III. CLASSICAL WAVE PHYSICS

Recall plane waves have the form

Y(r) =™, (1)

where x denotes the position, and k the wavenumber. The wavelength A relates to the
wavenumber via A = 27 /k. Furthermore, recognizing the dimensionless quantity ¢ = kx as

the phase, Eq. 1 is more compactly ¢(z) = €*®.

FIG. 2.

(k,w)-space

-Defined by the respective Fourier transforms

ulh = [ dee o) = o) = o [ dketull )

—00 —00

Y[k, w] = /_ Z dx /_ o; dte™ Tl (2. 1) <= (1) = (271)2 /_ Z dk /_ Z dwe™ [k, w] .
(3)

Some properties:
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IV. QUANTUM MECHANICS

Recall, the time-dependent Schrodinger equation is

d
zh%w(m,t) = Hi(x,t), (4)

where 1(z,t) is the wavefunction. Also, the probability density is |¢)(z,t)|* and the proba-

bility that a particle is between points a and b is

[ tappds. o)

e Typically H = kinetic energy + potential energy, i.e.,

2
H=2_41v, (6)

2m

where p is the momentum operator, which in the position representaion reads

d
p=—ihi— . 7
tho - (7)

Importantly, p relates to the position operator x via the canonical commutation relation:
[z, p] = ih (8)
e Dirac notation, aka bra-ket notation.

Loap(x, 1) = (x[(1)).
2. [T dalp(z, t))? = [T de(ot)]|)(z[v(t)) = ((t)[¥(t)) = 1, where we have used
Jo o)) =L



3. Schrédinger equation: ihit = H|y(t))
Note it is possible to have a time-dependent Hamiltonian H(¢). However, if H
is time-independent, we can solve the Schrodinger equation by the method of

separation of variables.
4. Time-evolution: |1 (t)) = e % [)(0)).

5. Eigenvector-eigenvalue problem: H|¢) = E|¢).

Example: Free-particle, i.e., V(x) = 0.
The Schrodinger equation is —%%w(x) = EY(x), where ¢(z) = er* with k =

V2mE/R2. So overall, ¢ (z,t) = e ke=wt) where w = E/h.

A. Infinite square well

Consider an infinite square well potential with the boundaries

0, xe€l|-L/2,L)2]
V() = (9)
00, x€ (—o0,—L/2)U(L/2,+00).
We seek the eigenenergies and eigenstates.
Solution:
Y(x) = Asin(kx + kL/2).

The boundary conditions are

v=—L/2 = (—L/2) =0

(10)
r=1L/2—=¢Y(L/2) = Asin(kL) =0,
where the second condition implies that k,L = nm.
With normalization we have
+o0 L/2
/ [ (z)|*dr = / dx A? sin® (n—ﬂx + n_7r> =1, (11)
—00 —L/2 L 2
which implies that A = /2/L. Moreover, the eigenstates are
) knL
Yn(x) = +/2/Lsin <knx + 5 ) , (12)
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where n =1,2,3---.

The eigen-energies are recovered from the time-independent Schrodinger equation

h* d?

 2mda?

77Z)n('r) = Enqu)n(x) ) (13>

where we find E,, = h%k2 /2m.
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FIG. 3. 1-D infinite square well potential.

Important observations:

— there exists a minimum non-zero energy £, = h?w?/2mL?, corresponding to the ground
state ¥;. So a particle in a box always has some kinetic energy! This is very different

from classical physics.

— energy levels are quantized — not every energy is allowed!— and form a discrete ladder.

— E, o< 1/L% The larger the box, the smaller the gap between levels. Eventually, as

L — oo we reach the continuum again.
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B. The quantum harmonic oscillator

The quantum harmonic oscillator has the Hamiltonian

(14)

We wish to find eigenenergies and eigenstates.
Solution:
E,=(n+1/2)hw, where n =0,1,2---.
Yn(z) = Nype~ _Sz”QHn( %x), where N, = —= (W)m, and H, is a Hermite polyno-

27!

2 gn

mial of degree n. Explicitly, H,(z) = (—=1)"e* % (e™*" ), so
Hy(z) =1

Hi(z) =22

Ho(z) = 422 — 2

Hj(z) =823 — 122

azd%@—i—ﬁp) z=/52=(a+a)
o' = /5 (o~ 5i0) p=iy/*a’ - )

The number operator N = a'a, N|n) = n|n), where |n) = %\O) Note: a|0) = 0.

Therefore, in terms of the number operator, the Hamiltonian is H = fuw (N + 1/2).

e Commutation relations:
[a,a’] =1
[N,al] = af
[N,a] = —a

Important Observations:

e Energy levels are equally spaced by Aw.

e There exists a minimum energy of fw/2 which corresponds to the ground state, i.e.,

zero-point motion energy.



Example: Calculate the variance ((Az)?) = (2%) — (z)? for the vacuum state |0), where
Az denotes the standard deviation of x.

Solution:
With # = \/52—(a + af), we find (z) = 0, and (z?) = 5= Therefore, (z?) = 22, where

_ h
Lzpf = 2mw

is the zero-point fluctuation.

C. Spin-1/2 particles

e Comes from the Stern-Gerlach experiment where a beam of silver atoms running

through a non-homogeneous magnetic field is split into two beams.

e Angular momentum

S="Ilg4 o = (ox,0y,0)

|s,m) = (15)

S8, 8) = Bos(s + DI3, ) = 2023, ).

e In quantum information,

13,3) =10 ,
qubit states (16)
General qubit state: 1) = cos |0) + €' sin £[1) .

e EBigenvectors-eigenvalues:

Question: What is the analogue of zero-point fluctuations for spin-1/27?
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or = (15) oy =(97") o= (5%)
o) = £ oy X Y) = £x )| 0210) = [0), 0. ]1) = —[1)
= J(d) | k) =G () | 10 =() =)

D. Many-particle quantum systems

In many-particle systems it is necessary to concatenate the Hilbert spaces of each particle.

V', W Hilbert spaces vy eV, Jw) e W
V ® W = tensor product vy @ |lw) e VoW

e But how do we write the wavefunctions?

Say we have two particles, is the wavefunction |v);|w)s, |w)1|v)s or

T (alv)i|w)s + Blw)i|v)2)?

e In nature there are only two types of particles:
bosons — symmetric wavefunction

fermions — anti-symmetric wavefunction

Good news, we do not necessarily need to work with cumbersome symmetrized or anti-
symmetrized wavefunctions. Instead, a compact way of writing the wavefunction is provided

by the Fock space:

n1,ng, )

Bosons:



iy, ) = Gt (0l (@) 10,0, )
Fermions:

ci,c} = 0;j

ci,cj:cj»,c;:O

NZZiCzT'Ci

CT|... gy = (1 —my)(—1) <o pyy, e

C’L| y My > - ni(_l)zj<zn]| y Ti—1, >
CZ| ;g =0, > =0
C@T |-+ ,n;=1,---) =0 — Pauli exclusion principle.

Ny, ng, ) = (c{)"l(cg)m .--10,0,---)

V. ELEMENTS OF SOLID STATE PHYSICS

Electrons — they are fermions; i.e., Pauli exclusion principle applies.
—at T =0, we fill all the states until we use all of the electrons.
For example, take a wire (just because we have a single k-vector - - ).

At T # 0 the distribution of electrons is described by the Fermi-Dirac distribution:

Metal: Insulator:

E +E

21.2
Er E_ﬁk

2m

conduction/ EBe valence
band / band

<

k k

No states available for electrons

v

FIG. 4. Energy bands of a metal and insulator.

1

Jr(E) = exp[(E — Ep)/kgT] +1°

10



<
o0
1

o
~

Tz0 1

<
b
1

-0.2 -0.1 0 0.1 0.2
E (eV)

FIG. 5.

Two limits:

e degenerate limit: frp(F) ~ O(FEr — E).

e non-degenerate limit: frp = exp[—(F — EFr)/kpT]
when F — Er > kgT.

Density of states:

. — iky T ikqyy iky -z 1., . .
Free electron wavefunction: ¢ (7) = ¢ 7 \/yE v \%Ve“”. Here, V' is the volume in

k-space and E = h?k?/2m is the dispersion relation, where k, = 27n, /L, k, = 2mn, /L, and
k,=2mn,/L.

We want to calculate the number of states per volume within an energy interval dE. This

is known as the density of states.
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3
The volume element in k-space is V3p = (27”) and the volume of shell between k and
k + dk is de = 471']{326”{?

The number of states in this shell is 2 - % = kwgk L3, where the factor of 2 comes from
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FIG. 6.
the electron spin.
E = Rrk*/2m = dk = \/m;;dE

Therefore, the number of states in the interval dE per unit volume is

Nip(E)dE kﬁik 2;2( ) "VEdE . (18)

VI. ELECTROMAGNETISM

Maxwell’s equations (in SI units):

D
VxH=J+ 88_t Faraday’s Law
VxE= _0_15’ Ampere’s Law
ot (19)
V-D= P Coulomb’s Law
V-B=0 Gauss’ Law ,

where J is the current density and p is the charge density.

Constitutive relations:
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1
(@)
=,

€ = goe, = electrical permittivity,
g0 = 8.854 x 10712 F//m = vacuum permittivity

e, = relative permittivity

c= \/;)% = speed of light in vacuum.
B= ,u,I-_f = oty = magnetic permeability

po = 41 x 1077 H/m = vacuum permeability.

Wy = relative permeability.

In AC fields: e > e =¢ — i’ & tand = 66—/,/ = loss tangent.

Other fundamental relations:

° Ohm’slawjzﬁ-ﬁ

e Continuity equation: _8_€ =V-J
/N N\
/\ c”/\‘\ \‘ [ ) ﬂ
I
‘\\ \\ // \\”//‘ \\//“ \/
J S

FIG. 7.

e Gauss-Ostrogradsky theorem: —2 [[f,, dV - 5 = ¢p. d5- J, i.e, the rate of decrease of

positive charge = total current flux flowing out of the closed surface.

VII. THERMODYNAMICS

e First law of thermodynamics: AU =Q-W
This is conservation of energy, where AU denotes the change in internal energy, ()
is the heat supplied to the system, and W is the work done by the system onto the

environment.
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e Second law of thermodynamics: 0Q =TdS (for reversible processes)
This says that the total entropy of an isolated system can never decrease. 6() denotes
the amount of heat transferred and dS is the change in entropy produced by the
transferred heat.

Corollary: It is impossible to construct a cyclic engine that produces work from the

energy extracted from a single reservoir (Planck).

e Third law of thermodynamics.

The entropy approaches a constant value when 7" — 0

lim S = const .
T—0

A. Equipartition Theorem

— In thermal equilibrium, energy is shared equally between the degrees of freedom (%k g1

per degree of freedom).

Example:

Ideal gas: F = %mvi + %mvg + %mvg = average energy = %kBT + %/{:BT + %kBT =

%kBT = Urms = \/W: \/ gkaT‘

Harmonic oscillator: F = % + %ka = average energy %kBT + %kBT = kgT

where kg = 1.38 x 10_23% — Boltzmann’s constant.

VIII. FURTHER READING

Any introductory textbook on quantum mechanics, solid state physics, and electromag-

netism should suffice. For example, cf.

e The Open University: SM358 The Quantum World
Science Level 3 Books 1-3

e David J. Griffiths — Introduction to Quantum Mechanics

e Charles Kittel — Introduction to Solid State Physics
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e Martin Sibley — Introduction to Electromagnetism

There is a plethora of information, lecture notes, and video lectures on the internet!
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