

CHEM-E6105 Thermodynamics of modeling and simulation

Lecture 2

Spring 2022

Non-ideal solutions & Thermodynamic solution models

Daniel Lindberg

Overview

- Ideal solution and regular solution
- Metals and alloys
 - Compound Energy Formalism
- Ionic solutions
 - Sublattice models
- Slags/liquid oxides
 - Associate model
 - Quasichemical model
- Quadruplet model

Solution phase

- Solutions are thermodynamic phases with varying compositions:
- Gas
- Supercritical fluids
- Liquid phase
 - Aqueous solutions
 - Organic liquids
 - Molten slags, molten salts, etc.
- Solid solutions
 - Alloys, minerals

For a binary system A-B we have for **each solution phase** at constant temperature

$$G_{T} = x_{A}^{0}G_{A} + x_{B}^{0}G_{B} + \operatorname{RT}(x_{A}\ln x_{A} + x_{B}\ln x_{B}) + G^{E}$$

$$G^{id}_{mix} \quad \text{Excess Gibbs energy}$$

$$G_{mix} = G^{id}_{mix} + G^{E} \quad \text{Gibbs energy of mixing}$$

⁰*G_A* and ⁰*G_B* are the Gibbs energies for pure, unmixed A and B

At equilibrium the sum of *G* for all phases present is at **minimum** and the *chemical potential* (partial Gibbs energy) for A and B is **equal** in all phases present at equilibrium

$$\mu_A = G'_A = x_A^{\circ}G_A + RTx_A \ln x_A + G^E_A$$

Illustation of mixing properties

K₂SO₄-K₂CO₃: Partial Gibbs Energy for liquid at 960°C Reference State: K₂SO₄(l) and K₂CO₃(l)

K₂SO₄-K₂CO₃: Total Gibbs Energy at 960°C Reference State: K₂SO₄(l) and K₂CO₃(l)

ÅA/PCG/CMC/RB/2002

G^E is dependent on the physical properties of the solution i.e. **interaction** between different atoms or molecular groups

The numerical value of G^E is dependent of the **solution model** used for the description of the phase

Thus, *G^E* is the quantity to be **modeled** as a function of phase composition and temperature

Solution phase

Gases

- Ideal gas: follows the ideal gas law
 - PV=nRT
 - $P_{tot} = \Sigma P_i, P_i = x_i \cdot P_{tot}$
 - a_i=P_i/P_i°
- Real gas
 - Requires other equations of state for real gases
 - Largest deviations are observed for low T and high P
 - $a_i = f_i / P_i^{\circ}$ (f = fugacity)

Solution phase

Real gas

$$\left[p+a\left(\frac{n}{V}\right)^2\right](V-nb) = nRT$$

Deviations from ideality

Ideal solution

- A solution where the thermodynamic activity is proportional to its mole fraction
- Follows Raoult's law
- For A(I) + B(I) \rightarrow A + B (liquid solution) $\Delta V = 0$

UZ

 \mathbf{C}

X.

Regular solution

- Simplest non-ideal solution model
- For A(I) + B(I) \rightarrow A + B (liquid solution)

$$\begin{split} \Delta H_{mixing} &= \Omega x_A x_B \\ \Delta S_{mixing} &= -R(x_A ln x_A + x_B ln x_B) \text{ (ideal entropy of mixing)} \\ \Delta G_{mixing} &= \Delta H_{mixing} - T\Delta S_{mixing} = \\ \Omega x_A x_B + RT(x_A ln x_A + x_B ln x_B) \end{split}$$

Regular solution

$$G_{m} = \sum_{i} x_{i} G_{i}^{o} + RT \sum_{i} x_{i} \ln x_{i} + \sum_{i} \sum_{j>i} x_{i} x_{j} \Omega_{ij}$$

Ideal mixing Excess mixing

Regular solution

- often expanded into simple power series sub-regular, sub-sub-regular....

$$\omega_{u} = \alpha_{+} \beta_{\dots}$$

 $G^{E} = X_{1}X_{2}(\omega_{0} + \omega_{1}X_{2} + \omega_{2}X_{2}^{2} +)$

- coefficients can be made temperature dependent
- correlation between coefficients
- terms have maximum value at $x_2 = 1$, zero at $x_2 = 0$
- The model works well for many non-polar molecular solutions and simple binary ionic solutions
- For statistical explanation of regular solution model, see Gaskell Chap. 9.10

Regular solution

- Redlich-Kister expansion

$$G^{E} = [X_{1}X_{2}(L_{0} + L_{1}(X_{2} - X_{1}) + L_{2}(X_{2} - X_{1})^{2} + ...)]$$

- coefficients can be made temperature dependent
- decreased correlation between coefficients: $(x_2 - x_1) = 0$ at $x_1 = x_2 = 0.5$
- terms do not have maximum value at the same composition

$$G_{m} = \sum_{i} x_{i} G_{i}^{o} + RT \sum_{i} x_{i} \ln x_{i} + \sum_{i} \sum_{j>i} x_{i} x_{j} \sum_{n} \Omega_{ij}^{n} (x_{i} - x_{j})^{n}$$

Figure 4.10 (a)–(i) Phase diagrams of the hypothetical binary system A–B consisting of regular solid and liquid solution phases for selected combinations of Ω^{liq} and Ω^{sol} . The entropy of fusion of compounds A and B is 10 J K⁻¹ mol⁻¹ while the melting temperatures are 800 and 1000 K.

$G_i = G_i + R J |_{M \in I_i}$ Excess functions

• Gibbs energy of a dissolved substance i is divided into two parts in the following way:

• G-function for the total system can thus be written as:

$$G = \Sigma x_i G_i = \Sigma x_i^{\circ} G_i + RT \Sigma (x_i \ln x_i) + RT \Sigma (x_i \ln \gamma_i)$$

 Its third term is called Gibbs energy excess function ^{Ex}G (of the solution), and each of its term is called excess Gibbs energy ^{Ex}G_i of substance i. We can also summarise:

$$E^{x}G = RT \Sigma x_{i} \ln \gamma_{i}. = \underbrace{\sum \chi_{A} \chi_{B}}_{X_{A}}$$

Industrial melts

Industrial process	Melt composition	Role of melt	Temperature
Biomass/waste	Alkali salt mixtures and	Facilitates increased corrosion,	<400 °C to
combustion	complex silicates	deposition and agglomeration in boilers	>1000 °C
/gasification		and furnaces	
Black liquor	Sodium salt mixtures	Forms smelt bed for sulfur reduction,	500-1200 °C
combustion	(smelt)	can cause deposition and corrosion	
Batteries and fuel cells	Molten carbonates	Electrolyte	>650 °C
Flash smelting	Matte (liquid metal	Liquid phase captures impurities from	>1000 °C
	sulfide) and oxide slag	copper/nickel ore	
Aluminum electrolysis	Cryolite (NaF-AIF ₃) liquid	Cryolite dissolves Al ₂ O ₃ and acts as	~1000 °C
	and liquid aluminum	electrolyte, liquid aluminum is a product	
Iron- and steelmaking	Liquid metal and	Liquid metal is a product, slag captures	~1000 °C-
(Blast furnaces &	silicate/oxide slags	impurities from liquid iron and steel	2000 °C
BOF)			
Cement manufacturing	Ca-rich silicate liquid	Acts as solvent and reaction medium in	>1000 °C
		the cement kiln	
Glass manufacturing	Oxide/silicate mixtures	Glass forms from a cooling liquid phase	500-1500 °C
Ionic liquids	Complex organic salts	Reaction medium, solvent, etc.	<100°C

Different type of phases

- Metals and alloys
 - Ex. Fe-Cu
- Simple ionic phases
 - Ex. KCI-NaCI, K⁺,Na⁺//Cl⁻,SO₄²⁻
- Polymeric oxide phases
 - Ex. SiO₂-P₂O₅-B₂O₃(+metal oxides)
 - May also show ionic character and strong short-range ordering in the liquid phase
- Sulfides
 - May show ionic, metallic or covalent characteristics depending on the metal sulfide

Metals and alloys

 The so-called Calphad community (Calculations of Phase Diagrams) studies mainly phase equilibria and thermodynamic properties of metals and alloys with focus on material properties

 \rightarrow

Thermodynamic models for the liquid phase are often simple compared to solid phases

Simplified binary atomic structures

Substitutional	With vacancies	Interstitial
AABABBAB	AABAB AB	AABABBAB
BABBABAA	BA BABAA	BABBABAA
BBAABABA	BBAAB BA	B B A A B A B A
ABABBABB	ABAB ABB	A B ^A B B A B B
ABABBAAA	ABABBAAA	A B A B B A A A

Sublattice structures

Metals and alloys

- Compound Energy Formalism (CEF) is a mathematical description for the thermodynamic properties of phases with several sublattices
- Often used for complicated metallic phases, but also solid solutions of oxides, sulfides, ionic salts
- Assume a reciprocal phase $(A,B)_m(C,D)_n$ $(F_eN)_1(0,S)_1$

Compound Energy Formalism

Ionic solutions

- Models for ionic phases consider the physical nature by assuming cations mix on a cationic sublattice and anions on an anionic sublattice
- Sublattice assumption for liquid phase is appropriate due to cation-anion interactions

Reciprocal molten salt system Li,K/F,Cl

Liquidus projection

Arthur Pelton

Section of the preceding phase diagram along the LiF-KCI diagonal

- A tendency to de-mixing (immiscibility) is evident.
- This is typical of reciprocal salt systems, many of which exhibit an actual miscibility gap oriented along one diagonal.
 Arthur Pelton

lonic sublattice model

 $(Na^{+},K^{+})_{x}(CO_{3}^{-},SO_{4}^{-},S^{-},Cl)_{y}$

Equivalents on cationic sublattice = Equivalents on anionic sublattice

Equivalent cationic fraction = Equivalent anionic fraction =

 $Y_{Na} = q_{Na} n_{Na} / (q_{Na} n_{Na} + q_{K} n_{K})$ $Y_{CO3} = q_{CO3} n_{CO3} / (q_{CO3} n_{CO3} + q_{SO4} n_{SO4} + q_{S} n_{S} + q_{CI} n_{CI})$

 q_i = absolute ionic charge of i, n_i = number of molesof i in solution PELTON, A.D. A database and sublattice model for molten salts. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 1988, 12(2), 127-142.

Slags/liquid oxides

CaO, MgO, FeO, MnO, ... Na₂O, K₂O, ...

Network Modification by Basic Oxides

Structure of CaO-SiO₂ Liquid Solutions

Structural features of the CaO-SiO₂ system

Structural features of the system CaO-SiO₂ [25].

SiO ₂ , mol%	Structural features of the system CaO-SiO2	
$X_{SiO_2} \ge 88$	3-dimensional network in the form of [Si _n O _{3n}] ²ⁿ⁻	The second secon
$88 > X_{\rm SiO_2} \ge 67$	Anion complexes in the form of $[Si_{n\tau}O_{n(2r+1)}]^{2n}$	
$67 > X_{\rm SiO_2} \ge 50$	Ring structure in the form of [Si _n O _{3n}] ²ⁿ⁻	Ser 200
$50 > X_{\rm SiO_2} \geq 33$	Chain structure in the form of $[Si_nO_{3n+1}]^{2(n+1)}$	
$33 > X_{\rm SiO_2} \geq 25$	Chain structure and monomer [SiO ₄] ⁴⁻ and O ²⁻	
$25 > X_{SiO_2}$	Monomer [SiO ₄] ⁴⁻ and O ²⁻	

Slags/liquid oxides

- Several types of models are used for liquid oxides
 - Quasichemical model (Factsage, CRCT Montreal)
 - Associate model (MTdata, Mtox, NPL)
 - Reciprocal Ionic models (Thermo-calc)
 - Cell model
- Quasichemical model, associate model, and cell model consider short-range ordering

Associate Models

 Model the MgO-SiO₂ binary liquid assuming MgO, SiO₂ and Mg₂SiO₄ «molecules»

$$2 \underline{MgO} + \underline{SiO_2} = \underline{Mg_2SiO_4} \quad ; \Delta G^{\circ}$$
$$K = \frac{X_{Mg_2SiO_4}}{X_{MgO}^2 X_{SiO_2}} = \exp\left(\frac{-\Delta G^{\circ}}{RT}\right)$$

• With the model parameter $\Delta G^{\circ} < 0$, one can reproduce the Gibbs energy of the binary liquid reasonably well:

Gibbs energy of liquid MgO-SiO₂ solutions

Fig. 2. Q-species distribution as calculated from the non-ideal associate model together with experimental information [41–43] in the system SiO₂–Na₂O [32].

Reciprocal Ionic Liquid Model

(M. Hillert, B. Jansson, B. Sundman, J. Ågren)

- Ca²⁺ and Mg²⁺ randomly distributed on cationic sublattice
- O^{2^-} , $(SiO_4)^{4^-}$ and neutral SiO₂ species randomly distributed on anionic sublattice
- An equilibrium is established:

$$SiO_2^0 + 2O^{2^-} = SiO_4^{4^-}$$

 $\Delta G^0 < 0$

(Very similar to: $O^0 + O^{2^-} = 2 O^{-}$)

In basic melts mainly Ca²⁺, Mg²⁺, O²⁻, (SiO₄)⁴⁻ randomly distributed on two sublattices.

Short-range-ordering is neglected.

Modified Quasichemical Model

, «Quasichemical» reaction among second-nearest-neighbour pairs:

$$(Mg-Mg)_{pair} + (Si-Si)_{pair} = 2(Mg-Si)_{pair}$$

 $\Delta G^{\circ} < 0$
(Very similar to: $\Omega^{0} + \Omega^{2^{\circ}} = 2 \Omega^{-}$)

In basic melts:

- Mainly (Mg-Mg) and (Mg-Si) pairs (because $\Delta G^{\circ} < 0$).
- That is, most Si atoms have only Mg ions in their second coordination shell.
- This configuration is equivalent to $(SiO_4)^{4^-}$ anions.
- In very basic (MgO-SiO₂) melts, the model is essentially equivalent to a sublattice model of Mg²⁺, Ca²⁺, O²⁻, (SiO₄)⁴⁻ ions.

At higher SiO₂ contents, more (Si-Si) pairs are formed, thereby modeling polymerization.

A.D. Pelton and M. Blander "Thermodynamic Analysis of Ordered Liquid Solutions by a Modified Quasichemical Approach - Application to Silicate Slags", Met. Trans., <u>17B</u>, 805-815 (1986).

The Cell Model

M.L. Kapoor, G.M. Frohberg, H. Gaye and J. Welfringer

 Slag considered to consist of «cells» which mix essentially ideally, with equilibria among the cells:

$$[Mg-O-Mg] + [Si-O-Si] = 2 [Mg-O-Si]$$
$$\Delta G^{\circ} < 0$$

- Quite similar to Modified Quasichemical Model
- Accounts for ionic nature of slags and short-rangeordering.

Liquidus projection of the CaO-MgO-SiO₂-Al₂O₃ system at 15 wt % Al_2O_3 , calculated from the Modified Quasichemical Model

Liquidus projection of the CaO-MgO-SiO₂-Al₂O₃ system at 15 wt % Al₂O₃, as reported by E. Osborn, R.C. DeVries, K.H. Gee and H.M. Kramer

Thermodynamic models for liquid phase

- a) Quasichemical model for common-anion(cation) systems, e.g. KCI-NaCI-CaCl₂-MgCl₂-ZnCl₂-PbCl₂ (K₂O-Na₂O-CaO-SiO₂) taking into account short-range ordering. Additional anions, such as SO_4^{2-} can't be added (Only one sublattice)
- b) Simple two-sublattice models, e.g. $Na^+,K^+//SO_4^{2-}, CO_3^{2-}, CI^-$ Can give reasonable results for alkali salts but can't take into account short-range order, which is important for systems such as KCI-ZnCl₂
- C) Quasichemical model with quadruplet approximation
 Can consider mixing on cationic and anionic sublattices and takes into account short-range ordering

Thermodynamic model for ionic solution phases (liquid/solid)

Modified quasichemical model in the quadruplet approximation

Takes into account anion-cation and cationcation /anion-anion interactions

A.D. Pelton & P. Chartrand, G. Eriksson"The Modified Quasichemical Model IV - Two Sublattice Quadruplet Approximation", Met. & Mat. Trans., <u>32A</u>, 1409-16 (2001).

Liquid sulfides

- Liquid metal sulfides behave very differently depending on the metal
- Na-S and K-S are ionic with long polymerized polysulfide ion (S²⁻ to S₈²⁻)

Can be modelled with ionic models

- Fe-S, Ni-S shows strong short-range ordering around the FeS or NiS composition
 - Can be modelled with associate or quasichemical models

Fe - S - Gas phase suppressed

Data from FTmisc - FACT miscellaneous database 2010

Terms and concepts

- Ideal solution and regular solution
- Metals and alloys
 - Compound Energy Formalism
- Ionic solutions
 - Sublattice models
- Slags/liquid oxides
 - Associate model
 - Quasichemical model
- Quadruplet model