MEC-E8003 Beam, plate and shell models, examples 3

1. The elasticity matrices for an isotropic material are the same no matter the orthonormal
coordinate systems. Consider the elasticity tensor of plane stress in Cartesian (x.y)— and polar
(r,¢) — coordinate systems and show that
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2. External shear stress 7 is acting on a layer of elastic y r
isotropic material. Young’s modulus E and Poisson’s ratio ] >~
v of the material are constants. Determine stress and
displacement in the layer. Assume that stress and
displacement components depend on y only and that the
external volume force is negligible. Use the component AR AR
forms of plane stress
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Answer oy, =0, oy =7, oy, =0, u:éy, v=0,

3. Let us consider the principle of virtual work without ‘a priori’ symmetry assumption & =o,,
when the displacement gradient is expressed as the sum of its symmetric and antisymmetric parts
50 that 62 = VSl — ¢ in which &g =—5¢,. Show that

oW =—le (6:08)dV +le (f-ot)dv +_[A( (f-50)dA=0 V5U,00
implies e.g. the balance laws of continuum mechanics V-&+f =0and 6=6, in V.

4. Derive the component forms of the thin slab equilibrium equation V-N +b =0 in the polar
coordinate system.
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Derive the component form of the thin slab model constitutive equation f (N,d) =0 in the polar
coordinate system starting from the stress resultant definition, stress-strain relationship, and

elasticity tensor of the plane stress
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A thin slab of inner radius r = &R and outer radius r =R is loaded
by tangential traction =7€4 on the outer edge r =R (shear stress
7 IS constant). Assuming rotation symmetry i.e. that stress and
displacement components depend only on the distance r from the
center point and u, =u =0, solve for the stress and displacement.
Material is linearly elastic and isotropic with material parameters E
and v. External distributed forces vanish. Use the component forms
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Virtual work expression of a linearly elastic bar supported by a spring at the right end x=L (
n=1) isgiven by

L du déu L
SW = jo ~(EA L~ )dx+ jo (bsu)dx — (kusu) .y ,
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in which EA=EA(x) and k,b are constants. Displacement vanishes at the left end x=0 (
n=-1) of the bar. Find the underlying boundary value problem starting from the principle of
virtual work SW =0 Véu U . Assume that functions of U have continuous derivatives up to the
second order and vanishat x=0.

Answer i(EAd—u)+b=0 in (O,L), EAd—u+ku:0 at x=L, and u=0 at x=0
dx dx dx

Virtual work expression of a torsion bar is given by

L, dog .. dg
SW = jo (=g O 5, — kg + Spe)dx+ (Toh)
in which c(x) and T represent the given loading. Deduce in detail the differential equation for
the rotation ¢(x) and the boundary conditions implied by principle of virtual work and the
fundamental lemma of variation calculus. The unknown ¢(x) and the given GJ(x), k(x) and
c(x) are assumed to have continuous derivatives of all orders. In addition, o¢ and ¢ are assumed
to vanishat x=0.

Answer —(GJ d¢) k¢+c=0 in (O,L), GJ 3¢ T=0 at x=L, ¢=0 at x=0.

Virtual work expression of a Bernoulli beam, clamped at the left end x =0 and loaded by force
F and moment R at the rightend x = L of solution domain Q=(0,L), is given by
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Use the principle of virtual work sW =0 VéweU to derive the beam equilibrium equation in
Q, natural boundary conditions on x = L, and essential boundary conditions on x = 0. Functions
of set U have continuous derivatives up to the fourth order in Q. In addition, a function of U
vanishes at x =0 as does also its first derivative.
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Answer d IV|+b 0 in (O,L), —d—M+F Oand M -R=0at x=1L, W—d—:O at x=0
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When displacement is confined to the xz-plane, the virtual work lp

expression of a slender Bernoulli beam (figure) is given by
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Deduce in detail the underlying differential equation and boundary conditions implied by the
principle of virtual work and the fundamental lemma of variation calculus.
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Answer Eld—ZV+Pd—;V:0 in (0,L), Eld—\;V+Pd—W:EId—;V:0 at x=L,
dx dx dx dx dx
w=d—W:0 at x=0.
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External shear stress z is acting on a layer of elastic isotropic y .

material. Young’s modulus E and Poisson’s ratio v of the - 1= —
material are constants. Determine stress and displacement in the
layer. Assume that stress and displacement components depend
on y only and that the external volume force is negligible. Use
the component forms of plane stress
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Solution

Solution to stress and displacement follows from the equilibrium equations, constitutive equations,
and boundary conditions. In the layer problem, u, =u(y), uy =v(y), f, = fy =0. At the lower edge
u(0) =0 and at the upper edge ayx(h) = axy(h) =7 (stress is symmetric).

The two equilibrium equations and three constitutive equations simplify to
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In this case, solution to stress and displacement follows by considering first the equilibrium equations
and using, after that, the constitutive equations. Boundary value problem for the stress components
are composed of the equilibrium equations and the boundary condition at the upper edge. Boundary
value problems and their solutions to the stress components are
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Knowing the stress, boundary value problems for the displacement components are composed of the
constitutive equations and the boundary condition on the lower edge. Boundary value problems and
their solutions to the displacement components are
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Finally, the third constitutive equation, not used above, gives
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Derive the component forms of the thin slab equilibrium equation V-N+b =0 in the polar
coordinate system.

Solution
The component forms of stress, external force, and gradient operator of the polar coordinate system

are
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Let us start with the terms of stress resultant divergence
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First term of the gradient simplifies to
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Finally, by combining the terms of the divergence and external loading
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Derive the component form of the thin slab model constitutive equation f (N,G) =0 in the polar
coordinate system starting from the stress resultant definition, stress-strain relationship, and elasticity
tensor of the plane stress
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Solution
Polar coordinate system representations of the gradient expression, planar displacement, and the basis
vector derivatives are
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Substitution into the displacement gradient gives
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The double inner product with the basis vector combinations of the elasticity tensor gives the stress
expression
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According to the definition, stress resultant is integral of stress over the thickness
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or in the component form
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A thin slab of inner radius r =&R and outer radius r =R is loaded by
tangential traction t =7€4 On the outer edge r=R (shear stress 7 is
constant). Assuming rotation symmetry i.e. that stress and displacement
components depend only on the distance r from the center point and
u, =u=0, solve for the stress and displacement. Material is linearly
elastic and isotropic with material parameters E and v. External
distributed forces vanish. Use the component forms
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As stress resultants and displacement components depend only on r, equilibrium equations and the
constitutive equations simplify to (notice that the derivatives are ordinary ones as the quantities are
known to depend on r only)
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Solution to the shear stress resultant Nr¢ follows from boundary value problem composed of the
equilibrium equation and boundary condition on the outer edge
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After that, solution to displacement component uy =v(r) follows from boundary value problem
composed of the constitutive equation and boundary condition on the inner edge
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Displacement component u, =u(r) =0 by assumption which implies that

NI’T=N¢¢=0' 6

The same solution follows also without the assumption u, =u(r)=0. Eliminating the stress
resultants from the second equilibrium equation gives the boundary value problem (on the outer edge
Ny = 0)



d?u 1du u d.1d
_+____:a[Fa(ru)]:0 re(eR,R),

u=0 at r=¢R and 3—u+v3=0 at r=R = u,=u(r)=0.
rr



Virtual work expression of a linearly elastic bar supported by a spring at the rightend x=L (n=1)
IS given by

L ddéu
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in which EA=EA(x) and k,b are constants. Displacement vanishes at the left end x=0 (n=-1)
of the bar. Find the underlying boundary value problem starting from the principle of virtual work

oW =0 Vou eU . Assume that functions of U have continuous derivatives up to the second order
and vanish at x=0.

Solution

Fundamental theorem of calculus (integration by parts) and the fundamental lemma of variation
calculus are the tools for deriving a boundary value problem starting from a virtual work expression.
In the one-dimensional case, for any continuous functions a and b (or values at some point), it holds

db da
IQ a&dx=zaQ (nab)—J'Q &bdx (where n=41),

a,beR: ab=0 Vb < a=0,

a,beCo(Q): jQ abdx=0 Vb < a=0 in Q.

In the present case Q =(0,L) and 0Q ={0,L}. Displacement has continuous derivatives up to and
including second order i.e. u e CZ(Q) . The constraint on the function set u=0 at x =0 implies that
ou=0 at x=0. Integration by parts gives equivalent forms (the aim is to remove the derivatives
from variations in the integral over the domain)
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L .d du du
SW =j0 [&(EA&)+b]5udx—[(EA&+ ku)oul,_, . (asdu=0 at x=0)

The purpose of the manipulation above was to obtain a representation which allows the use of
fundamental lemma of variation calculus. According to principle of virtual work, oW =0 Vou eU
. Let us consider first a subset Uy cU for which éu =0 at x=L so that the boundary term vanishes.
Then

L d du
SW = jo [&(EA&waudx =0 SueUgycU
and the fundamental lemma of variation calculus implies that

i(EAd—u)er =0 in (O,L).
dx dx



Knowing this and considering the full set U , the variational equation simplifies into

oW = —[(EA%-F ku)ou],_ =0.
X

Then, the fundamental lemma of variation calculus implies that

EAd—u+ku=0 at x=L.

dx
Finally combining the equations to form a boundary value problem (notice that the definition of the

function set implies also a boundary condition):
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Virtual work expression of a torsion bar is given by

d5¢

SW = j (- d¢ — 5k + Spc)dx+ (T Sp) 1

in which c(x) and T represent the given loading. Deduce in detail the differential equation for the
rotation ¢(x) and boundary conditions implied by principle of virtual work and the fundamental

lemma of variation calculus. The unknown ¢(x) and the given GJ(x), k(x) and c(x) are assumed
to have continuous derivatives of all orders. In addition, 6¢ and ¢ are assumed to vanish at x=0.

Solution

Here Q=(0,L) and 0Q={0,L}. Rotation has continuous derivatives up to and including second
order, i.e., U cCZ(Q). Function set U is constrained by ¢=0 at x=0, which implies that
op=0 at x=0. Integration by parts gives equivalent forms

SW = j (- d5¢GJ d¢ —5pkg+ Spe)dx+ (ToP) | <
W= [%(GJ 2—3)—k¢+c]5¢dx—z{m}[n(ea %)5¢]+(T5¢)X:L N

SW = j [—(GJd¢) K + C]opax — [(GJ d¢ ~T)oply., as S¢=0 at x=0.

The purpose of the manipulation is to obtain a representation that allows the use of fundamental
lemma of variation calculus.

According to principle of virtual work SW =0 V¢ . Let us consider first a subset for which 6¢ =0
at x =L so that the boundary term vanishes. Then

L
oW =J' [i (GJ d—¢) —kg+clogdx =0 V¢ satisfying op=0 at x=L

0 “dx dx
and the fundamental lemma of variation calculus implies that
i(GJ %)—kqﬂc:o in (O,L).
dx dx
Knowing this and considering the function set without the additional constraint

dg
oW =-[(GJ — i -T)ogly =0 Vg.

The fundamental lemma of variation calculus implies now

OI¢T 0 at x=L.
dx



Finally combining the equations to form a boundary value problem (notice that the constraint ¢ =0
at x=0 implies a boundary condition) :

i(&]%)—k;ﬁrc:o in (O,L), €
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Virtual work expression of a Bernoulli beam, clamped at the left end x =0 and loaded by force F
and moment R at the right end x =L of solution domain Q= (0, L), is given by
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X

Use the principle of virtual work oW =0 VYoweU to derive the beam equilibrium equation in Q,
natural boundary conditions on x = L, and essential boundary conditions on x = 0. Functions of set
U have continuous derivatives up to the fourth order in Q. In addition, a function of U vanishes at
x =0 as does also its first derivative.

Solution

In MEC-E8003, principle of virtual work is used to derive the equilibrium equation(s) in terms of the
stress resultants (like shear forces and bending moments). The constitutive equation, giving the
relationship between the stress resultants and kinetic quantities (like displacements and rotations), is
a separate story. The mathematical tools needed in the derivation are (one-dimensional case Q c R)
a,beC’(Q)

d , ,
IQ &(ab)dx :Zag nab, where n=+1 is the unit outward normal to Q (on 0Q)
IQ abdx=0 Vb < a=0 inQ.

Integration by parts once in the first term gives an equivalent form (notice that Sw < U and therefore
ow=dow/dx=0at x=0
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Integration by parts second time in the first term gives also an equivalent form

d’M +b)5wdx+[(——M+ F)owly-L +[(M - R)@]X L
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According to the principle of virtual work W =0 VéweU . Let us first consider a subset Uy cU
for which Sw=ddw/dx=0 at x=L so that the boundary terms vanish. The equilibrium equation
follows from the fundamental lemma of variation calculus:

2 2
IL (OI |\2A+b)5wdx=0 vVowelUy < d |\2A+b:0 in (O,L).
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Let us next consider a subset Uy cU for which only déw/dx =0 at x =0 so that the last boundary
term of the virtual work expression vanishes. Also, the first term can be omitted due to the equilibrium
equation. The natural boundary condition follows from the fundamental lemma of variation calculus:
oW :[(—d—M+ F)owl,., =0 VéweU, < —d—M+F =0 at x=L.
dx dx

Finally, let us consider a subset Uy cU for which only sw=0 at x=L and use the equations
already obtained to simplify the virtual work expression. The natural boundary condition follows
from the fundamental lemma of variation calculus:

é\N:[(M—R)dJﬂ]X:L:O voweU, & M-R=0 at x=L.
X

As the last step, the essential boundary conditions follow from the problem definition (clamped).
They can also partly be deduced from the definition of U . Vanishing of variation déw/dx and Sw
at x=0 imply that dw/dx and w are givenat x=0.

A beam boundary value problem is composed of the equations implied by the principle of virtual
work

d?Mm .
dx?
—d—M+F=0 and M-R=0 at x=L. €
dx
dw
w=0and —=0 at x=0. €
dx

Definition of stress resultant, stress-strain relationship, and elasticity tensor for the beam problem
gives the constitutive equation

2
M =—E|d—‘;"
dx

which is needed for a closed system.



When displacement is confined to the xz —plane, the virtual work expression l P
of a slender Bernoulli beam (figure) is given by
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Deduce in detail the underlying differential equation and boundary conditions
implied by the principle of virtual work and the fundamental lemma of

variation calculus. Assume that have continuous derivatives up to (and
including) fourth order.

Solution
Integration by parts gives an equivalent but a more convenient form (assuming continuity up to and
including second derivatives)
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_ J’ SW(EI d—W+ pi W
According to principle of virtual work W =0 VSw. Let us consider first the subset of variations for
which ésw=0 and déw/dx =0 on {0, L}. The fundamental lemma of variation calculus implies

d4w d%w

El—+P——=0 in (0,L).
dx* dx?

Let us consider then the subset of variations for which dsw/dx =0 on {0, L}. Knowing the condition
above, the fundamental lemma of variation calculus implies

Eld—W Pd—W:O or w—w=0 on {0,L}.

dx3 dx

Finally, let us consider the subset of variations for which sw=0 on {0,L}. Knowing the previous
results, the fundamental lemma of variation calculus implies

g9 _o o 3—""—9 0 on {0,L}.
X

dx?

For the problem of the figure, one obtains

d*w d2w }
El —+P—=0 in (O,L), €
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w=0 and w'=0 at x=0. €



