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I. SUPERCONDUCTIVITY

• 1911 – Heike Kamerlingh Onnes

Electrical resistance of Hg (metal!) dropped to < 10−5 Ω at Tc = 4.2 K.

Other metals become superconductors:

Tc = 1.2 K for Al

Tc = 7.2 K for Pb

Tc = 9.2 K for Nb.

• 1986 – Discovery of high Tc compounds by J.G. Bednorz and K.A. Müller.

Tc = 95 K for Y Ba2Cu3O7−δ

Tc = 125 K for T l2Ba2Ca2Cu3O10

Tc = 9.2 K for HgBa2Ca2Cu3O8+δ.

These are not metals! They are ceramic materials at room temperature!
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A. Meissner Effect

– In the beginning of superconductivity research it was hoped that the electromagnetic

properties could be derived from the property of infinite conductivity.

σ =∞, ~J = σ · ~E

~J = finite

 =⇒ ~E = 0 =⇒ ~∇× ~E = 0 (1)

Maxwell: ~∇× ~E = −∂
~B

∂t
=⇒ ∂ ~B

∂t
= 0 . (2)

So ~B = constant inside a superconductor and also we expect it to be dependent on

the way it was cooled down (e.g. either in the presence or absence of the magnetic

field).

But in 1933 Meisner and Ochsenfeld discovered that ~B = 0. The magnetic field

inside the superconductor is not just constant, but it is exactly zero. Magnetic field

lines are expelled. A superconductor is a perfect diamagnet.

Theory Development

• 1935 – Phenomenological theory developed by F. & H. London (two brothers!)

• 1957 – BCS (Bardeen-Cooper-Schrieffer) theory.

• high-TC superconductivity – maybe YOU?

Elements of London Theory:

Consider a particle of mass m∗ and charge e∗. It will turn out that m∗ = 2me and

e∗ = −2e; these particles are Cooper pairs, and a complete understanding of what

they are is provided by the BCS theory.

Recall:

~B = ~∇× ~A, ~A = magnetic vector potential, V = electric potential.
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Schrödinger equation:

i~
∂

∂t
ψ(~r, t) =

1

2m∗

(
− i~~∇− q∗ ~A(~r)

)2

ψ(~r, t) + q∗V (~r, t)ψ(~r, t) , (3)

Recall also that: ~E = −∂ ~A
∂t
− ~∇V .

Note: the Hamiltonian of a free particle in a magnetic field is H = Π2

2m∗ , where

~Π(~r) = −i~~∇− q∗ ~A(~r) is the canonical momentum.

The probability density: P (~r, t) = |ψ(~r, t)|2

∴ ∂P (~r,t)
∂t

= ∂ψ∗(~r,t)
∂t

ψ(~r, t)+ψ∗(~r, t)∂ψ(~r,t)
∂t

= i
~

{[
1

2m∗

(
i~~∇−q∗ ~A(~r)

)2

ψ∗(~r, t)
]
ψ(~r, t)−

ψ∗(~r, t)
[

1
2m∗

(
− i~~∇− q∗ ~A(~r)

)2]
ψ(~r, t)

}
= −~∇ · ~J (~r, t).

∴
∂P (~r, t)

∂t
= −~∇ · ~J (~r, t) , (4)

where ~J(~r, t) = 1
2m∗

[(
− i~~∇ − q∗ ~A(~r)

)
ψ(~r, t)

]∗
ψ(~r, t) + 1

2m∗ψ
∗(~r, t) ·

[(
− i~~∇ −

q∗ ~A(~r)
)
ψ(~r, t)

]
.

Key point: The wavefunction ψ(~r, t) for a superconductor can be regarded as an

order parameter (a macroscopic wavefunction!). Let us call this “solution” ψs.

The Ginzburg-Landau Order Parameter: ψs(~r, t) =
√
ns(~r, t)e

iθ(~r,t),

where ns(~r, t) = density of superconducting particles, and θ(~r, t) = superconduct-

ing phase.

Appears as a result of a broken symmetry.

• From now on we will assume ns(~r, t) ≡ ns = const.
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∴ ~j(~r, t) = ~ns
m∗

[
~∇θ(~r, t)− q∗

~
~A(~r, t)

]
, where the electrical current is ~J = q∗~j.

Therefore, we have the supercurrent

~Js(~r, t) =
~q∗ns
m∗

[
~∇θ(~r, t)− q∗

~
~A(~r, t)

]
= superconducting current density , (5)

where
[
~∇θ(~r, t)− e∗

~
~A(~r, t)

]
is a gauge-invariant phase:

θ → θ + q∗

~ χ

~A→ ~A+ ~∇χ .
(6)

Consequences:

• Let us consider θ = constant in ~r, ~∇θ = 0.

• Perfect Conductivity

~Js = − q∗2

m∗ns ~A =⇒ dJs(~r,t)
dt

= − q∗2

m∗ns
d ~A(~r,t)
dt

(Recall Maxwell: ~∇ × ~E = −∂ ~B
∂t

&

~B = ~∇× ~A), or

d ~J (~r, t)

dt
= +

q∗2ns
m∗

~E(~r, t) . (7)
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What does it mean?

Take a ballistic superelectron (no collision with atoms, impurities, etc.)

m∗ d ~vs
dt

= q∗ · ~E

~Js = ρs · q∗ · ~vs

 =⇒ d ~Js
dt

=
q∗2ρs
m∗

~E (8)

Note the difference with respect to ~J = σ ~E (Ohm’s law)!

• Meissner Effect

Let us look at Maxwell’s equations:


~∇ · ~B = 0 ,

~∇× ~B = µ0
~Js .

Now ~B = ~∇× ~A so ~∇× ~B = ~∇× (~∇× ~A) = ~∇(~∇ · ~A)− ~∇2 · ~A = −~∇2 ~A, where we

can use the Coulomb gauge ~∇ · ~A = 0.

∴


~∇2 ~A = −µ0

~Js ,

~Js = − q∗2

m∗ns ~A ,
=⇒ ~∇2 ~A =

µ0q
∗2ns
m∗

~A . (9)

Notation:

λL =
√

m∗

µ0nsq∗2
= London penetration length.

Since ~Js = − q∗2ns
m∗

~A, we have


~Js = − 1

µ0λ2L

~A ,

~∇2 ~A = 1
λ2L

~A .
(10)
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∴ µ0λ
2
L
~Js = − ~A =⇒ µ0λ

2
L
~∇× ~Js = −~∇× ~A = − ~B,

or µ0λ
2
L
∂
∂t

(~∇× ~Js) = −~∇×
(
∂ ~A
∂t
≡ − ~E

)
, since voltage is zero and ~E = −∂ ~A

∂t
− ~∇V .

But ~Js = 1
µ0
~∇× ~B,

∴ λ2
L
∂
∂t
· (~∇× (~∇× ~B)) = ~∇× ~E = −∂ ~B

∂t
.

Note ~∇× (~∇× ~B) = ~∇ · (~∇ · ~B)− ~∇2 ~B, and that ~∇ · (~∇ · ~B) = 0.

This implies λ2
L
~∇2 ~B = + ~B, or

[ 1

λ2
L

− ~∇2
]
~B(~r) = 0 . (11)

Take ~B(~r) = (0, 0, B(z)) =⇒ B(z)B0 exp(−z/λL). This is the Meissner effect. The

field decays exponentially in the superconductor.

To review: we found

~Js = − 1

µ0λ2
L

~A , (12)

and

∇2 ~A =
1

λ2
L

~A , (13)

or

d ~Js
dt

=
1

µ0λ2
L

~E — called 1st London equation, (14)

~B = −µ0λ
2
L
~∇× ~Js — called 2nd London equation. (15)

So the magnetic field can penetrate at most to depths of ' λL.

Currents can flow in this region, but deep in the bulk they will be zero.
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II. QUANTIZATION OF FLUX

So far we have not discussed the phase θ from the general expression of the current.

Now it’s time ... with a spectacular example!

We consider a superconducting ring and choose a contour of integration deep in the

bulk where ~Js(~r, t) = 0. This implies

~~∇θ(~r) = e∗ ~A(~r) =⇒

2πn︷ ︸︸ ︷
~
˛
~∇ · θ(~r)d~̀ = e∗Φ, where Φ = magnetic flux, and n =

integer number. With φ =
˜

~Bd~s, we have

φ =
2πn~
q∗

=
h

q∗
· n . (16)

The flux quantum is φ0 = h
2e

= 2.067× 10−15 Wb, and q∗ = −2e.
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• Another useful relation: the energy-phase relationship

−~∂θ
∂t︸ ︷︷ ︸

“change of phase”

=
1

2

µ0λ
2
L

ns
· ~Js

2

︸ ︷︷ ︸
“kinetic energy”

+ q∗V︸︷︷︸
“potential energy”

(17)

Proof:

From the Schrödinger equation i~ ∂
∂t
ψ = 1

2m∗

(
− i~~∇ − q∗ ~A

)2

ψ + q∗V ψ we replace

ψ =
√
nse

iθ where ns = const.

=⇒ −~∂θ
∂t
· √ns = 1

2m∗

(
+ ~~∇θ − q∗ ~A

)2

· √ns + q∗V
√
ns,

but ~Js
2

= q∗2n2
s

m∗2

(
~~∇θ − q∗ ~A

)2

=⇒ −~∂θ
∂t

= 1
2

m∗

n2
sq
∗2︸ ︷︷ ︸

≡
µ0λ

2
L

ns

J 2
s + q ∗V .

Let us recap a bit:

Electrodynamics of superconductors is described by
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1st London equation d ~Js
dt

= 1
µ0λ2L

~E ,

2nd London equation ~B = −µ0λ
2
L
~∇× ~Js .

(18)

Here ~Js = ~q∗ns
m∗

[
~∇θ − q∗

~
~A
]

or

~Js = − φ0
2πµ0λ2L

[
~∇θ + 2π

φ0
~A
]

, where the London penetration length is λ2
L = m∗

µ0nsq∗2
and

φ0 = h
2e

= flux quantum, q∗ = −2e.

The quantity: ~∇θ + 2π
φ0
~A = gauge-invariant phase gradient.

III. JOSEPHSON EFFECT

• What happens when we put a voltage across a weak link between two superconductors?

Weak link = can be a:

S-I-S (insulator between two superconductors)

S-N-S ( a metal in-between)

S-s-S ( a constriction)

• What we measure:
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∆ = superconducting gap, ∆ = 1.764kBTc, Tc = critical temperature (from BCS theory),

RN = normal-state resistance.

– Currents flowing for |V | ≥ 2∆
e

are no surprise – they are associated with breaking the

Cooper pairs by the voltage.

But, at V = 0 there is a current flowing, with max. value = Ic (critical current of the

junction). This is the Josephson effect.

– Circuit symbol:
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1. Current-phase:

Consider the gauge-invariant phase difference, obtained by integrating the gauge-

invariant phase gradient,

ϕ =
´ 2

1
d~r
(
~∇θ + 2π

φ0
~A
)

= θ2 − θ1 + 2π
φ0

´ 2

1
d~r ~A(~r, t).

This is the only quantity which is gauge-invariant and includes the difference

in phases θ2 − θ1 as we cross the insulator.

So perhaps Js = Js(ϕ), that is, a function of ϕ. Which one? Well, we should

have also:

1. periodicity Js(ϕ) = Js(ϕ+ 2πn)

2. Js(0) = 0 (no current when there is no phase difference).

=⇒ Js(ϕ) = Jc sinϕ+
∞∑
m=2

Jm sinmϕ︸ ︷︷ ︸
This can be neglected.

, (19)

where Jc is constant and is the critical Josephson current density.

Therefore for a given device we will have

I = Ic sinϕ , (20)

Ic = critical Josephson current.
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2. Voltage-phase

Consider again the gauge-invariant phase difference

ϕ = θ2 − θ1 + 2π
φ0

´ 2

1
d~r ~A(~r, t)

Recall now the energy-phase relationship

−~∂θ
∂t

= 1
2

µ0λ2L
ns
J 2
s + q∗V .

This relation is valid for the phases θ1 and θ2 inside the superconductors 1 and

2.

=⇒ ∂ϕ
∂t

= −1
~
µ0λ2L
2ns

(
J 2
s (2) − J 2

s (1)
)
− q∗

~

(
V (2) − V (1)

)
+ 2π

φ0

´ 2

1
d~r ∂

~A
∂t

, but

Js(1) ≡ Js(2) (conservation of charge or Kirchoff’s current law).

=⇒ ∂ϕ
∂t

= 2π
φ0

´ 2

1
d~r
(
~∇+ ∂ ~A

∂t

)
, but ~E = −~∇V − ∂ ~A

∂t

=⇒ ∂ϕ
∂t

= −2π
φ0

ˆ 2

1

d~r · ~E︸ ︷︷ ︸
≡−(V2−V1)=−V

, where V ≡ V2 − V1.

=⇒ ∂ϕ

∂t
=

2π

φ0

V . (21)

=⇒ I = Ic sinϕ current-phase relation , (22)

∂ϕ

∂t
=

2e

~
V phase-voltage relation , (23)

or: V = ∂
∂t

(
φ0
2π
· ϕ
)

very similar to Faraday’s law.

• Consequences:

DC Josephson Effect: V = 0 =⇒ ∂ϕ
∂t

= 0 =⇒ ϕ = const.

I = Ic sinϕ — the current can reach a max. value of Ic.

AC Josephson Effect: V = const 6= 0 =⇒ ϕ = 2e
~ V · t.

=⇒ I = Ic sin
(

2e
~ V · t

)
= Ic sin

(
2π V

φ0
t
)

.
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fJ = V
φ0

= Josephson frequency = 483× 1012 V0 (Hz).

Josephson Inductance: ∂I
∂t

= ∂I
∂ϕ
· ∂ϕ
∂t

= Ic cosϕ · 2π
φ0
V

or: V = LJ(ϕ)∂I
∂t

, where LJ(ϕ) = Josephson inductance.

LJ(ϕ) = φ0
2πIc cosϕ

— depends on phase! Can be ∞ if ϕ = π
2

+ nπ.

Josephson Energy: EJ =
´
dtI · V =

´
dϕ · Ic sinϕ · φ0

2π

EJ = − Icφ0
2π

cosϕ = −EJ cosϕ.

EJ = φ0Ic
2π

= Josephson energy.

IV. APPLICATION: THE DC–SQUID

– Superconducting quantum interference device:

How it is fabricated:
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¸
C
~∇θ · d~r = 2πn = (θb − θa) + (θc − θb) + (θd − θc) + (θa − θd), where



θb − θa = ϕ1 − 2π
φ0

´ b
a
~Ad~r

θc − θb =
´ c
b
d~r · ~∇θ = −2π

φ0

µ0λ
2
L

ˆ c

b

d~r ~Js︸ ︷︷ ︸
0, Js=0 inside the superconductor

−2π
φ0

´ c
b
d~r · ~A

θd − θc = −ϕ2 − 2π
φ0

´ d
c
~Ad~̀

θa − θd =
´ a
d
d~r · ~∇θ = −2π

φ0

µ0λ
2
L

ˆ a

d

d~r ~Js︸ ︷︷ ︸
0

−2π
φ0

´ a
d
d~r · ~A

∴
¸
C
~∇θ · d~r = ϕ1 − ϕ2 − 2π

φ0

˛
C
d~r · ~A︸ ︷︷ ︸
=φ

, where φ = the magnetic flux piercing the

SQUID.

φ1 − φ2 = 2πn+
2πφ

φ0

. (24)

So I = I1 + I2 = Ic sinϕ1 + Ic sinϕ2 = 2Ic sin ϕ1+ϕ2

2
cos ϕ1−ϕ2

2
.

Let ϕ ≡ ϕ1−ϕ2

2
=⇒ I = 2Ic sinϕ cos

(
πφ
φ0

+ πn
)

.

I ≡ Imax(φ) · sinϕ , (25)

where Imax(φ) = 2Ic cos
(
πφ
φ0

+ πn
)

.

The SQUID behaves as a single Josephson junction with critical current controlled by

the magnetic flux.

The maximum current will be
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• |Imax| never exceeds 2Ic.

• Imax can be zero! This is understood as destructive interference of the currents in the

two branches of the SQUID.
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