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I. TRANSMISSION LINES

— Electromagnetic waves can propagate in free space (Review this! Based on Maxwell’s

equations!). But also they can be guided by conducting or dielectric boundaries.

— Transmission line behavior: occurs when A < length of transmission line.

— Transmission lines = guiding devices for the electromagnetic field.

— The electromagnetic fields are TEM (transverse electromagnetic mode) if the conduc-
tors are ideal (zero-resistance); otherwise there will be a small axial component of the

electromagnetic field.
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EXAMPLE: The coaxial line
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II. TOWARDS A DISTRIBUTED MODEL OF INDUCTORS, CAPACITANCES,
RESISTANCES, CONDUCTANCES

Problem: How to connect the electric and magnetic fields to circuit elements.

S

Answer: Via stored or dissipated energy.

1. Inductance per unit length

Magnetic energy = £ [ ds - (AZ)I;T2 = % = L'=+4 fdsﬁ2
0

L'=4 [dsH? = 45 - I3 [7d6 [ dr-r- sy = £ 1n L.
Therefore,
b
r=2tm’ (measured in units of H/m) . (3)

21 a

2. Capacitance per unit length

Electrostatic energy= < [ds- (Az) - E* = % — (=5 [ds- E?

Ozéf@W:Lw@E%fWmewg

Vi 0
,  2me . .
== ' = ™~ (measured in units of F/m) . (4)
n =
3. Resistance per unit length
Power dissipated in the lossy conductors = £ CatCy dl-Az-J? = %Az'fc(ﬁcb dl-H? =

R/

QAZ I2. Here R, = surface resistance, J, = 1 x H = surface current, 77 = vector unit
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pointing outwards (normal to the conducting surface), and R’ = If—g I cote, AU H?.

2T 2T
R/:%f6a+cbd€'H2: (2Ijrs)2[fo do-a-z+ J; d9~b-bi2} :%(l‘i'%)

a

/ Rs 1 1 3 1
(5 + 5) (measured in units of /m) . (5)

4. Conductance (radial) per unit length

e=¢ —ic = o€ (1 —itand)

€ = epe,

€ = etand — dissipation in the dielectric between the core metal and the outside shield.

” 112 ”
Power dissipated = ¥~ [ds- Az - E* = G% — G =% [ds- E?
0

" " 2
/] __ We 2 _ we 27 b Vo
= G = i [ds- E* = i Jo dé [ dr-r oy

2nwe”
= G = S (measured in units of S/m) . (6)
n —_—
a
— Examples of materials used in coaxes:
Conductor ‘Copper Cu‘Aluminum Al|Silver Ag‘Gold Au
Resistivity p[n€2 - m}‘ 16.9 ‘ 26.7 ‘ 16.3 ‘ 22.0
Dielectric Dry Air|Polyethylene| PTFE|PVC
€r 1.0006 2.2 2.1 | 3.2
tan d low 0.0002 0.0002{0.001
Resistivity (- m) high 101 1015 | 101°
Breakdown voltage (mV/m)| 3 47 59 | 34




Other transmission lines:
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III. TRANSMISSION LINES: GENERAL MODELS

— If the length of a circuit is = A we have to use either a simulator of Maxwell’s equations

or a distributed model of lumped elements.

— Transmission lines: Two parallel conductors that guide the electromagnetic field. Ex-

amples: two-wire lines, striplines, microstrip lines.

I e
: JI == V(z,t) G Az ——CAz V(z+ Az,t)
i S
Az

A
v

R, L' G', C'" = resistance, inductance, conductance, capacitance per unit length.

Kirchoft says:

V(a,t) = I(z,t)R' Az + L'Ax - 280 L V(e + Az, t)

(15)
I(z,t) =V(z+ Az, t)G'Azx + C’Aw%ﬁm + I(x + Az, t)
8Va(zt R/](aj t) _I_L/df(xt)
Ax — 0 (16)
U @V )+ 220
Therefore,
_82V(x,t) _ _R/ G/V z, " + C/BV (z,t) L/ G/@V (z,t) + C/a V(z,t)
2 (G'V(z,1) ) — L o) an
aé(gt) :_G/(R/I( )_I_L/alact)) O/(R/alxt)+L/8 I(x,t)>
or
VD) _ pror®Ved L (Rier 4 QYYD L RIGHY (1) -

62{1%(;15 L/O/B étazct (R/C/ —I—LIG/)aI + RG'T ( )



Harmonic signals:

V(x,t) =V(x)e™t V(z), I(z) = phasors, I(z,t) = I(x)e™"

V@) _ 2V (2) =0, where v=a+i8= /(R +wl) (G +iwC)

=
dili(f ) _ v?I(x) =0, ~ = propagation constant, a = attenuation constant, 3 = phase constant
General Solution: V(r)=Vie ™ Ve, (19)
From —% = RI(z,t) + L%, we get I(z) = — 57— d‘;iz) or

I(z) = £ Vier — LV=e = [te 7" + [~¢7”, where
0 0
Zy = ,/—gfijjg, = characteristic impedance of the transmission line,
+

and where [+ = j:‘;—o.

Lossless transmission case: R =G =0
v =18 =1wwvVL'C
Zy = YLO = é—: — now independent of frequency!

Note: Free-space impedance = 377 {2

w 1

U =5 = The = phase velocity.

Exercise: Show that for the loss-less case R < wL, G < wC, we have f ~ wvL'C'
~ R | G
and a ~ LV LC'(5 + %),

o Standardized values:

Zy Application

50 © |Instrumentation, communication

75 Q) TV, VHF radio
300 © RF
600 Audio

e Incident and Reflected Waves Along a Loaded Transmission Line

V(z)=Vte "+ Ve
I(z)=TIte ™ +17€®, [*f=+2
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V(0) = Vi — Zs1y — Kirchoft’s law

or

Vid Vo =V, = 2(VT+V7)

Vie " + Vet = Z(Vte "t — V=)
Zo

e Define a reflection coefficient of the load at x = ¢: I'yy = Vet

= VFet

=1+ Ty =Z(1-Ty).
_ Zi— 2y
 Zi+ Z

We can also define a current reflection coefficient at the load

- I'y

It

F = — = —
I Tret v

. . tetlyy— et
e Define the transmission coefficient at the load z = ¢: Ty = %

TV:1+FV7

and for the current
Ite vt 4 [t
T = *
Itet

=14+1I7.
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Line terminated in

/ a load impedance

(20)

(21)

(22)



e Average power delivered to the load

P, = 1Re[V (¢€)I*({)], where the 1/2 comes from the fact that the field is harmonic.

Now,
—erlyte—t 1(¢
1-Ty = Ftle™ = 20, (26)
+ o=l o=t
I1+Ty = ¥ \’Y/Jjjw/[ — = VK(S{)W .
(1 + F*V)(]‘ + FV) [+*V+(:){MEZ) 7(3) bl but ]+ - ‘22—

V(OI*(6) = 5 |VFTe - (1-T})(14Ty) =1 =T} + Ty — [[y]*, where T}, + Ty =

Imaginary!.

1

P, e (1 — Ty %) . 2
r= 5 IVE (L= TP (1)

e VSWR (Voltage standing-wave ratio)

V(z)=V*te "+ Ve = Vte 1+ Tye 2] (Remember that I'y = \YT% )

VI +T,l)
O
=~

Vi@ -1,

Let’s consider a lossless line @ = 0, =i = 27”

|V(z)| = |[VF|- |1+ Tye 2B8¢=2)| — oscillates, min. and max. separated by =3

VSWR = iHFVI = ratio between the max. line voltage and min. line voltage.
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e Impedance along the line

V() Vte @4y —er® 14Dy e270-2)
Z(l‘) T I(z) T Zo Vte—712—V—er® 1-Tye 2v(t—2)"

Take z = 0 — we get Z(0) = Z;,, = input impedance of the line, i.e., the impedance

seen when looking toward the load.

Zy + Zytanh v/
Zo + Zytanh v/

Note that this can be verified immediately by recalling that I'y, = gﬁ;gg, and that in

general, Z;, # Zj, so the termination matters! Also, Z;, is frequency-dependent.

EXAMPLES OF LOADS (TERMINATIONS)

1. Matched Load

’ :
|
I —
: Z() : ZB - ZO
I .
[ ®
< >
Zo=ly = 'y = % = No reflection!

VSWR =1, Zy, = Zy, P = 5= |V*2e 2% — power delivered is maximum.

27
This is only obtained if a # 0.

Ze=Zo _ q

2. Open-Circuit Z, =00 = I'y = 7

VSWR = oo, Z;, = Zgcothyl, P, = 0 — Compare this with the DC-case
where all the input power is delivered!
For a = 0 (lossless), Z;, = —iZy cot QT”Z if ¢ = %, Zin = 0, so the open line will look as

a shortcut!
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Inductive

g |. A2 ! |
l '3)/4 14
| 7 I :
: : l Capacitive |
® ® pacitiv i
< > 1
S Zi—2
3. Short-circuit Z, =0 = I'y = 2522 = —1,

v
7. 72
o

< >
Inductive
M2 3)/4
¢
Capacitive
0

VSWR = o0, Z;, = Zgtanh~y¢, P, =0.

2t
shorted line looks like an infinite impedance to a source! (even if the resistance of the

For a = 0 (lossless), f = 27” quad Z;, = iZytan Z£ — If ¢ = jz\, Zin = 00, SO the

wire is zero!)
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V. RESONATORS FROM TRANSMISSION LINES

— It is possible to make resonators from transmission lines, 3D cavities, etc.

— The most usual case is the short-circuited transmission-line resonator.

Zy=0, Zin = Zytanh(al — ifl) = Zyhattitan 5t

1+itan fltan ol ”

Zin

If losses are not too large, af < 1, we have tan af ~ o/, so

al + i tan Bl
Lin = Log————— . 29
Ol—l—zaétanﬂﬁ (29)
Now, recall that § = w/v, = wVL'C', v, =1/VL'C', Zy=/L'/C",
o= B\ /OTT.
We will consider 5y =m, or £ = )\g/2 as the resonance condition, leading to a
resonance frequency wy.
%‘jﬁ =woVL'C'"l =7, sow= NE,—C,.
w—wo w—wo

We can expand this around this point: tan ¢ ~ tan(m+ ) = tan Ww;—;"o ~

wo wo

if |w — wo| < wp.

w—wq

So,  Zin = Zyor" S0~ Zo(all 4 ime=n
o, n — 01+a£ﬂw;w0 — O(OK +am wo )

=/ L'/C'((R\/C'/L' +il/L'C'(w — wy)) = s R/ + iL'l(w — wy).

e Suppose now that we look back at the series RLC circuit

Z =R+ iL(w? — wi) ~ R+ 2iL(w — wp) near resonance, w =~ wy.
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g

Therefore, we can identify R = %R’ {and L = %L’ L.

L L
Quality Factor @ = % = w;]%/ = 25—;.

(30)
Interesting question to think about: Why do we get the factor 1/2 in the RLC equiv-
alent above?

—Answer: Because the current in the short-circuited line is half a sinusoid , therefore

we obtain only half of the total resistance and inductance of the full length ¢.

To see this explicitly, let us write the solution

V(x) ~ VTe ¥ 4 V¢ — here we neglect a. (31)
I(z) = — & (=Vte o 4 V=eiha)

Since 1(0) =0 = V™ =V~ at this point (also you can see that I'y = ye*%f = —1
and Gol = 7).

So
V(z) = 2V cos fyx
(z) | 0 (52)
I(x) = —%V* sin Bz = I sin fox .
Therefore the magnetic-field energy:
B R 1 Ao/2 Ao
W = / do - ~L'|I(x)|]* = —]I*\QL'/ sin® Byzdr = = - [IT]2L/. (33)
; 4 4 ; 16
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At resonance:  Wegr = Wy, so

A
W =Wer + Wy = §0L’|I+|Z . (34)

P=4 J" do- RI@) = S [ sin feds,

SO
- A
P= gOR’|]+|2 . (35)
Therefore, o
woW — wL
== =" 36
Q=" - (30)

s L 7 s R s
T: = — —_ = = — h T ~ — = —
0 Q 7\ & = 77 = 30a> Where we used a 575 Wo T
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