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Short recap from last week

Key takeaway: Starting from energy 

considerations, we can derive the 

eigenfrequency of the system

Key takeaway: Starting from Lagrangian, we 

can derive the total energy of the system. This 

is necessary to derive energy quantization.

Key takeaway: The total energy of the system 

is given by vacuum fluctuations (+1/2) and the 

number of photons stored at frequency w
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Agenda for lectures 7-11

7 .  Q u a n t i z a t i o n  o f  e l e c t r i c a l  n e t w o r k s

a . H a r m o n i c  o s c i l l a t o r :  L a g r a n g i a n ,  e i g e n f r e q u e n c y

b . T r a n s f e r  s t e p :  L C  o s c i l l a t o r ,  L e g e n d r e  t r a n s f o r m  t o  H a m i l t o n i a n

d . Q u a n t i z a t i o n  o f  o s c i l l a t o r s

8 .  S u p e r c o n d u c t i n g  q u a n t u m  c i r c u i t s

a . Q u b i t s :  T r a n s m o n q u b i t ,  C h a r g e  q u b i t ,  F l u x  q u b i t  1 s t D i V i n c e n z o  c r i t e r i a

b . C i r c u i t - Q E D :  R a b i  m o d e l

c .  R o t a t i n g  W a v e  a p p r o x i m a t i o n :  J a y n e s - C u m m i n g s  m o d e l

9 . S i n g l e - q u b i t  o p e r a t i o n s :

a . I n i t i a l i z a t i o n  2 n d D i V i n c e n z o  c r i t e r i a

b . R e a d o u t  5 t h D i V i n c e n z o  c r i t e r i a

c . C o n t r o l : T 1 ,  T 2  m e a s u r e m e n t s ,  R a n d o m i z e d  b e n c h m a r k i n g  3 r d D i V i n c e n z o  c r i t e r i a  

1 0 .  T w o - q u b i t  o p e r a t i o n s :  A r c h i t e c t u r e s  f o r  2 - q u b i t  g a t e s  4 t h D i V i n c e n z o  c r i t e r i a

a . i S W A P

b . c P h a s e

c . c N o t

1 1 .  C h a l l e n g e s  i n  q u a n t u m  c o m p u t i n g  

a . S c a l i n g

b . S W - H W  g a p

c . E r r o r - c o r r e c t i o n
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Agenda for today

8 .  S u p e r c o n d u c t i n g  q u a n t u m  c i r c u i t s

a . Q u b i t s :  T r a n s m o n q u b i t ,  C h a r g e  q u b i t ,  F l u x  q u b i t  1 s t D i V i n c e n z o  c r i t e r i a

b . C i r c u i t - Q E D :  R a b i  m o d e l

c .  R o t a t i n g  W a v e  a p p r o x i m a t i o n :  J a y n e s - C u m m i n g s  m o d e l

a . b . c .
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Short intro: There is a “qubit zoo”
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General approach: Superconducting qubits

• General note: Superconducting circuits have quantized energy levels.

• Josephson junctions are non-linear elements which allow us to make 
the energy spacing non-equidistant.

• We can create a situation where all but 2 energy levels can be ignored 
creating effectively a quantum two-level system, i.e., a qubit
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Short review: EJ, EC, EL
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Standard procedure: The charge qubit
To derive the properties of a charge qubit, we follow the “standard” 

procedure: Start with a Lagrangian and do a Legendre transform.

In order to write the Lagrangian, we must consider the fixed

gate voltage. We model this as an external node with a

well-defined flux              , meaning              . Setting

we write the capacitance matrix

From this we can write the Lagrangian L=T-V
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Standard procedure: The charge qubit
With the Lagrangian, one can obtain the equations of motion from 

Lagrange's equation

which in vector form becomes

The Hamiltonian of the circuit can be found by a simple Legendre 

transformation of the Lagrangian. First we define the conjugate 

momentum to the node flux by

Note that this requires that the capacitance matrix needs to 

be invertible.
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Standard procedure: The charge qubit
The Hamiltonian can now be expressed in terms of the node 

charges for the kinetic energy and node fluxes for the potential 

energy

We now change into conventional notation and define the

effective capacitive energy

Solving for _ we do the Legendre transformation and find

the Hamiltonian
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Standard procedure: The charge qubit

We can now discuss certain parameter regimes:

Here, We have further defined the offset charge

We now quantize the dynamic variables and remove constant terms:

Energy ratio Effective Hamiltonian interpretation

charge states

of the capacitorKey takeaway: The quantized energy levels 

of a charge-biased Josephson junctions 

can serve as qubit states of a charge qubit
Lifted degeneracy, 

qubit states exist
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Simplify the model: Qubit description

For the qubit eigenbasis

Here, we have used the Pauli z-operator

We can move to a half-integer voltage offset and ignore all the 

higher-level states. Then, we have a two-level system which is 

commonly described as

Key takeaway: The quantized energy levels 

of a charge-biased Josephson junctions 

can serve as qubit states of a charge qubit
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The birth of superconducting qubits

https://arxiv.org/abs/cond-mat/9904003
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The two directions to approach a transmon qubit:
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Anharmonic oscillator: The transmon qubit
We have learned that an LC oscillator has equidistant level spacing

To introduce non-equidistant level spacing (qubits), we use a 

non-linear inductor (Josephson junction)

The Hamiltonian of a capacitively shunted Josephson junction has 

two components

Two parameters, we have to get rid of one …
https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html
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Anharmonic oscillator: The transmon qubit
Now we can approach the quantization similarly to the quantum 

harmonic oscillator, where we define the creation and annihilation 

operators

Here,    denotes the transmon annihilation operator and 

distinguish it from the evenly-spaced energy modes of

The prefactors describe vacuum fluctuations (zero 

point fluctuations, zpf):

https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html
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Anharmonic oscillator: The transmon qubit
To assume , we chose and Taylor expand the EJ

term:

In the    basis the complete Hamiltonian therefore reads

We now use the following relations

https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html
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Anharmonic oscillator: The transmon qubit
Expanding the terms of the transmon operator and dropping the fast-

rotating terms (i.e. those with an uneven number of               ), 

neglecting constants yields

This is the Hamiltonian of a (non-linear) Duffing Hamiltonian. 

The energy levels of the system are calculated as

https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html

Key takeaway: The transmon qubit is 

actually a non-linear oscillator and we use 

the two lowest eigenstates as qubit states. 

They correspond to having 0 or 1 excitations 

stored in the system
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Frequency control: The split transmon qubit
Choosing the two lowest eigenstates as qubit states, allows 

us to treat the transmon as a qubit with Hamiltonian

Frequency tunability can be created by replacing the 

single junction with a split junction, i.e., a DC SQUID

https://mediatum.ub.tum.de/1326240

DUT

VNA
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Closing the loop: The flux qubit
In contrast to the charge- and the transmon qubit, the flux qubit 

operates in the regime            such that magnetic flux is the good

quantum variable.

The most common implementation is a closed superconducting 

loop intersected by three Josephson junctions. One junction has a 

reduced Josephson energy by a factor 0.5 < a < 1. This yields the 

potential

Here,                          is the reduced magnetic flux threading the 

qubit loop and           are the phase differences across the two 

identical junctions. The third phase difference is eliminated due to 

the boundary condition imposed by flux quantization.

Flux quantization is guaranteed by a persistent circulating current 

https://mediatum.ub.tum.de/1326240
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Closing the loop: The flux qubit
The two degrees of freedom 

result in a two-dimensional 

potential. For            , the 

potential is symmetric and 

periodic.

The potential along this line 

has the form of a double well, 

where the minima 

correspond to circulating 

currents in opposite 

directions.

https://mediatum.ub.tum.de/1326240

Because the two larger 

junctions are identical, we 

can only move along the line



22

Closing the loop: The flux qubit

Because the potential barrier 

has a finite height, there is a 

certain tunneling probability D

between the wells.

https://mediatum.ub.tum.de/1326240

A change in magnetic flux bias 

tilts the potential leading to an 

additional energy e.

The tunnel coupling lifts the energy degeneracy between the 

states, resulting in a level splitting. The resulting two energy levels 

can be used as two qubit states.
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Closing the loop: The flux qubit

To describe the system with the well-known formalism for quantum 

two-level systems, we diagonalize the system Hamiltonian to 

transform into the qubit eigenbasis

https://mediatum.ub.tum.de/1326240

Here, the qubit transition frequency is given as

DUT

VNA
Key takeaway: The flux qubit is a closed loop 

with 3 JJs where the circulating currents 

provide energy eigenstates that can be 

treated as a quantum 2-level system.
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General approach: Superconducting qubits

• General note: Superconducting circuits have quantized energy levels.

• Josephson junctions are non-linear elements which allow us to make 
the energy spacing non-equidistant.

• We can create a situation where all but 2 energy levels can be ignored 
creating effectively a quantum two-level system, i.e., a qubit.



25

Agenda for today

8 .  S u p e r c o n d u c t i n g  q u a n t u m  c i r c u i t s

a . Q u b i t s :  T r a n s m o n q u b i t ,  C h a r g e  q u b i t ,  F l u x  q u b i t  1 s t D i V i n c e n z o  c r i t e r i a

b . C i r c u i t - Q E D :  R a b i  m o d e l

c .  R o t a t i n g  W a v e  a p p r o x i m a t i o n :  J a y n e s - C u m m i n g s  m o d e l

a . b . c .
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General note: Circuit QED

• Qubits can be seen as artificial atoms and resonators as microwave 
light.

• When we bring them close to each other we create “light-matter” 
coupling that is treated in the same way as quantum optics.

• Superconducting circuits allow on-chip study of quantum optics in 
regimes that cannot be reached in nature.
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Example: Flux qubit coupled to transmission line 
resonator

https://www.wmi.badw.de/publications/theses/Niemczyk_Doktorarbeit_2011.pdf
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Generalized light-matter interaction:
The quantum Rabi model

We recall the following physical properties and their quantum 

mechanical description

https://www.wmi.badw.de/publications/theses/Niemczyk_Doktorarbeit_2011.pdf

Physical system / 

parameter

Effective Description

Qubit

Resonator

Magnetic field

Qubit energy bias

If we bring qubit and resonator in close vicinity, we create a mutual 

inductance leading to a coupling term (interaction Hamiltonian)

Here, we are hiding all physical properties in the coupling constant g
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Generalized light-matter interaction:
The quantum Rabi model

Adding the individual terms for qubit and resonator results in the 

system Hamiltonian

https://www.wmi.badw.de/publications/theses/Niemczyk_Doktorarbeit_2011.pdf

The above 

Hamiltonian is valid in 

all regimes for g
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Generalized light-matter interaction:
The quantum Rabi model

The counter rotating and counter intuitive terms          and          

give rise to the so-called Bloch-Siegert shift, which is hard to 

observe in nature but possible with superconducting systems.

https://www.wmi.badw.de/publications/theses/Niemczyk_Doktorarbeit_2011.pdf

The structure of the quantum Rabi Hamiltonian is such that the 

physical property “parity” is conserved. This is a special form of 

symmetry and one of the most fundamental concepts in physics.

The concept of parity for 

example gives rise to selection 

rules for allowed transitions in 

atoms. The same selection 

rules can be observed in 

superconducting circuits.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.060503

Key takeaway: Superconducting circuits

follow the physics of quantum optics and can 

reach parameter regimes that are 

unreachable in nature.
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General note: Circuit QED

• Qubits can be seen as artificial atoms and resonators as microwave 
light.

• When we bring them close to each other we create “light-matter” 
coupling that is treated in the same way as quantum optics.

• Superconducting circuits allow on-chip study of quantum optics in 
regimes that cannot be reached in nature.
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General note: Jaynes-Cummings model

• Usually one operates quantum circuits in a “practical” parameter 
regime, called strong coupling limit.

• In this limit, the coupling between qubit and electromagnetic field is 
much stronger as their loss rates but smaller than their 
eigenfrequencies.

• In this regime, the eigenstates experience a qubit state-dependent 
energy shift. Detecting this shift is used for qubit readout.
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Rotating Wave approximation: Jaynes-Cummings 
model

We consider a transmon qubit that is capacitively coupled to a 

transmission line resonator. We operate in the strong coupling 

regime, where g << wq, wr. 

This allows us to move into the interaction picture (a.k.a. rotating 

frame) defined as

This Hamiltonian contains both quickly and slowly oscillating 

components

To get a solvable model, the quickly oscillating "counter-rotating" 

terms, are ignored. This is referred to as the rotating wave 

approximation, and it is valid since the fast oscillating term couples

states of comparatively large energy difference.

https://mediatum.ub.tum.de/1326240
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Rotating Wave approximation: Jaynes-Cummings 
model

Transforming back into the Schrödinger picture the Jaynes-

Cummings Hamiltonian is thus written as 

In the Jaynes-Cummings Hamiltonian, we can either excite the 

qubit by absorbing a photon            or take one excitation from the 

qubit and generate a photon 

In the basis of uncoupled resonator excitation number (nr) and 

qubit eigenstates, the Hamiltonian is transformed to

We can diagonalize this Hamiltonian and discuss two parameter 

regimes: Resonant, i.e. no detuning between qubit and resonator,

and off-resonant, i.e. large detuning.

https://mediatum.ub.tum.de/1326240
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Rotating Wave approximation: Jaynes-Cummings 
model

The eigenfrequencies of the Jaynes-Cummings Hamiltonian are 

given as

Here, we have defined the detuning                     and the ground 

state is

The new dressed eigenstates of the system are the superposition 

states

Here, the mixing angle is a measure for the degree of 

entanglement between qubit and resonator states:

https://mediatum.ub.tum.de/1326240
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Rotating Wave approximation: Jaynes-Cummings 
model

When qubit and light mode are on resonance, i.e.,    ,     the mixing

angle                 is maximum and consequently there is strong 

entanglement. 

In this regime, a coherent exchange of excitations between qubit 

and resonator occurs with the vacuum Rabi frequency 2g. This 

interaction lifts the degeneracy of the corresponding eigenenergies

By                   to new doublet eigenstates.

https://mediatum.ub.tum.de/1326240

https://arxiv.org/abs/0902.1827
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Rotating Wave approximation: Jaynes-Cummings 
model

In the dispersive regime, the detuning between qubit and resonator

frequency is much larger than the coupling, i.e.,

In this regime, there is no exchange of excitations anymore but 

virtual photons mediate a dispersive interaction between qubit and

light field. This interaction leads to frequency shifts of the qubit and 

resonator eigenfrequencies. The dressed states are either more 

photon-like or more atom-like.

https://mediatum.ub.tum.de/1326240

In the atom-like case (close to qubit states), the Hamiltonian can 

be derived as

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.123602
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Rotating Wave approximation: Jaynes-Cummings 
model

In the photon-like case (close to resonator states), the Hamiltonian 

can be derived as

describing the qubit state-dependent resonator frequency,

which we use for readout purposes.

https://mediatum.ub.tum.de/1326240

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.75.032329

Key takeaway: In the 

dispersive regime of the 

Jaynes-Cummings model, 

resonators can be used for 

qubit readout.
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General note: Jaynes-Cummings model

• Usually one operates quantum circuits in a “practical” parameter 
regime, called strong coupling limit.

• In this limit, the coupling between qubit and electromagnetic field is 
much stronger as their loss rates but smaller than their 
eigenfrequencies.

• In this regime, the eigenstates experience a qubit state-dependent 
energy shift. Detecting this shift is used for qubit readout.
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