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LEARNING OUTCOMES

Students are able to solve the weekly lecture problems, home problems, and exercise

problems on kinetics:

  Quantities and equations of classical elasticity

  Constitutive equation of linearly elastic isotropic material

  Principle of virtual work in solid mechanics

  Derivation of engineering models by using the principle of virtual work, integration by

parts, and the fundamental lemma of variation calculus
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DERIVATION OF ENGINEERING MODELS

Principle of
virtual
work Linear

equation
system

Series
approximation

(FEM)

Boundary
value

problem solution

approximate
solution

MEC-E8003

MEC-E1050 and MEC-E8001
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3.1 CLASSICAL LINEAR ELASTICITY

Balance of mass (def. of a body or a material volume) Mass of a body is constant. 

Balance of linear momentum (Newton 2) The rate of change of linear momentum within

a material volume equals the external force resultant acting on the material volume. 

Balance of angular momentum (Cor. of Newton 2) The rate of change of angular

momentum within a material volume equals the external moment resultant acting on the

material volume. 

Balance of energy (Thermodynamics 1)

Entropy growth (Thermodynamics 2)
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LOCAL FORMS

Application of the first principles to a material element inside the body or from its boundary

gives the coordinate system invariant local forms:

0m    : J   in V

p F
   : 0f   

   in V

p F
 : n t   

   on tV

L M
   : c   in V

Assuming an equilibrium setting (geometry, stress, loading etc.) the local forms can be used

to find a new equilibrium setting (actually, displacements of the particles) when, e.g.,

external given forces are changed in some manner.

P
X,x

Y,y

Z,z
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TRACTION AND STRESS

Material elements of a body interact with a surface force (force per unit area) called as the

traction vector. Stress   describes the surface forces acting on (all edges of) a material

element. In a Cartesian ( , , )x y z coordinate system, the second order stress tensor

T TT T
xx xy xz xy yxxx

yx yy yz yy yz zy

zx zy zz zz zx xz

ij jii i ii
j j jj jk kj

k k kk ki ik

    
      

     

              
                               
               

               

   
     

     





Traction acting on an edge of unit outward normal n  is given by n  
    and the force

(element) dF dA n dA dA      
      where the last form uses the directed area concept

dA ndA
  . The representation in ( , , )   coordinate system follows by changing the basis

vectors and indices of the components.
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LINEAR STRAIN

Shape deformation measure of material element is the symmetric part of displacement

gradient, i.e., c[ ( ) ] / 2u u    
   . In a Cartesian ( , , )x y z coordinate system, the second

order linear strain tensor

T TT T
xx xy xz xy yxxx

yx yy yz yy yz zy

zx zy zz zz zx xz

ij jii i ii
j j jj jk kj

k k kk ki ik

    
      

     

              
                               
               

               

   
     

     





  where

/
/

/

xx x

yy y

zz z

u x
u y

u z






    
   

     
       

 and

/ /
1 / /
2

/ /

xy yx y x

yz zy z y

zx xz x z

u x u y

u y u z

u z u x

 

 

 

         
     

           
              

.

The representation in ( , , )   coordinate system follows from the definition.
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LINEARLY ELASTIC MATERIAL

The generalized Hooke’s law for an isotropic (properties do not depend on direction) and

homogeneous (properties do not depend on position) can be expressed in tensor form

:E u  
  . In a Cartesian ( , , )x y z coordinate system, the fourth order elasticity tensor

   

TT ij ji ij jiii ii
E jj E jj jk kj G jk kj

kk kk ki ik ki ik

       
                

               

    
          

        

depends on the 3×3 elasticity matrices  E  and  G  given material experiments.

Representation in a ( , , )   coordinate system follows by replacing the Cartesian

( , , )x y z coordinate system basis vectors by their representations in terms of the basis

vectors of the ( , , )   coordinate system.
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The generalized Hooke’s law in its component form and linear strain components (not

engineering strains) according to, e.g., literature is given by

 
xx xx

yy yy

zz zz

E
 
 

 

   
   

   
   
   

,  2
xy xy

yz yz

zx zx

G

 

 

 

   
   

   
   
   

,  and  2
yx yx

zy zy

xz xz

G

 

 

 

   
   

   
   
   

.

Starting with the stress representation

T TT
xy yxxx

yy yz zy

zz zx xz

ij jiii
jj jk kj

kk ki ik

 
   

  

        
                     

           
          

 
   

   
,

Using the component forms of the generalized Hooke’s law (and symmetry of strain to get

rid of the multiplier 2)
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T TT

( ) ( )
xy yx xy yxxx

yy yz zy yz zy

zz zx xz zx xz

ij jiii
jj E jk G kj G

kk ki ik

   
     

    

            
                               

               
              

 
   

   
.

Finally substituting the representations

:
xx

yy

zz

ii
jj

kk


 



   
      
   

  


 


, :
xy

yz

zx

ji

kj

ik



 



  
  

   
   
   


 


,  and :
yx

zy

xz

ij

jk

ki



 



  
  

   
   
   


 


gives

 

TT

( [ ] ) : : :

ij ji ij jiii ii
jj E jj jk kj G jk kj E E u

kk kk ki ik ki ik

       
                   

               

    
              

        
   . 
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CONSTITUTIVE EQUATION VARIANTS

Stress-displacement relationship of linearly elastic material model can be expressed in

various equivalent forms depending on the symmetry conditions imposed on the fourth order

elasticity tensor E


:

(a) c
1: [ ( ) ]
2

E u u   
     and c

   

(b) :E u 
       and c

     and cE E
  



(c) :E u 
       and c c ccE E E E   

      


Also, other kinetic conditions like 0zz   can be satisfied ‘a priori’ by the selection of

elasticity tensor. The conditions of (c) are called as the minor and major symmetries.

Last index pair conjugate!
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ISOTROPIC MATERIAL

The generalized Hooke’s law for an isotropic material follows with the elasticity matrices

 

1 1
1

(1 )(1 2 )

1
1

1 1

EE E
   

    
 

   

 




    
         
      




,

 
0 0 1 0 0

0 0 0 1 0
2(1 )

0 0 0 0 1

G
EG G

G


   
       
      

in which the material parameters E and   are the Young’s modulus and the Poisson’s ratio,

respectively, and / (2 2 )G E    the shear modulus. Using these, one may deduce the

elasticity matrices for the engineering models.

https://en.wikipedia.org/wiki/Hooke's_law
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In the coordinate system invariant form : :E E u  
     , the elasticity tensor (satisfying

the major and minor symmetries) is given by

TT 11 0 0
1 0 0

1 0 0

ij ji ij jiii ii G
E jj E jj jk kj G jk kj

Gkk kk ki ik ki ik

            
                                              

    
          

        

 
 
 

.

Elasticity tensor of plate model ( 0zz  )

TT

2

1 0 0 0
1 0 0 0

1 0 0 0 0 0

ij ji ij jiii ii G
EE jj jj jk kj G jk kj

Gkk kk ki ik ki ik






          
                                           

    
          

        
.

Elasticity tensor of the beam model ( 0yy zz   )
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TT
0 0 0 0

0 0 0 0 0
0 0 0 0 0

ij ji ij jiii E ii G
E jj jj jk kj G jk kj

Gkk kk ki ik ki ik

          
                                           

    
          

        
.

Representation in some other system can be obtained from the Cartesian ( , , )x y z system

representation by using the relationships between the basis vectors. For example, in the

cylindrical ( , , )r z coordinate system

   

TT
r r r rr r r r

z z z z

z z z z z r r z z r r z

e e e e e e e ee e e e
E e e E e e e e e e G e e e e

e e e e e e e e e e e e

   

       

       
      

          
               

          
            

           
.
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EXAMPLE The cross section of the column is square of side length h . Density  , Young’s

modulus E , and Poisson’s ratio  are constants. The column is loaded by a constant traction

of magnitude 2/P h  at its free end. Determine stress   and displacement u  starting from

the generic equations for linear elasticity. Assume that the transverse (to the axis)

displacement is not constrained by the support.

Answer 2 ( )Pu xi yj zk
Eh

    
 

, 2
P ii
h
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The component forms of the equilibrium equations and constitutive equations of a linearly

elastic isotropic material in a Cartesian ( , , )x y z coordinate system

/ / /

/ / / 0

/ / /

xx yx zx x

xy yy zy y

xz yz zz z

x y z f

x y z f

x y z f

  

  

  

         
            
           

,

1
1 1

1

xx

yy

zz

u x
v y

E
w z

  
  
  

       
            

            

, and
xy yx

yz zy

zx xz

u y v x
G v z w y

w x u z

 

 

 

         
                
             

.

Let us assume that the only non-zero stress component ( )xx x  and displacement

components ( )xu u x , ( )yu v y  and ( )zu w z . The axial stress follows from the

equilibrium equation and traction is known at the free end x L . Therefore
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0xxd
dx


 0 x L     and 2( )xx
PL
h

    2( )xx
Px
h

   .

Generalized Hooke’s law written for the uniaxial stress implies that

2
xxdu P

dx E Eh


    , 2xx
dv P
dy E Eh

     , 2xx
dw P
dz E Eh

     .

Axial displacement vanishes at the support and the transverse displacement at the axis:

2
du P
dx Eh

  0 x L    and (0) 0u   2( ) Pu x x
Eh

  , 

2
dv P
dy Eh

 1 1
2 2

h y h      and (0) 0v   2( ) Pv y y
Eh

 , 

2
dw P
dz Eh

  1 1
2 2

h z h      and (0) 0w   2( ) Pw z z
Eh

 . 
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3.2 PRINCIPLE OF VIRTUAL WORK

Principle of virtual work int ext 0W W W     u U 
  is just one representation of

the balance laws of continuum mechanics. It is important due to its wide applicability and

physical meanings of the terms.

int int
c( : )VV V

W w dV dV   
   

ext ext ( )V VV V
W w dV f u dV     

 

ext ext ( )A AA A
W w dA t u dA     

 

The details of the expressions vary case by case, but the principle itself does not!

V P

P’

A
virtual work density

https://en.wikipedia.org/wiki/Virtual_work
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In what follows, we skip some of the technical details and assume that displacement

boundary conditions are satisfied ‘a priori’. The local and variational forms of elasticity

problem are equivalent, i.e., the local form implies the variational form and the other way

around. Let us consider first the derivation of the variational form:

0f  


  and c     in V ,

0u u 
     or 0n t  

    on   V .

Multiplication of the momentum equation by virtual displacement u , integration over the

solution domain, and integration by parts with c( ) ( ) : ( )a b a b a b      
    

 (selections

a 
   and b u

  ), and division of the displacement gradient into its symmetric and anti-

symmetric parts according to u    
 give

local form
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( ) 0
V

f udV   
   u U 

 

c( : ) ( ) ( ) 0
V V V

dV f u dV n u dA    


        
     u U 

 .

The boundary conditions of the local form imply that either 0u 
  or n t 

   at all points

of V . Therefore, one ends up with

c( : ) ( ) ( ) 0
V V V

W dV f u dV t u dA    


        
    u U 

 .

The derivation assumes that c    (where exactly?). In practice, symmetry of stress is

satisfied ‘a priori’ by the form of the constitutive equation.

In derivation to the reverse direction (with the assumption c    for consistency), the

starting point is the variational form. One substitutes first division u   
  to get

variational
form
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c[ : ( ) ] ( ) ( ) 0
V V V

W u dV f u dV t u dA    


         
     u

  .

Integration by parts with c( ) ( ) : ( )a b a b a b      
    

(selections a 
   and b u

  )

gives an equivalent but more convenient form

( ) ( ) 0
V V

W f udV n t udA    


          
      u 

 .

The variational form, together with the assumed symmetry of stress and the conditions for

the function set U , implies equations

0f  
 and c 0  

    in V ,

0n t  
  or 0u u 

   on V .

The starting point
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BOUNDARY VALUE PROBLEM

Principle of virtual work is one of the variational forms of equations of mechanics. Given a

variational form, the underlying boundary value problems follows with the steps:

First, use integration by parts in the integral over the mathematical solution domain to

remove the derivatives acting on the variations of displacement components.

Second, use the fundamental lemma of variation calculus to deduce the differential

equation(s) and boundary (natural) conditions. Consider convenient subsets of possible

displacement variations to deduce first the equilibrium equation and thereafter the

conditions at the boundaries.

Third, deduce the additional (essential) boundary conditions using the set of displacement

variations (for example, if variation of a quantity vanishes, the quantity is given).
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GAUSS’S THEOREM

Divergence theorem is needed in transforming between the local and variational forms of a

boundary value problem. For a continuous function 0 ( )a C  , the fundamental theorem of

calculus implies, e.g.,

1D: da dx an
dx 



2D: ( )a dA a nds
 

   
   .

3D: ( )a dV a ndA
 

   
   .

The generic theorem implies useful integral identities for various purposes. In derivation of

a boundary value problem from its variational form, one uses selections like ab  and a b


with generic vector identities like c( ) ( ) : ( )a b a b a b      
    

.

https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
https://en.wikipedia.org/wiki/Fundamental_theorem_of_calculus
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In the one-dimensional case, the summing on the right-hand side is over the boundary points

and the unit normal to the boundary 1n   .  The integration by parts identity

follows with selection ab  of the function. Assumption of continuity is essential, and the

simple form of integration by parts formula above requires modifications for, e.g., a

discontinuity inside  . A useful integration by parts identity for several dimension

c: ( ) ( ) ( )a b dV n a b dA a bdV
  

        
     

follows with selection a b
  and use of vector identity c( ) : ( ) ( )a b a b a b      

    
. The

various versions of integration by parts identities will be used to move derivatives to act on

certain parts of integrand.

x

( )db daa dx nab b dx
dx dx 
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FUNDAMENTAL LEMMA OF VARIATION CALCULUS

 ,a b : 0ab  b  0a 

    , na b  :    T 0a b   b  0a 


 3,a b
  : 0a b 


b


 0a 


 0, ( )a b C  : 0abd


  b  0a     in 

 2, ( )a b C  : 0a bd

    b  2 0a   in  , a a  or 0n a 

  on 

In connection with principle of virtual work, b  is taken to be kinematically admissible

variation u   of displacement u  (vanishes whenever u  is known).
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EXAMPLE Principle of virtual work for a Bernoulli beam problem is given by: find w U

such that w U 

2 2
int ext

2 2( ) 0d w d wW W W EI wb dx
dx dx
   


     

in which (0, )L  , 4{ ( ) : / 0  at  0}U w C w dw dx x       and the bending stiffness

( )EI x  and ( )b x  are given. Deduce the underlying boundary value problem by using

integration by parts and the fundamental lemma of variation calculus.

Answer
2 2

2 2( ) 0d d wEI b
dx dx

     in (0, )L ,
2

2( ) 0d d wEI
dx dx

  at x L ,

2

2 0d wEI
dx

  at x L , 0dw
dx

 at 0x  , and 0w  at 0x 
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Integration by parts twice in the first term gives an equivalent form (notice that w U  and

therefore / 0w d w dx    at 0x  )

2 2

2 2( )d w d wW EI wb dx
dx dx
 


   

2 2

2 2[ ( ) ] [ ( )]x L
d w d d w d w d wW EI wb dx EI
dx dx dxdx dx
   

   

2 2 2 2

2 2 2 2[ ( ) ] [ ( ) ( )]x L
d d w d w d w d d wW EI b wdx EI w EI

dx dxdx dx dx dx
   

     .

According to principle of virtual work 0W  w U  . Let us first consider a subset

0U U  for which / 0w d w dx    at x L so that the boundary terms vanish. The

equilibrium equation follows from the fundamental lemma of variation calculus:
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2 2

2 2[ ( ) ] 0d d wW EI b wdx
dx dx

 


    
2 2

2 2( ) 0d d wEI b
dx dx

      in (0, )L . 

After that, let us consider U with restriction / 0d w dx   first and then with 0w   at x L

and simplify the virtual work expression by using the equilibrium equation already obtained.

The natural boundary conditions follow from the fundamental lemma of variation calculus

2

2[ ( )] 0x L
d d wW w EI
dx dx

    
2

2( ) 0d d wEI
dx dx

    at x L , 

2

2[ ( )] 0x L
d w d wW EI
dx dx
    

2

2 0d wEI
dx

     at x L  . 

Boundary conditions / 0w dw dx    at 0x    follow from assumption w U .
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3.3 DERIVATION OF ENGINEERING MODELS

First, write the virtual work expression by using the virtual work densities of an engineering

model. If not available, start with the generic virtual work expression, kinematical and

kinetic assumptions of the model, and integrate over the small dimensions.

Second, use the principle of virtual work, integration by parts, and the fundamental lemma

of variation calculus to deduce the field equation(s) and (natural) boundary conditions in

terms of stress resultants. Consider suitable subset of function space U  to deduce first the

equilibrium equation and thereafter the conditions at the boundaries.

Third, use the definitions of the stress resultants to derive the constitutive equations

corresponding to the material model required.
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DENSITY EXPRESSIONS

Virtual work densities (virtual work per unit volume or area) of the internal forces, external

volume forces, and external surface forces. In a Cartesian ( , , )x y z coordinate system

T TT

int
c :

xy xy yx yxxx xx

V yy yy yz yz zy zy

zz zz zx zx xz xz

w

    
        

     

          
          

               
           
           

  ,

T

ext
x x

V y y

z z

u f
w u f u f

u f


  



   
   

      
   
   

  and

T

ext
x x

A y y

z z

u t
w u t u t

u t


  



   
   

      
   
   

 .

The terms of the expressions consist of work conjugate pairs of kinematic and kinetic

quantities. As stress is symmetric c   , one may write c c( ) : :u        .
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THIN BODY ASSUMPTIONS

Bar: 0( , , ) ( )u x y z u x
 

 and 0yy zz xy yz zx        

String: 0( , , ) ( )u s n b u s
 

  and 0nn bb sn nb bs        

Straight beam: 0( , , ) ( ) ( ) ( , )u x y z u x x y z   
  

  and 0yy zz  

Curved beam: 0( , , ) ( ) ( ) ( , )u s n b u s s n b   
  

and 0nn bb  

Thin slab: 0( , , ) ( , )u x y z u x y
 

and 0zz yz zx    

Membrane: 0( , , ) ( , )u n u   
 

and 0nn n n     

Plate: 0( , , ) ( , ) ( , ) ( )u x y z u x y x y z   
  

and 0zz 

Shell: 0( , , ) ( , ) ( , ) ( )u z s n u z s z s n   
  

and 0nn 
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BAR EQUATIONS

Bar is one of the loading modes of the beam model and it can be considered also as the

elasticity problem in one dimension. The model assumes that displacement and stress have

just axial components depending on the axial coordinate only. In a Cartesian ( , , )x y z 

coordinate system, the bar boundary value problem is given by

0dN b
dx

    in     and 0nN F    or 0u u   on ,

 where

xxN dA  , xb f dA  ,  and xF t dA  .

For a closed equation system (number of equations and unknown functions should match)

a material model is also needed (Hooke’s law).
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The physical domain of the bar model is V  occupied by a body althought the solution

domain of the equations is the mid-line  . The starting point is the virtual work expression

written for the physical domain.

Let us consider the steps in the Cartesian ( , , )x y z coordinate system for clarity. The bar

model assumes that displacement and stress have just axial components depending on the

axial coordinate only. Representations of stress, displacement and gradient operator are

xxii 
  and ( ) ( )u x u x i

 , / / /i x j y k z         
 

.

y

z

x
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int
c( ) : ( )xxV

d u d uW u dV dA dx Ndx
dx dx
    

 
         

 

ext
V V

W u fdV u tdA ubdx uF     
       

  

in which (integrals over the cross-sectional area)

xxN dA  , xb f dA  , and xF t dA  .

According to the principle of virtual work 0W  u U  . Integration by parts is used

first to obtain a more convenient form for deducing the bar equations.

( ) ( ) ( ) 0d uW N dx b u dx F u
dx
   

      

( ) ( ) 0dNW b udx nN F u
dx

  
      in which 1n   .
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After that, by considering a subset of variations u U  with restriction 0u  on  and

using the fundamental lemma of variational calculus

( ) 0dNW b udx
dx

 


   u U   0dN b
dx

    in .

By considering next u U  without restrictions on the boundary (and using the equilibrium

equation to get rid of the first term of the virtual work expression)

( ) 0W nN F u     u U   0nN F    on  .

The boundary term vanishes also if 0u   on  which implies that u  is given on .

Therefore, on the boundary either 0u u    or 0nN F   but not both. In solid mechanics,

one may specify the force or displacement, but not both. The constitutive equation for an
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elastic material follows from the generalized Hooke’s law for the bar model /xx Edu dx 

and the definition of stress resultant

xx
duN dA EA
dx

  .

The bar model boundary value problem combines the equations

0dN b
dx

    and duN EA
dx

   in ,

0nN F  or 0u u  on .

For an unique solution, the displacement boundary condition should be given at least on one

boundary point.

Local form
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THIN SLAB EQUATIONS

Thin slab model assumes that the transverse displacement (perpendicular to the mid-plane)

and stress components vanish and that the quantitities do not depend on the transverse

coordinate. Principle of virtual work gives

0N b  


   in  ,

0n N F  
     or 0u u 

      on ,

N dn 
  , b fdn 

 
,  and F tdn 

 
.

Constitutive equation ( , ) 0f N u 
  , which is needed for a closed system of equations,

follows form a material model and the stress resultant definition. Writing a boundary value

problem in detail, requires specification of the coordinate system.
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The physical domain of the thin-slab model is a prismatic body althought the solution

domain of the equations is the mid plane. The starting point is virtual work expression

written for the physical domain.

If the external forces on the top and bottom surfaces vanish and stress is symmetric ‘a priori’,

virtual work expressions of the internal and external forces simplify to (volume element

dV dndA  and area element on the boundarydA dnds )

int
c c c: ( ) ( ) : ( ) : ( )W u dV dn u dA N u dA     

 
           

    
,
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ext ( )VW f udV fdn udA b udA   
 

        
    

,

ext ( )AW t udA tdn uds F uds   
 

        
   

in which the stress resultants

N dn 
  , b fdn 

 
,  and F tdn 

 
. integrals over the thickness!

Integration by parts with the vector identity c: ( ) ( ) ( )a b a b a b     
    

in the virtual

work expression gives an equivalent but more convenient form for the next step

c: ( )W N u dA b udA F uds   
  

        
    

( ) ( )W N b udA n N F uds  
 

          
     .
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Principle of virtual work and the fundamental lemma of variation calculus imply the local

forms. By considering first a subset of variations u U 
 with restriction 0u 

 on 

( ) 0W N b udA 


     
  u U 

  0N b  


in .

According to the equilibrium equation, the first term of the virtual work expression vanishes.

Next, by considering u U 
 without restrictions on the boundary

( ) 0W n N F uds 


     
    0n N F   

  or 0u 


  on  .

Vanishing of variation 0u 
 on   implies that displacement is given, i.e., u u

  . To be

precise, one may specify a force component or the corresponding displacement component

but not both. Constitutive equation ( , ) 0f N u 
   follows from the definition

N dn 
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when the stress-displacement relationship for plane-stress is subsitituted there. Altogether,

the boundary value problem in its coordinate system invariant form

0N b  


  and ( , ) 0f N u 
   in  ,

0n N F  
    or 0u u 

 
 .

Integration by parts step of derivation uses the Gauss theorem for a flat geometry which

may exclude domains of non-vanishing curvature (it turns out later that the form is valid

also in curved geometry).
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THIN SLAB EQUATIONS IN ( , )x y -COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive

equations are expressed in the Cartesian ( , )i j 
 

basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

0

xyxx
x

yy xy
y

NN b
x y

N N
b

y x

 
      

  
    

,  where  
xx

yy

xy

u
xN
vN t E
y

N u v
y x



 
 

   
           
      

   

.

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.



3-42

Representations in the Cartesian system (notice that the second form of the gradient is valid

only when basis vectors are constants)

T T/ /

/ /

x xi i

y yj j

                         
               

 

  ,
T

xx xy

yx yy

N Ni i
N

N Nj j

            
        

 


   ,
T

x

y

b i
b

b j

          
     






TTT/
0

/

xx xy x

yx yy y

N N bx i i i i
N b

N N by j j j j

                                          
                         

   


   

TT/
( ) 0

/

xx xy x

yx yy y

N N bx i
N b

N N by j

                       
             




 . 

A constitutive equation is needed for a closed system of equations (here the number of

unknown stress components is 3, whereas the number of equations is 2. Assuming that the
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thin slab is made of isotropic homogeneous and linearly elastic material of thickness t  (steel,

aluminum etc.), stress-displacement relationship, kinematic assumption of the model,  and

elasticity tensor of the plane-stress case give  ( yx xyN N )

 

T
u
xii
vN dn jj t E
y

ij ji
u v
y x
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THIN SLAB EQUATIONS IN ( , )r  -COORDINATES

Component representation follows when the tensors of the equilibrium and constitutive

equations are expressed in the polar ( , )re e 
 

basis. Assuming a linearly elastic isotropic

material, equilibrium and constitutive equations take the forms,

2

( )1[ ]

0
( )1 1[ ]

rrr
r

r

NrN N b
r r

r N N
b

r r r




 






 
     

 
  

  
  

,  where   1 ( )

1 ( )

r

rr

r

r
r

u
rN

u
N t E u

r
N uu r

r r r


 








 
 

   
   

       
    

 
  

.

Boundary conditions define usually either displacement or traction in the normal and

tangential directions to the boundary.
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EXAMPLE Consider a disk [ , ]r R R  which is loaded by traction rt pe 
   on the outer

edge r R  ( p is constant). Assuming rotation symmetry i.e. that all quantities depend only

on the distance r  from the center point, find the displacement components ( )ru u r  and

( )u v r   for a linearly elastic material when Young’s modulus E  and Poisson’s ratio 

are constants.

Answer
2 2 2

2
( ) 1

1 (1 )
R r pu

r E
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If the displacement and stress resultant components depend only on the radial coordinate,

the equilibrium equations and the constitutive equations of the polar coordinate system

simplify to (here 0rb b  )

1 1( ) [ ( ) ] 0rr
rr rr

dN dN N rN N
dr r r dr      , 2

2
2 1 ( ) 0r

r r
N

N r N
r r rr


 
 

  
 

and

2 ( )
1

rr
tE du uN

dr r



 


, 2 ( )

1
tE u duN

r dr 


 


, ( ) ( )r
dv v d vN tG tGr
dr r dr r    .

On the inner edge r R  displacement vanishes, i.e., 0ru u  . On the outer edge r R ,

rn e 
, 0n N F  

  , and rF pte 
 

. These conditions give the boundary value problem,

1[ ( ) ] 0rr
d rN N

r dr   , 2 ( )
1

rr
tE du uN

dr r



 


, 2 ( )

1
tE u duN

r dr 


 


  in ( , )R R ,
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0u    at r R    and rrN pt    at r R .

Elimination of the stress resultants from the equilibrium equation and boundary conditions

gives the boundary value problem for the radial displacement component

1 ( )[ ] 0d d ru
dr r dr

    in ( , )R R ,

0u    at r R    and 2 ( )
1

tE du u pt
dr r




  


  at r R .

The generic solution to the differential equation is /u a r br  . Thereafter, the boundary

conditions give the values of the integration constants and solution,

2 2 2

2
( ) 1

1 (1 )
R r pu

r E
 

  
 


  

 . 
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The boundary value problem for the displacement component in the angular direction (in

terms of displacement component and stress resultant) is given by

2
2
1 ( ) 0r

d r N
drr

    and ( )r
d vN tGr
dr r     in ( , )R R ,

0v    at r R    and 0rN     at r R .

Equilibrium equation and the condition on the outer edge imply first ( ) 0rN r  . After that,

the constitutive equation, and the displacement boundary condition result into

0v  . 


