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About me: From science to startups

Originally from Neuss (near Cologne, GER)

2006 — 2011: Physics student in Munich (TUM)
2012 — 2017: PhD student in Munich (WMI)

2017 — 2019: Marie-Curie Fellow in Helsinki (Aalto)
2019 — today: Co-founding CEO of IQM

2021 — today: Board Member EIC &QuIC

| like dogs

| like sports

| have strong eye rings (but | sleep well)
| like standing at the bar

| am a team person (collaboration)
| can give away tasks (trust)
| like making big plans (ambition)




|QM in brief

Quantum-computer scale-up

* Providing quantum computers based on superconducting technology
 DeepTech Scale Up, > 140 people strong
+ Secured > M70 EUR funding
+ Offering:
«  On-premises systems for research and supercomputing centers

. 2 systems sold, 1 delivered
* HPC integration of quantum computers

« Co-design approach for application-specific quantum computers

Fast Lane to Quantum Advantage



How does everything fit into the big picture?

What is
required?

« Scientists, atoms, circuits, qubits, quantum computing t
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Di Vincenzo Criteria and where you can find them in
this course

Statement of the criteria

A scalable physical system with well characterized qubit

The ability to initialize the state of the qubits to a simple fiducial state
Long relevant decoherence times

A "universal” set of quantum gates

A qubit-specific measurement capability

AP WN=
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Agenda for lectures 7-11

7. Quantization of electrical networks

a. Harmonic oscillator: Lagrangian, eigenfrequency
b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
d. Quantization of oscillators
8. Superconducting quantum circuits
a. Qubits: Transmon qubit, Charge qubit, Flux qubit
b. Circuit-QED: Rabi model
C. Rotating Wave approximation: Jaynes-Cummings model

9.Single-qubit operations:

a. Initialization

b. Readout

c. Control:T1, T2 measurements, Randomized benchmarking
10. Two-qubit operations: Architectures for 2-qubit gates

a. iISWAP
b. cPhase
C. cNot
11. Challenges in quantum computing
a. Scaling
b. SW-HW gap
C. Error-correction



Agenda for today

7. Quantization of electrical networks
a.

b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
d. Quantization of oscillators
a b. C
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Figure 2: Superconducting LC oscillator.

Figure 1: Classical pendulum.



General note: Harmonic oscillators

* General note: In physics, many phenomena can be explained by
. They are the standard tool in our physics toolbox.

» Usually, there are two important variables involved like

, xand p.
* One can often find where two system variables are
equivalent to xand p. For example, in an these are

charge and flux.

| QM



Short review: Lagrangian & Hamiltonian

 During this course, and mechanics are used
for analyzing quantum computing circuits.

» Recall that the Lagrangian is defined as the kinetic energy 7 the
potential energy V.
L=T-V.
* Quite often the Hamiltonian is representing the of the

system:

Legendre transformation

H=T+V.

| QM



Short review: Classical oscillator®

VYY

Figure 1: Classical pendulum.

The equation states
d (oL oL
dt \9j) g

Since T does not depend’on g \

oL  dV
a  oq
Since p = dL/dg we obtain of motion
dt  9g

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Short review: Classical oscillator®

The kinetic energy is

1 1 .
T = E”wz = E?I’IEZQZ

0 The potential energy is
f V=mgh=mgl (1 —cosf) = ;mgfﬂz
L=T-V.
i iiJ We introduce generalized coordinates p and g
AR B I . q= «; i S . '
m _aq’”aq( i 2£q)rrfzq}r*zft9

Figure 1: Classical pendulum.

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Short review: Classical oscillator®

Applying our example to the Euler-Lagrange equation gives

p=—mgqo
In addition, we can independently differentiate p wrt time:
) | .
4 p=mlo
PP i g Together this yields:
VY B mlf +mgl =0,
m | ‘e cr
. 0+<60=0.
Figure 1: Classical pendulum. ¢

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Short review: Classical oscillator®

vvy |\

Figure 1: Classical pendulum.

Because we are smart, we chose the trial function

0 = Cexp(iwt)

Inserting this function into differential equation yields:

i*w*C exp(iwt) + }SC exp(iwt) =0

Solving this equation provides the well-known result:

w=4/8/1t

Key takeaway: Starting from energy
considerations, we can derive the
of the system

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Agenda for today

7. Quantization of electrical networks
Harmonic oscillator: Lagrangian, eigenfrequency

Q

a.
b.
d.

Quantization of oscillators

Figure 1: Classical pendulum.
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Figure 2:

C

Superconducting LC oscillator.
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General note: LC oscillators

« General note: Once you understand the harmonic oscillator, you can
easily apply the concept to any other oscillator.

Momentum p <> Charge ¢
Position £ & Flux @ L C
Mass m <~ Capacitance C

Resonance frequency w, <> w, = 1/VLC

| QM
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Transfer step: LC oscillator®

We assume an electrical circuit consisting of inductance L
and capacitance C. The charge stored in the capacitor is

Q=CU

U ﬂ_Q l I The power fed into the circuit is 2 = U/and consequently

P = UQ
Figure 2: Superconducting LC oscillator. Hence, the stored in the system is
H 107 1 1 . 5
V = Pdt = -—=— = -0U = =CU~
o 2 C 27 2

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf *



Transfer step: LC oscillator®

For the magnetic flux F in a coil, it holds that

L (I) O=L]
U ﬂ_Q l I Lenz law tells us that
.= C b =U
Figure 2: Superconducting LC oscillator. Hence, the stored in the system is
t1 1 (I)Z
T= [ pdt= / Uldi = ~LI2 =
to 2 2L

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Transfer step: LC oscillator®

To apply , We use the previous results
1 Q? 1., 1. .,
V=_-CU*==,6 T=-LIF==-L0O",
L (I) 2 2C”’ 2 2
U ﬂ_Q l I allowing us to write the Lagrangian as
= 1 Q?
-2 - 2C
Figure 2: Superconducting LC oscillator. To derive the , We again introduce
generalized coordinates
qg=Q,
oL
1 =——=L0=—-L]=-]
oq

18
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Transfer step: LC oscillator®

Remind yourself again of

d ( aL) - dL
L ® dt \ag) — oq
U ﬂ_Q l I Using the above results gives the for charge:

Q EQZO

Figure 2: Superconducting LC oscillator. Using a similar ansatz for the trial function yields the

1 Pendulum:

w:\/ﬁ <:> w=4/8/1t

Key takeaway: Starting from energy considerations,
we can derive the of the system

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Legendre transformation to Hamiltonian®

Hamiltonian gives two 15t order
differential equations, while Euler
Lagrange gives one 2" order

L ®

Figure 2: Superconducting LC oscillator.

The general definition for a Hamiltonian is

H=g4p—-L.
We take the time derivative to analyze the system dynamics:
df —i':rJrr';J—%L'—%r"—L
dr — PTAPT aT 9g1

To solve this equation, we use
p=dL/dq
p = P(f) Only, sodp/dt = p

20
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Legendre transformation to Hamiltonian®

Hamiltonian gives two 15t order
differential equations, while Euler
Lagrange gives one 2" order

L ®

Léﬁ?lg l[
e

Figure 2: Superconducting LC oscillator.

Using the above terms in the total time derivative yields

W prap- G- pi-1
T

Simplifying this formula further results in
dH | d /dL dL :
— =g|—(=)-=|-L
dt dt \ dg Jq

The Lagrangian is time independent and due to Euler
Lagrange, the parentheses are also zero, hence

dH
T -0
d

We find that the Hamiltonian is a constant of motion, i.e.

energy is conserved in the system

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Legendre transformation to Hamiltonian®

Hamiltonian gives two 15t order
differential equations, while Euler
Lagrange gives one 2" order

l]'é .jEL_gg lf[

Figure 2: Superconducting LC oscillator.

We can use the general definition for the Hamiltonian to find

— O(TO) —
H = O(LO) (2 - <

p) )
1L02 Q ) — 1L02+g

Inserting the standard definitions, we find

1 Q> P* Q7
H=-LI*+ + =
2 2C 2L 2C
Hence, the Hamiltonian represents the total energy of the
system
H=T+V.
Key takeaway: Starting from Lagrangian, we
can derive the of the system. This
IS necessary to derive energy quantization.

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Agenda for today

7. Quantization of electrical networks

a. Harmonic oscillator: Lagrangian, eigenfrequency
b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
d.
a b. C
A
~—
A
<3|
L ® S
_I: \‘\:: 3 8 B B 0 0 B |
[] __Q )i 2
__C =

% V Y Figure 2: Superconducting LC oscillator.

Figure 1: Classical pendulum.



Classical 2 Quantum

Photoelectric effect >
Electromagnetic field is quantized -
Energy is quantized: 2 = hw.

8" /S
: w

@00 & @ o
©6 @ 0 o

v" QUANTIZATION OF CHARGE




General note: Quantization of oscillators

» General note: means we see the effect of single particles
or excitations.

* |[n @ harmonic oscillator, the energy is quantized

* Energy quantization can be seen as counting the
stored in the oscillator.

25
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Quantization of an oscillator

In quantum mechanics, variables are feplaced by operators:
qg—q:H = I, Charge §
p— P — I, Flux ¢

Examples

For practical reasons, we often use matrix representations

(Ow)l O1n Oz ... O15 .. (5
5 (OY)2 O21 O ... Oz .. U
(Ow)l O, O .. Oij wj

Two conjugate variables follow the commutation relation

q

qre = (ex

Vacuum fluctuations:

P.q=pq—qp = —ih

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiB3ner-Institut (2001 - 2020)

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf



Quantization of an oscillator

For pedagogical reasons, it is convenient to transform systems
into the basis of number states (give matrix representation of a)

0 0 0 0 0 vy1 0 0 0
Ji oo 0 0 0 0 +v2 0 ... 0
0 v2 0 ... 0 0.0 0 V3 ... 00
o = 0 0 3 ... 0 a0 0 0 0 S
T S
0 0 0 ... n .. o0 0 0 .. 0 °

These can be interpreted as ladder operators raising and lowering
the excitation number

. _ W CD+i{

a= Is the annihilation operator
ﬁZQJrCﬁ
at == Is the creation operator

", 2w1~Cﬁ

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiB3ner-Institut (2001 - 2020)
|QM * Detalls in lecturenotes-EQS _Helsinki_2019.pdf



Quantization of an oscillator

- When applied to a Fock state, @ annihilates a
photon inside the oscillator

aln) = njn — 1)

> When applied to a Fock state, a' creates a
photon inside the oscillator

atlny =vn+1jn+ 1)

Their product gives the excitation number of a system

" A

arta

)

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeiB3ner-Institut (2001 - 2020)
|QM * Detalls in lecturenotes-EQS _Helsinki_2019.pdf
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Quantization of the LC oscillator

For the superconducting resonator, we have

~ P q
H=+2¢

We aim to diagonalize Hinto a form involving only one operator.
This can be done by a change of variables.

. |hwLl /o 4 . ﬁ.aJC,(A AJF)
D= > (HJH;),L]_U > 1 (a—a') .

Here wis a free scalar parameter, which we will choose later.
The square root factors have been inserted for convenience.

(@ +a*) and i(@ — a%) are Hermitian and independent

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeilBner-Institut (2001 - 2020)
. . . . 29
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Quantization of the LC oscillator

The previous Hamiltonian becomes

2 2
Vgt @] [ -
_|_

H =
2L 2C
Nw /a0 al ed a4
= 1 (H{EJF -+ it a -+ aat + H+{E)
= — (rer -+ aJrn) :
2
Using |7, ﬁﬂ — it follows that aat = a*a + 1
Key takeaway: The of the system . DU |
is given by vacuum fluctuations (+1/2) and the H = hw(a'a + E)
number of photons stored at frequency w

R. Gross, A. Marx, F. Deppe, and K. Fedorov © Walther-MeilBner-Institut (2001 - 2020)

|(AM * Details in lecturenotes-EQS_Helsinki_2019.pdf
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Agenda for today (done)

7. Quantization of electrical networks
Harmonic oscillator: Lagrangian, eigenfrequency

Q

a.
b.
d.

Transfer step: LC oscillator, Legendre transform to Hamiltonian

Quantization of oscillators

Figure 1: Classical pendulum.
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Figure 2:

Superconducting LC oscillator.
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Add-on: Vacuum fluctuations & thermal photons (if

time allows)

0

T(w) (dB)

= resonator
—fead line

= 05-115MHz . couplin
E m pling

capacitor

C
Vacuum -—{::‘

fluctuations

(+1/2) -

7/
Ve
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