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e Spelling correction, text input netmeg

e Search Query Comp|etion Web mages Maps Shopping Books

Did you mean: nutmeg -
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e Spelling correction, text input netmeg
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e Search Query Completion
* Optical character recognition
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Language Model
Applications

e Spelling correction, text input netmeg

e Search Query Completion

= Google Translate

TURKISH T ENGLISH

e Optical character recognition e
O DIr aoktor

* e.g. scanning old books

Translations are gender-specific. LEARN MORE

e Statistical machine translation

she is a doctor (reminine)

he is a doctor mascuiine)
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Language Model
Applications

Spelling correction, text input
e Search Query Completion
Optical character recognition
* e.g. scanning old books
Statistical machine translation
Information retrieval

e Question Answering

netmeg

= Google Translate

Passage Sentence

In meteorology, precipitation is any
product of the condensation of
atmospheric water vapor that falls

under gravity.

Question

What causes precipitation to fall?

Answer Candidate

gravity
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Language Model
Applications

Spelling correction, text input

e Search Query Completion

Optical character recognition

. e-g. Scanning Old bOOkS lmIAS’:ﬂlB:t”:‘\ h about me... :aor:naestkhfl':gsyou | It might b d t ¢ it
.- B
e Statistical machine translation | oo
A s
e |nformation retrieval et
e Question Answering -
-
* Automatic speech recognition
Answer Candidate
[ ]
gravity
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Recap: N-gram Language
Models

Silo Al



Recap: N-gram Language
Models

e \We wanted to calculate
p(W) = p(wy,wa, . .., W) (1)

p(w;|wi—1, wi—g, ..., wp—1) = p(w;|wi—1, Wi—2, wWi—3,Wi—g)  (2)
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Neural Network Classifier
for Language Modelling

Input? Output?

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Neural Network Classifier
for Language Modelling

Output?

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Neural Network Classifier
for Language Modelling

Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Representing Words

SNLP 2021 5 Silo Al



Representing Words

 Words are represented with one-hot vector, e.qg.,
e dog=(0,0,0,1,0,0, ...
e cat=(0,0,0,0,0,1,..)
e eat=(0,1,0,0,0,0, ...
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Image: http://mt-class.org/jhu/slides/lecture-nn-Im.pdf
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Feedforward Neural
Network LM (FFNN)

WORD4

w

Hidden (t)
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Feedforward Neural
Network LM (FFNN)

e Loop through the entire
COrpus

WORD4

w

Hidden (t)

A
/1/ C2 Cs

WORD1 WORD2 WORD3

FFNN
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Feedforward Neural
Network LM (FFNN)

e Loop through the entire
COrpus

e (Calculate error or loss
(cross-entropy loss)
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Feedforward Neural
Network LM (FFNN)

e Loop through the entire
corpus WORDA4
e Calculate error or loss l w
(cross-entropy loss)
Hidden (t)
* Propagate the error 5
through network to / l \
update the weight / e N

matrices WORD1 || WORD2 || WORD3

FFNN
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Feedforward Neural
Network LM (FFNN)

e Loop through the entire
COrpuS WORD4
e Calculate error or loss l w
(cross-entropy loss)
Hidden (1)
* Propagate the error 5
through network to / l c\ c
update the weight 1 ) °
matrices WORD1 || WORD2 || WORD3
 Back Propagation FENN
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Why NNs for LMs

The cat is walking in the bedroom

A dog was running in a room
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Why NNs for LMs

The cat is walking in the bedroom

A dog was running in a room
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The cat is running in a room
=> A dog is walking in a bedroom

The dog was walking in the room
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Why NNs for LMs

, o The cat is running in a room
The cat is walking in the bedroom

=> A dog is walking in a bedroom

A dog was running in a room o
The dog was walking in the room

* NNLM generalizes in such a way that similar words have
similar vectors
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Why NNs for LMs

_ o The cat is running in a room
The cat is walking in the bedroom

=> A dog is walking in a bedroom

A dog was running in a room o
The dog was walking in the room

* NNLM generalizes in such a way that similar words have
similar vectors

* Presence of only one such sentence in the training set
helps improve the probability of its combinations
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Types of NNLM

* Feedforward Neural Network Language Model
* Recurrent Neural Network Language Model
e Long-Short Term Memory LM

e Transformer-based LM
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NNLM: Questions

 What might be some challenges that you might face while
training or applying NNLMs?
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NNLMs Challenges

* Long-Range Dependencies
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e Training Speed
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Feedforward: Long-term
iInformation

 “l grew up in France... | speak fluent
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Feedforward: Long-term
iInformation

e “| grew up in France... | speak fluent French »
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Feedforward: Long-term
iInformation

e “| grew up in France... | speak fluent French »

e Feedforward Neural Network (FFNN) has limited context
size

SNLP 2021 12 Silo Al



Recurrent Neural Networks

WORD4

W

Hidden (t)

A
/1/ C2

Cs

WORD1

WORD2

WORD3
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FFNN

(RNN)
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Recurrent Neural Networks

WORD4

W

Hidden (t)
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(RNN)

Hidden (t)

WORD4

\‘W

Hidden (1)

Hidden (t-1)
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Recurrent Neural Networks
(RNN)

Hidden (t)

WORD4

\‘W

Hidden (1)

Hidden (t-1)

WORD3
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Recurrent Neural Networks
(RNN)

WORD4

w

Hidden (t)

T

SNLP 2021

U

WORD3

Hidden (t)

WORD4

\‘W

Hidden (1)

Hidden (t-1)

WORD3
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HO —
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RNN: Timestep 1

WORD2

W

Hidden (1)

A

WORD1
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HO —
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RNN: Timestep 2

WORD2

W

WORD3

Hidden (1)

W

A

Hidden (2)

WORD1

A

WORD2
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HO —
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RNN: Timestep 3

WORD2

W

Hidden (1)

A

WORD1

WORD3 WORD4
A A
w W
Hidden (2) E— Hidden(3)
A A
U U
WORD2 WORD3

Theoretically information from first step is available to the present timestep

18
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RNN

e “| grew up in France... | speak fluent French »

>

b b &
T
6 6  © o o

Image: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/

— = —3)
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RNN

 “| grew up in France...

* As the gap grows, RNNs become unable to learn to
connect information

SNLP 2021

@

| speak fluent french »
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Image: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/

)
:
6

€
:
S

€
L
S

19

Silo Al



1 r 1
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— (+— «—
H . H
kl J _J j J
&) (x) &)
e Error (red arrow) is passed through a chain of hidden

states

* Error passing through multiple of these functions can

vanish
Image: http://colah.qgithub.io/posts/2015-08-Understanding-LSTMs/
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RNNs don’t do long-
distance well

 The main problem with RNNSs is that gradients less than 1
become exponentially small over time
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RNNs don’t do long-
distance well

 The main problem with RNNSs is that gradients less than 1
become exponentially small over time

 Known as the vanishing gradient problem

e Gradients greater than 1 become exponentially large over
time (the exploding gradient problem)-

* The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number
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RNNs don’t do long-
distance well

 The main problem with RNNSs is that gradients less than 1
become exponentially small over time

 Known as the vanishing gradient problem

e Gradients greater than 1 become exponentially large over
time (the exploding gradient problem)-

e This leads to training instability, and bad results

* The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number
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RNNs don’t do long-
distance well

 The main problem with RNNSs is that gradients less than 1
become exponentially small over time

 Known as the vanishing gradient problem

e Gradients greater than 1 become exponentially large over
time (the exploding gradient problem)-

e This leads to training instability, and bad results

e Sequence Modeling: https://www.deeplearningbook.org/
contents/rnn.html

* The exploding gradient problem can be alleviated by clipping large gradient values to some maximum number
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Long-Short Term Memory
& ®) 63

e |ets add another neural network help the first network
learn long-term dependencies

* That’s basically what we do when we add more weight
matrices to a neural network

Image: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
SNLP 2021 23 Silo Al




LSTM: States
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LSTM: States
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 Global State a:aptures global information at the
document/ sentence level
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LSTM: States
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 Global State a:aptures global information at the
document/ sentence level

 LSTM hidden state| hiinteracts with this global state to
predict the next word
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1 |

0 sigmoid function

W, weight of the respective gate(x)

b, bias of the respective gate(x)

ht_1 output of the previous LSTM

I+ input at current timestamp
25 Silo Al
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0 sigmoid function

W, weight of the respective gate(x)

b, bias of the respective gate(x)

ht_1 output of the previous LSTM

I+ input at current timestamp
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fe = o(wg|hi—1, 2] + bf)

SNLP 2021

Ct—1{ C

fe

C:g =Ci—1 * [i

t

0 sigmoid function

W, weight of the respective gate(x)

b, bias of the respective gate(x)

ht_1 output of the previous LSTM

I+ input at current timestamp
25 Silo Al



ft — O-(wf [ht—17 :Ijt] + bf) Exercise 1

07/5 = Ci—1 * [i

e weights and bias
wr=|1 1]
br =0
e 0:sigmoid fn * : pointwise multiplication

e “” s vector concatenation
* hi—1=[1], &-1=[2], T+ =[0.2]

/
e calculate: ¢,
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fe = o(wglhi—1, 7| + by)

07/5 = Ci—1 * [i

e weights and bias
wr=|1 1]
br =0
e 0:sigmoid fn * : pointwise multiplication

e hy_1=[1], ¢t—1=1[2], T+ =[0.2]

/
e calculate: ¢;
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fe = o(wglhi—1, 7| + by)

07/5 = Ci—1 * [i

e weights and bias
wr=|1 1]
br =0
e 0:sigmoid fn * : pointwise multiplication

e hy_1=[1], ¢t—1=1[2], T+ =[0.2]

1

0.2} =[1.2]

e calculate: CQ
wf[ht_l,fb’t] —+ bf = [1 1] X |:
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fe = o(wglhi—1, 7| + by)

07/5 = Ci—1 * [i

e weights and bias
wr=|1 1]
br =0
e 0:sigmoid fn * : pointwise multiplication

e hy_1=[1], ¢t—1=1[2], T+ =[0.2]

e calculate: CQ |
welhe—1, x] +br=[1 1] x {02} =[1.2]

fr = [o(1.2)] = [0.77]
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fe = o(wglhi—1, 7| + by)

07/5 = Ci—1 * [i

e weights and bias
wr=|1 1]
br =0
e 0:sigmoid fn * : pointwise multiplication

e hy_1=[1], ¢t—1=1[2], T+ =[0.2]

e calculate: CQ

welhe—1,x¢) +bp =[1 1] X HQ} =[1.2]
fr = lo(1.2)] = [0.77]

¢, = ci_1 % fr = [2] % [0.77] = [1.54]
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LSTM Problems

e Forget gate: removes information from the Global Cell state (C)
e this information might be be useful at a later stage
e [Implicit representation of long-term information

e Cell state and previous hidden state summarise the prior

information
W
Vv Vv Vv
HO +—— Hidden (1) > Hidden (2) > Hidden (3)
WORD1 WORD2 WORD3
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Transformers for Language Modelling
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Transformers: Simplified

[1 1 1]
T 1 T
LT 1] LT LT T]

[1 T 1]
1 1 1

LT LT T 1] LT 1]

Multiple (50-90) such layers in a Transformer LM

Credit: http://jalammar.github.io/illustrated-transformer/
SNLP 2021 30 Silo Al




Transformers: Simplified

[1 1 1]
T 1 T
LTI L] LTI

[1 r 1]
1 1 1

LT [T T 1] [T T 1]

Multiple (50-90) such layers in a Transformer LM

Credit: http://jalammar.github.io/illustrated-transformer/
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Transformers: Simplified

[1 1 1]
T 1 T
LTI L] LTI

[f f ?]
1 1 1

LT [T T 1] [T T 1]

Multiple (50-90) such layers in a Transformer LM

Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention

* E.g. “The animal didn't cross the street because it was
too tired”

e What does “it” refer to? “The animal” or “the street”

e Self-attention is the mechanism that helps LM associate:

 “It” with “the animal”

Credit: http://jalammar.github.io/illustrated-transformer/
31 Silo Al
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Self-Attention: Step 0

Input

Embedding LT T T] [T T T]
Queries q D:l:l q Djj
Keys LT 1] [T 1]
Values [T 1] L[ 1]

Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention: Step 0

Input

Embedding [T T 1] [T T 1]

Queries d1 D:D q2 Djj wa
Keys [T 1] [ T]

Values [T 1] L[]

Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention: Step 0

Input

Embedding [T T 1] [T 1717
Queries a: (L] o=
Keys [T [T 1]
Values LT 1] LI L]

Credit: http://jalammar.github.io/illustrated-transformer/
SNLP 2021 32 Silo Al




Self-Attention: Step 0

Input

Embedding [T T 1] [T T 1]

Queries d1 D:D q2 Djj wa
Keys [T 1] [ T]

Values [T 1] L[]

Credit: http://jalammar.github.io/illustrated-transformer/
SNLP 2021 32 Silo Al
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Self-Attention: Step 0

Input

Embedding [T T 1] [T T 1]

Queries d1 D:D q2 Djj wa
Keys [T 1] [ T]

Values [T 1] L[]

Credit: http://jalammar.github.io/illustrated-transformer/
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Input

Embedding
Queries
Keys

Values

SNLP 2021

X1

q1

K1

V1

Thinking

33

X2

qz2

k2

V2

Machines
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Input

Embedding
Queries
Keys
Values

Score
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X1

q1

K1

V1

Thinking

g1 e ki=112

34

Machines
X2
qz2
k2
V2
g1 * ko =96
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Input

Embedding
Queries
Keys
Values
Score

Divide by 8 ( Vd;. )

X1

q1

K1

V1

Thinking

g1 e ki=112

14

35

Machines

X2

qz2

k2

V2

1 e ko =96

12
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Input

Embedding
Queries

Keys

Values

Score

Divide by 8 ( Vd;. )

Softmax

SNLP 2021

X1

q1

K1

V1

Thinking Machines
X2
qz2
k2
V2
qire ki=112 g1 * ko =96
14 12
0.88 0.12

36
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Input

Embedding
Queries

Keys

Values

Score

Divide by 8 ( Vd;. )
Softmax

Softmax
X
Value

Thinking
X1
q1
K1
Vi1
qi e ki=112
14
0.88
Vi
37

Machines

X2

qz2

k2

V2

g1 * ko =96
12
0.12

V2
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Input

Embedding

Queries

Keys

Values

Score

Divide by 8 ( d;. )

Softmax

Softmax
X
Value

Sum

Thinking Machines
X1 X2
q1 gz
K1 Ko
V1 V2
q1 L] k1 = q1 o k2 =
V1 V2
Z1 Z2
38

Credit: http://jalammar.qgithub.io/illustrated-transformer/
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Transformers: Simplified

SNLP 2021

1 1 1 ]
T 1 T

LT 1] LT LTI
1 T 1 ]
1 1 1

LT T 1] LT 1]

Credit: http://jalammar.github.io/illustrated-transformer/
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Self-Attention

o Self-Attention seems to be asking an association question
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e Key & Value ~ Key is the hash key that maps to Value
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Self-Attention

o Self-Attention seems to be asking an association question
e Query ~ smaller word embedding
e Key & Value ~ Key is the hash key that maps to Value

* The names Query, Key and Value come from retrieval
parlance
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Self-Attention

o Self-Attention seems to be asking an association question
e Query ~ smaller word embedding
e Key & Value ~ Key is the hash key that maps to Value

* The names Query, Key and Value come from retrieval
parlance

e you fire a query, you compare to a key vector and
return the value

SNLP 2021 40 Silo Al



Self-attention: exercise 2

* “Computers are thinking machines”

SNLP 2021

Compute z for machines

Q:K:V:

Computers=[1000],are =[0 1 0 0], thinking =[0 0 1 0],
machines = [0 0 0 1]

Softmax

0.2 0.8
—0.2 0.5
—0.3 —0.4

0.7 0.7

41
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Self-attention: exercise

* “Computers are thinking machines”

* Compute z for machines

0.2 0.8
e Q=K=V=[-02 05

—0.3 —0.4

0.7 0.7

e Computers=[1000],are =[01 0 0], thinking=[00 1 0],
machines = [0 0 0 1]

e Softmax z=[0.24 0.55]
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ASR 2020

Input

Embedding
Queries

Keys

Values

Score gk
Divide by,/2( i )
Softmax

Softmax
X

Value

Sum

Computers

43

are

thinking

machines

Aalto University



Input Computers are thinking machines

Embedding [1 00 Q0] [0100] [001 0] [000 1]

Queries

Keys

Values

Score gk
Divide by,[2( Vdy. )
Softmax

Softmax
X

\/ ) £
Value

Sum

ASR 2020 43 Aalto University



ASR 2020

Input Computers
Embedding [1000]
Queries [0.2 0.8]
Keys

Values

Score  Q-k

Divide by,/2( Vdj. )
Softmax
Softmax

X

Sum

43

are

[0100]

[-0.2 0.5]

thinking

(001 0]

[-0.3 -0.4]

machines

[000 1]

[0.7 0.7]

Aalto University
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Input Computers
Embedding [1000]
Queries [0.2 0.8]
Keys [0.2 0.8]
Values

Score  Qg-k

Divide byJ2( Vi )
Softmax

Softmax
X

Sum

are

[0100]

[-0.2 0.5]

[-0.2 0.5]

43

thinking

[0010]

[-0.3 -0.4]

[-0.3 -0.4]

machines

[000 1]

[0.7 0.7]

[0.7 0.7]

Aalto University
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Input Computers
Embedding [1000]
Queries [0.2 0.8]
Keys [0.2 0.8]
Values [0.2 0.8]
Score  Qg-k

Divide byJ2( Vi )
Softmax

Softmax
X

Sum

are

[0100]

[-0.2 0.5]
[-0.2 0.5]

[-0.2 0.5]

43

thinking

[0010]

[-0.3 -0.4]
[-0.3 -0.4]

[-0.3 -0.4]

machines

[000 1]

[0.7 0.7]
[0.7 0.7]

[0.7 0.7]

Aalto University
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Input

Embedding
Queries
Keys
Values

Score  Qg-k

Divide by,2( v/ )

Softmax

Softmax
X

Sum

Computers

[1000]

[0.2 0.8]
[0.2 0.8]

[0.2 0.8]

0.7

are

[0100]

[-0.2 0.5]
[-0.2 0.5]

[-0.2 0.5]

0.21

43

thinking
[0010]
[-0.3 -0.4]
[-0.3 -0.4]

[-0.3 -0.4]

-0.49

machines

[000 1]

[0.7 0.7]
[0.7 0.7]

(0.7 0.7]

0.98

Aalto University
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Input

Embedding
Queries
Keys
Values

Score  Qg-k

Divide by,2( v/ )

Softmax

Softmax
X

Sum

Computers

[1000]

[0.2 0.8]
[0.2 0.8]

[0.2 0.8]

0.7

are

[0100]

[-0.2 0.5]
[-0.2 0.5]

[-0.2 0.5]

0.21

43

thinking
[0010]
[-0.3 -0.4]
[-0.3 -0.4]

[-0.3 -0.4]

-0.49

machines

[000 1]

[0.7 0.7]

[0.7 0.7]

(0.7 0.7]

0.98

Aalto University



ASR 2020

Input
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Transformers for Language
Modelling

e RNNs: Process tokens one-by-one

& |

token

e Chain of dependencies built using a single { A =
®

e Transformers LM: Process a segment of
tokens

 Dependencies within the segment [ ]

e Within segment position is given by the [ t y . n j
positional encoding L
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Transformer LM processing

of Segments
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(a) Training phase.
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(b) Evaluation phase.

Dai et al., 2019
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Transformer LM processing

of Segments
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Segment 1 Segment 2

(a) Training phase.

e Limited context-dependency

* the model can’t “use” a word that appeared several sentences ago.
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(b) Evaluation phase.
Dai et al., 2019
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Transformer LM processing

of Segments
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(a) Training phase.

e Limited context-dependency

* the model can’t “use” a word that appeared several sentences ago.

e Context fragmentation

SNLP 2021

* no relationships can be leveraged across segments
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Representations from Transformers
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BERT: Bidirectional Encoder

Representations from Transformers

SNLP 2021

For specialised tasks like named entity recognition, question
answering there is a lack of training data

Deep learning requires large amounts of annotated data
Language models for general purpose representations
Aim to pretrain general purpose representations

that can be fine-tuned using small task-specific dataset to
obtain good performance on specialised tasks

Welcome BERT! ? ?!g
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Transformers for Language
Modelling
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Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM
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Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM
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e Unidirectional [ ]
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Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM

t t t

e Unidirectional [ ]
f T f
e Segment of tokens - - -
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Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Transformers for Language
Modelling

e Transformers LM

i i i
* Unidirectional [ ]
; ; ;
e Segment of tokens - - -
t t t
e Language Models predict the [ ]

next word f f t

Image Credit: https://arxiv.org/pdf/1706.03762.pdf
Content Credit:TransformerXL Explained & Al-Rfou et al. 2018
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Encoder Representations

e Require only the representations

* Forego of the output layer and only keep the encoder
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 Language Models predict the next word
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Traditionally,

 Language Models predict the next word

* Or loosely, they “fill in the blank” based on the context

* The man went to the store and boughta _ of shoes
 Language models are mostly used as unidirectional tools

e Bidirectionality in this above example can help make a better
judgement

e |In BERT, this bidirectionality is important to obtain good
general purpose representations

SNLP 2021 50 Silo Al



BERT: Learning Setup

Silo Al



BERT: Learning Setup

* Pretraining

SNLP 2021 51 Silo Al



BERT: Learning Setup

* Pretraining

e Takes lots and lots of sentences

SNLP 2021 51 Silo Al



BERT: Learning Setup

* Pretraining
e Takes lots and lots of sentences

e Self-supervision

SNLP 2021 51 Silo Al



BERT: Learning Setup

* Pretraining
e Takes lots and lots of sentences
e Self-supervision

e Masked LM

SNLP 2021 51 Silo Al



BERT: Learning Setup

* Pretraining
» Takes lots and lots of sentences
e Self-supervision
e Masked LM

e Next Sentence Prediction

SNLP 2021 51 Silo Al



BERT: Learning Setup

* Pretraining
» Takes lots and lots of sentences
e Self-supervision
e Masked LM
e Next Sentence Prediction

e Finetune

SNLP 2021 51 Silo Al



BERT: Learning Setup

* Pretraining
» Takes lots and lots of sentences
e Self-supervision
e Masked LM
e Next Sentence Prediction
* Finetune

e Supervised using target task
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Masked LM
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e Use specialised tokens CLS, SEP
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Next Sentence Prediction
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isNext?
Use the CLS output embedding to predict is sentence B is
the next sentence or not.
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(c) Question Answering Tasks:
SQUAD v1.1

54

Fine-tuning
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(b) Single Sentence Classification Tasks:
SST-2, CoLA
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(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER
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Glue Test Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
[Jacob Devlin et al 2018]
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Summary

e NNLM:
e LSTMs
* Transformers
* Self Attention
e BERT
e Challenges
e Long-Term Dependencies
e Class-based output layer

e Rare Words
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Further Reading

* Neural Networks and Neural Language Models: https://
web.stanford.edu/~jurafsky/slp3/7.pdf

e BERT Explained https://medium.com/@samia.khalid/bert-
explained-a-complete-quide-with-theory-and-
tutorial-3ac9ebc8farsc
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