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I. ELEMENTS OF NOISE THEORY FOR ELECTRICAL CIRCUITS

– Noise: determines the smallest signal that you can measure, so it limits the dynamical

range from below.

X(t) = random variable, time-dependent.

t

X
(t

)

T

– We will work with ergodic, stationary processes.

Define:

• Average of x: X = limT→∞
1
T

´ T/2
−T/2X(t)dt, where T = time window.

• Average power of x: X2 = limT→∞
1
T

´ T/2
−T/2X

2(t)dt

For example, suppose you have a resistor; then V 2

R
= limT→∞

1
T

´ T/2
−T/2

V 2(t)
R
dt. Here,

V 2(t)/R is the instantaneous power.

• Autocorrelation function: RXX(τ) = limT→∞
1
T

´ T/2
−T/2X(t)X(t+ τ)dt

– Obviously:

X
2 = RXX(τ = 0) ≥ |RXX(τ)| for |τ | > 0

RXX(τ) = RXX(−τ) — this is an even function!
(1)

• Power spectral density (PSD):
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SX(f) → Collect data in a window T from your oscilloscope, then take the Fourier

transform X(f).

SX(f) ≡ lim
T→∞

|X(f)|2

T
, (2)

where |X(f)|2
T

= periodogram (provides an estimate of SX(f).

Units: if X = Voltage, then PSD has units of V2Hz−1.

• What is the relation between SX(f) and the autocorrelation function? This is provided

by the following theorem:

II. THE WIENER-KHINCHIN THEOREM

SX(f) = F [RXX(τ)] =

ˆ ∞
−∞

RXX(τ)e−2πifτdτ . (3)

So the PSD = the Fourier transform of the autocorrelation!

or:

RXX(τ) =

ˆ ∞
−∞

dfe2πifτSX(f) (4)

– Note how interesting this is! If you measure any SX(f) you have access to any correlation

(at any τ).

For τ = 0, X2 ≡ RXX(0) =

ˆ ∞
−∞

df · SX(f) (5)

We will not prove the Wiener-Khinchin theorem (it’s not difficult ... if you are interested

in you can find the proof in textbooks).

But let’s give an alternative justification based on Parseval’s theorem:

´∞
−∞ dtx

2(t) =
´∞
−∞ df |X(f)|2, where the integrands correspond to the power calculated

in the time-domain and the frequency-domain, respectively.
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So X2 = limT→∞
1
T

´ T/2
−T/2 dtX

2(t) = limT→∞
1
T

´∞
−∞ df |X(f)|2 =

´∞
−∞ df

(
limT→∞

|X(f)|2
T

)
=´∞

−∞ df · SX(f). Therefore,

X2 =

ˆ ∞
−∞

dfSx(f) . (6)

Therefore SX(f) · df = power in the frequency interval df .

However, there is one little inconvenience. We can always have time taken at least

approximately from −∞ to +∞. But what does it mean to have a negative frequency?

All generators that we have in the lab produce a ”positive” frequency. To bypass this

issue it is convenient to restrict ourselves only to positive frequencies, which is what we

will in the rest of the lecture.

How do we deal with this? Formally, note that for classical fields X(t), X(−ω) = X∗(ω)

because X(t) is real, therefore S(f) = S(−f).

So X2 =
´∞
−∞ dfSX(f) =

´∞
0
dfSX(f) +

´∞
0
dfSX(−f) =

´∞
0
df2SX(f).

Let us introduce SX(f) ≡ 2SX(f) = single-sided spectral density (as opposed to SX ,

which is called double-sided):

X2 =

ˆ ∞
0

df · SX(f) . (7)
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• What does this mean physically?

This means that the average power of X is dstributed over all frequencies (now we look

at the positive ones only). Considering some small frequncy interval ∆f , the single-sided

spectral density SX(f) represents the power obtained if a bandpass filter with bandwidth

∆f is inserted before a power detector.

Units of SX(f): if X ≡ voltage , then V2/Hz.

III. THERMAL NOISE IN ELECTRICAL CIRCUITS

Resistor at finite temperature - can be understood as being in thermal contact with

a reservoir of temperature T , therefore exchanging energy back and forth. There will be

voltage fluctuations across R, which we will call Vn (subscript n means noise).

• Discovered by John Johnson (Bell Labs) in 1926.

• Theory by Henry Nyquist (Bell Labs)

Derivation of Nyquist Formula cf. H. Nyquist, Thermal agitation of electric charge in

conductors, Phys. Rev. 32, 110 (1928).
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1. Estimates and general considerations

Calculate P12:

V2 = Vn1

R2

R1+R2
, P12 =

V 2
2

R2
= V 2

n1
· R2

(R1+R2)2
.

Similarly for P21 = V 2
n2
· R1

(R1+R2)2
.

a.) Case T1 = T2 = T :

2nd law of thermodynamics: P12 = P21.
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Otherwise by collecting the difference between them you would be able to extract

work from a single reservoir at temperature T!

P12 = P21 =⇒ V 2
n1

R1
=

V 2
n2

R2
= const. =⇒ we expect V 2

n ∼ R.

b.) Case T1 6= T2:

We expect (P12 − P21) ∼ (T1 − T2). This is just because usually energy ∼ kBT in

thermodynamics.

If we make T2 = 0K, P21 = 0, then P12 ∼ T1 =⇒ V 2
n ∼ T .

2. A more rigorous derivation

This time R1 = R2 = R but the connection is done through a TL (transmission line).

Consider a frequency interval df . We want to find SVn(f) for a bandwidth df around

f . How many modes dm of the TL are in df?

` = mλ
2

= m v
2f

=⇒ f = m v
2`

=⇒ dm = 2`
v
df , where v = speed of light in

the TL.
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a.) dE = dm ·

Planck’s energy per mode︷ ︸︸ ︷
hf

ehf/kBT − 1
= 2`

v
· hf

ehf/kBT−1df = energy contained in the

TL in the frequency interval df .

On the other hand, from P12 = V 2
n1

R
(R+R)2

=
V 2
n1

4R
= P21 and P = V 2

n

4R
, we have

dP =
1

4R
SVn(f) · df (8)

b.) Therefore dE = 2 · `
v
· dP = 2 · `

v
· SVn (f)

4R
· df , where the pre-factor of 2 comes

from the 2 sources of which inject this power in the TL, and where `/v is the time

propagation in the TL.

Now combining a.) and b.), we find

SVn(f) =
4hfR

ehf/kBT − 1
. (9)
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• Classical limit: If the temperature is high,

kBT � hf =⇒ SVn(f) ' 4kBTR . (10)

This could also have been obtained by applying the equipartition theorem:

dE = 2`
v
· 2 · kBT

2
· df and dE = 2`

v
· SVn (f)

4R
df =⇒ SVn(f) ' 4kBTR.

Note there are two degrees of freedom in the TL ( ~E and ~B) hence the multiplicative

factor 2, and also note that kBT/2 is the energy per degree of freedom.

• Crossover, quantum-classical: From the exponent we can define fcr = kBT/h.

SVn(f) = 4hfR

ehf/kBT−1 ' 4hfR · 1
/1+ hf

kBT
+ 1

2
( hf
kBT

)2−/1
' 4kBTR(1− hf

2kBT
).


fcr

∣∣∣
T=300K

= 1.38·10−23J/K·300K
6.62·10−34J·s = 6.2THz ,

fcr

∣∣∣
T=10mK

= 1.38·10−23J/K·10−2K
6.62·10−34J·s = 0.2GHz = 200MHz .

(11)
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– Thermal noise appears from the motion of electrons in the resistor. But where is the

electron charge e in our final equations?!? It’s in fact ”hidden” in the microscopic

models that we might use for R (for example, the Drude model, σ = 1/ρ = ne2τ/m).

Discussion:

• How much power is emitted?

P tot =
´∞
0
df
SVn (f)
R

= 4(kBT )
2

h

´∞
0

udu
eu−1 = 2π2

3
· (kBT )

2

h
, where u = hf

kBT
.

– Does not depend on R!

– Let’s calculate it. T = 300K

Ptot = 2π2

3
· (1.38·10

−23·300)2
6.62·10−34

J
s

= 172nW — very small!

– Note that ∆P = SV (f)
R
·∆f = independent of R!

Why is it so? It is a consequence of argument 1.a in the beginning. Had it been

otherwise, it would be possible to create work from a single reservoir by using 2

resistors and a bandpass filter ∆f .

This would contradict the second law of thermodynamics (perpetual motion of the

second kind).

• A more general statement: The fluctuation-dissipation theorem:

- In order for an object to emit radiation (due to fluctuations) it must also dissipate!

Not restricted to electric circuits! E.g. in nanomechanics SFF (ω) = 2mkBT · γ.

Example: A non-dissipative circuit element (ideal capacitor, inductance) will not emit

radiation. There is no fluctuating voltage across an ideal capacitor! The ideal capacitor
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only stores energy. Also if you have an I-V characteristic and define dV/dI it does not

mean that there will be accompanying fluctuations!

Circuit equivalent representation

Does it work?

Example:

Resistors in series:
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SVn1
= 4kBTR1 , (12)

SVn2
= 4kBTR2 , (13)

But the fluctuations in the resistors are uncorrelated! Therefore we can add them (this

is a known result from mathematical statistics)

SVn = SVn1
+ SVn2

(14)

Therefore,

SVn = 4kBT (R1 +R2) , (15)

where R = R1 +R2 = is the in-series resistance. So everything is consistent!

Resistors in parallel:

SIn1
= 4kBT

R1
,

SIn2
= 4kBT

R2
,

(16)

SIn = SIn1
+ SIn2

(17)

where these are uncorrelated fluctuations of current!

In-parallel resistance, R|| =
R1R2

R1+R2
. So again everything works well,

SIn =
4kBT

R||
. (18)
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Coupling of a dissipative element to a non-dissipative one.

What happens for example when the fluctuations of the resistor charge and discharge

a capacitor?

ZC(f) =
1

iC · 2πf
=

1

iCω
, (19)

where ω = 2πf .

Norton:

VC(f)
ZC(f)

+ VC)f)
R

= In(f) ∴ VC = In
1
R
+iC·2πf = InR

1+2πifRC
.

and

SIn(f) =
4kBT

R
. (20)

So we obtain:

SVC (f) = lim
T→∞

|VC(f)|2

T
=

R2

|1 + 2πifRC|2
lim
T→∞

|In(f)|2

T
=

R2

|1 + 2πifRC|2
SIn(f) =

4kBTR

1 + (2πRC)2f 2
.

(21)

Therevin:
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VC(f) = Vn(f) · ZC(f)
R+ZC(f)

= Vn(f) · 1
1+i2πRCf

=⇒ SVC (f) = SVn · 1
1+(2πRC)2f2

=

4kBTR
1+(2πRC)2f2

.

This is the same result! So per bandwidth, the capacitors experience

SVC (f) =
4kBTR

1 + (2πRC)2f 2
.

What is the total V 2
C (over all frequencies)?

V 2
Ctot =

´∞
0
SVC (f) · df = 4kBT

2πC
·
´∞
0
df 2πRC

1+(2πRCf)2
= 4kBT

2πC

´∞
0
dy 1

1+.y2

∣∣∣
y=2πRCf

=

4kBT
2πC
· arctan y

∣∣∣∞
0

= 4kBT
2πC
· π
2

= kBT
C

.

Therefore,

V 2
C (tot) =

kBT

C
. (22)

This is called K-T -over C-noise.

– Note that it does not depend on R! Why? – Noise increases with R but bandwidth

decreases ∼ 1/R.

– Suppose we want to increase the speed of a circuit (say a switch, AC converter, sampler,

etc.) by making C smaller (smaller RC constant). Then V 2
C (tot) will increase! The

circuit will be more noisy!

– We can derive the formula above based from the equipartition theorem:

1
2
CV 2

C (tot) = 1
2
kBT ←− there is only one degree of freedom in a capacitor.
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Take-home conclusions:

Dissipation (by resistive elements) produces noise. The noise tends to “bury” any

quantum effects, making them useless. Two ways out of it:

1. Increase the frequency. This can be done in some systems (optics) but it is not

always possible with microwaves and rf.

2. Use zero-resistance components. Is this possible? Yes, as we will see in the next

lecture.
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