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Short recap from last week
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Figure 2: Superconducting LC oscillator.

Figure I: Classical pendulum. Key takeaway: Starting from Lagrangian, we
can derive the of the system. This
IS necessary to derive energy quantization.

Key takeaway: Starting from energy Key takeaway: The of the system
considerations, we can derive the is given by vacuum fluctuations (+1/2) and the
of the system number of photons stored at frequency w
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Agenda for lectures 7-11

7. Quantization of electrical networks

a. Harmonic oscillator: Lagrangian, eigenfrequency
b. Transfer step: LC oscillator, Legendre transform to Hamiltonian
d. Quantization of oscillators
8. Superconducting quantum circuits
a. Qubits: Transmon qubit, Charge qubit, Flux qubit
b. Circuit-QED: Rabi model
C. Rotating Wave approximation: Jaynes-Cummings model

9.Single-qubit operations:

a. Initialization

b. Readout

c. Control:T1, T2 measurements, Randomized benchmarking
10. Two-qubit operations: Architectures for 2-qubit gates

a. iISWAP
b. cPhase
C. cNot
11. Challenges in quantum computing
a. Scaling
b. SW-HW gap
C. Error-correction



Agenda for today

8. Superconducting quantum circuits

a. Qubits: Transmon qubit, Charge qubit, Flux qubit 1st DiVincenzo criteria
b. Circuit-QED: Rabi model
C. Rotating Wave approximation: Jaynes-Cummings model
a. b. C.
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“qubit zoo”
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General approach: Superconducting qubits

» General note: Superconducting circuits have

» Josephson junctions are elements which allow us to make
the energy spacing

* We can create a situation where all but 2 energy levels can be ignored
creating effectively a , 1.e., a qubit

| QM



Short review: E,, E-, £/
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Figure 2.4: Sketch of a Josephson junction. 101k 0r (p-mode) Flux qubit |
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Figure 10. Parameter space of the 'qubit zoo’. The qubits
are plotted according to their effective Josephson energy, E ;.
and inductive energy, Fr, both normalized by their effective
capacitive energy, F'. The marker indicates the type of qubits,
with yellow squares indicating phase qubits, red dots indicating
charge qubits, green triangles indicating flux qubits, and a
blue star for the quasicharge qubit. Note that the placement
of the qubits are only approximate as the effective energies
are not definitive. Note that the 0-m qubit is plotted twice,
once for each of its modes, where the ¢-mode works similar
to a fluxonium qubit, while the #-mode works similarly to the
transmon qubit.

phase drop ¢,

circulating current

am  arXiv:2103.01225v1



Standard procedure: The charge qubit

Figure 12. Circuit diagram of the single Cooper pair box, con-
sisting of a Josephson junction, with energy F; and parasitic
capacitance C, in series with a capacitor with capacitance C',.
The gate voltage is denoted V,; and the system is connected to
the ground in the right corner. There is only one active node,
denoted with a dot.

oM arXiv:2103.01225v 1

To derive the properties of a charge qubit, we follow the “standard”
procedure: Start with a Lagrangian and do a Legendre transform.

In order to write the Lagrangian, we must consider the fixed
gate voltage. We model this as an external node with a
well-defined flux ¢v = Vyt, meaning év =V, . Setting

o7 = (¢, 0v) We write the capacitance matrix

Cyj+Cy —Cy

=1 "¢,

From this we«an write the Lagrangian L=7-V

1 om |
L= 5¢Tc¢; + Ejcos ¢,



Standard procedure: The charge qubit

Figure 12. Circuit diagram of the single Cooper pair box, con-
sisting of a Josephson junction, with energy F; and parasitic
capacitance C, in series with a capacitor with capacitance C',.
The gate voltage is denoted V,; and the system is connected to
the ground in the right corner. There is only one active node,
denoted with a dot.

oM arXiv:2103.01225v 1

With the Lagrangian, one can obtain the equations of motion from
Lagrange's equation

d oL oL
dt 9,  Oop

The Hamiltonian of the circuit can be found by a simple Legendre
transformation of the Lagrangian. First we define the conjugate
momentum to the node flux by
oL
n — ———
Do,

which in vector form becomes
q=0C qb

Note that this requires that the capacitance matrix needs to
be invertible.



Standard procedure: The charge qubit

Figure 12. Circuit diagram of the single Cooper pair box, con-
sisting of a Josephson junction, with energy F; and parasitic
capacitance C, in series with a capacitor with capacitance C',.
The gate voltage is denoted V,; and the system is connected to
the ground in the right corner. There is only one active node,
denoted with a dot.

oM arXiv:2103.01225v 1

The Hamiltonian can now be expressed in terms of the node
charges for the kinetic energy and node fluxes for the potential

energy ey :t;E;:qu _r

1 -
=5a' C7'q + Epo ().

Solving for ¢ we do the Legendre transformation and find
the Hamiltonian

72

_ 1 F\2 Cg ) o
H_Q(CQ+CJ)(Q+GQLQ) I — FE'j cos o.

We now change into conventional notation and define the
effective capacitive enerav

6‘2

2(C, +Cy)

Ec =

10



Standard procedure: The charge qubit

We now quantize the dynamic variables and remove constant terms:

((b) B,/ Ex

/

1.0

H = 4Eq(h — ng)° — Ejcos o,

(@ BB =To0) Here, We have further defined the offset charge

———— ] 'n_.g — C-Tg Ifrg/g €.

We can now discuss certain parameter regimes:

Energy ratio Effective Hamiltonian interpretation
: "I, o uE. S (o n 2y Charge states
Key takeaway: The quantized energy levels (Ej/Ec =0) ”C;\J‘ECH_ZOC( S the capacitor
ofa charge-biased Josephson junctions B)/Ee = 10 ” —\ﬂ 4 Lifted degeneracy.
can serve as qubit states of a charge qubit S - et nn qubit states exist

?%Jz—% Z (In)Xn+ 1]+ |n + 1)n|).

=
nN——00C

oM arxXiv:2103.01225v1 )



Simplify the model: Qubit description

(b)) E;/E-=1.0

We can move to a half-integer voltage offset and ignore all the
higher-level states. Then, we have a two-level system which is
commonly described as

Key takeaway: The quantized energy levels
of a charge-biased Josephson junctions
can serve as qubit states of a charge qubit

oM arXiv:2103.01225v 1

wq,«
> Hq:?rﬂ'z.

Here, we have used the Pauli z-operator

(1 0 )
Oy =
0 —1

For the qubit eigenbasis

e
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The birth of superconducting qubits

Published: 29 April 1999

Coherent control of macroscopic quantum states in
asingle-Cooper-pair box

Y. Nakamura &, vu. A. Pashkin & J. S. Tsai

Nature 398, 786-788(1999) | Cite this article

7509 Accesses | 1858 Citations | 19 Altmetric | Metrics

Abstract

A nanometre-scale superconducting electrode connected to a reservoir via a Josephson
junction constitutes an artificial two-level electronic system: a single-Cooper-pair box. The
two levels consist of charge states (differing by 2e, where e is the electronic charge) that are
coupled by tunnelling of Cooper pairs through the junction. Although the two-level system
is macroscopic, containing a large number of electrons, the two charge states can be
coherently superposed’?3#, The Cooper-pair box has therefore been suggested>®7 as a
candidate for a quantum bit or ‘qubit’—the basic component of a quantum computer. Here
we report the observation of quantum oscillations in a single-Cooper-pair box. By applying
ashort voltage pulse via a gate electrode, we can control the coherent quantum state
evolution: the pulse modifies the energies of the two charge states non-adiabatically,
bringing them into resonance. The resulting state—a superposition of the two charge
states—is detected by a tunnelling current through a probe junction. Our results
demonstrate electrical coherent control of a qubit in a solid-state electronic device.

|(xM https://arxiv.org/abs/cond-mat/9904003
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The two directions to approach a transmon qubit:

{(a) E;/Ez =00

0 e e e e

() E;/Ez = 10

((c) E;/Ec = 3.0

A (d) E;/Ec = 10.0b———

-2 -1 ] 1

Figure 13. The energies of the lowest lying states of the single
Cooper pair box/transmon qubit as a function of the bias
charge n,. The difference between the two lowest bands are

approximately equal to E; at the avoided crossing.

IaM arXiv:2103.01225v ]

Figure 14. Circuit diagram of the transmon qubit, consisting of
a Josephson junction, with energy F; and parasitic capacitance
(', in series with a capacitor with capacitance C,. The system
is shunted by a large capacitance, Cg. The gate voltage is
denoted V, and the system is connected to the ground in the
right corner. There is only one active node.
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Anharmonic oscillator: The transmon qubit

(b) (d)
5 I ] 5
T Transmon
240 R
3, 3,
3 |2} >
o
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c ]_} = g
wl w lye}
1 1 g o
0 o
o| QHO 10) 9%
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Superconducting phase.(;b Superconducting phase.(f)

https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html

1AM arXiv:1904.06560v3

We have learned that an LC oscillator has equidistant level spacing

H = hAw, (aia + i})

To introduce non-equidistant level spacing (qubits), we use a
non-linear inductor (Josephson junction)

L= o — T 1

21l cos g oS ¢

The Hamiltonian of a capacitively shunted Josephson junction has
two components

H, = AE, 7% — Ejcos d,

\ /

Two parameters, we have to get rid of one ...
15



Anharmonic oscillator: The transmon qubit
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1AM arXiv:1904.06560v3

Now we can approach the quantization similarly to the quantum

harmonic oscillator, where we define the creation and annihilation
operatorr

A =in, (¢ +¢') and ¢ = ¢, (e —é),

Here, ¢ denotes the transmon annihilation operator and
distinguish it from the evenly-spaced energy modes of a.

¢ =333+ 1)+1

The prefactors describe vacuum fluctuations (zero
point fluctuations, zpf):

EJ 1/4 QEE 1/4
Nypf — (32 Ec) and qﬁzpf — EJ )

16



Anharmonic oscillator: The transmon qubit

@) & ©) & ;I'o assume ¢ < 1, we chose (s > ('; and Taylor expand the £,
r—°—_| erm:
Lr% Cr%: i ! c. - 1 o 1 4 6
- ] ~ael(h) = — ,-I S — ,-If ]
. | . | Ejcos(o) EEJ’(;}' 24E;Q + O(p°).
(b) (d) )
” \ T [ i Transmon
_al e I R N —— /‘ In the é basis the complete Hamiltonian therefore reads
3 3 33 i .
5 712 | 3 e 2 (a, ah\2 Lo o e, b a4 atva
5 1} 22| o, H=—4Emn_ (¢ +¢') —E’J(I—Eqbzpf(c—c) + o7 (€ =€)+
1 "l e a4 \iw,
QHO 10) S ﬁ{ 7/10) |
B R ~ BE.E; | élé + 1) _ Es— %(éf — &)
Superconducting phase.(;b Superconducting phase.(f) -~ et 2 J 12 ?
We now use the following relations
h wy =+/8E.Ey = —Ec

https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html

1AM arXiv:1904.06560v3
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Anharmonic oscillator: The transmon qubit
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https://qiskit.org/textbook/ch-quantum-hardware/transmon-physics.html

1AM arXiv:1904.06560v3

Expanding the terms of the transmon operator and droppina the fast-

rotating terms (i.e. those with an uneven number of € and éf),
neglecting constants yields

This is the Hamiltonian of a (non-linear) Duffing Hamiltonian.
The energy levels of the system are calculated as

5\ . 6,
W; = W—E J—l—Ej UJE{.LJ(]—F{S,

Key takeaway: The tis
actually a and we use
the two lowest eigenstates as qubit states.

They correspond to having 0 or 1 excitations
stored in the system

18



Frequency control: The split transmon qubit

@ ®) 2 Choosing the two lowest eigenstates as qubit states, allows
- 3,1 us to treat the transmon as a qubit with Hamiltonian
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Closing the loop: The flux qubit
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Figure 2.7: Sketch of a three
junction flux qubit and the superpo-
sition of current states.

|AM https://mediatum.ub.tum.de/1326240

In contrast to the charge- and the transmon qubit, the flux qubit
operates in the regime E;> E. such that magnetic flux is the good
quantum variable.

The most common implementation is a closed superconducting
loop intersected by three Josephson junctions. One junction has a
reduced Josephson energy by a factor 0.5 < o < 1. This yields the
potential

Ug = Ejo [2+ o = cos(hy) — cos(¢g) — @ cos (dext + D1 — )]

Here, dex = 21 Pec /Py is the reduced magnetic flux threading the
qubit loop and ¢1. %2 are the phase differences across the two
identical junctions. The third phase difference is eliminated due to
the boundary condition imposed by flux quantization.

Flux quantization is guaranteed by a persistent circulating current

I,=+I.\/1-(2a)"

20



Closing the loop: The flux qubit

The two degrees of freedom
result in a two-dimensional
potential. For ¢, =7, the
potential is symmetric and
periodic.

b +-f ~
. P Because the two larger
ok junctions are identical, we
“_\—‘-‘;_\—-1,»\.‘_— can only move along the line
X

P2 =— P

Figure 2.7: Sketch of a three
junction flux qubit and the superpo-
sition of current states.

The potential along this line I ]
has the form of a double well, 2 7
where the minima oL, | )
correspond to circulating / b ?n

currents in opposite ‘

directions. /\.
\.---
21
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Closing the loop: The flux qubit

Because the potential barrier (b) _ 4F L s
has a finite height, there is a 5“ o —( hA H— i
certain tunneling probability A | -
between the wells. oL ' '
-1 0 1
S .1
« P L
The tunnel coupling lifts the energy degeneracy between the
- = e —— states, resulting in a level splitting. The resulting two energy levels
O~ D A can be used as two qubit states
o] q :
Figure 2.7: Sketch of a three A change in magnetic flux bias
junction flux qubit and the superpo- tilts the potential leading to an
sition of current states. additional energy ¢. ]
1 hA N he | hfe A €
= —0 —0, = —
d 2 2 7 2\A —¢ -

|AM https://mediatum.ub.tum.de/1326240



Closing the loop: The flux qubit

To describe the system with the well-known formalism for quantum
two-level systems, we diagonalize the system Hamiltonian to
transform into the qubit eigenbasis

W
/?:C: +-/ ~ Hq= 50,
. P 2
& & Here, the qubit transition frequency is given as
';!\ i ) J )
X wq=\ A%+
Figure 2.7: Sketch of a three
junction flux qubit and the superpo- 12l by e 0
- ~ .- = _ ._'..‘_:'&_. . .
sition of Key takeaway: The is a closed loop S \ o |
with 3 JJs where the circulating currents § 10 - iy 3
provide energy eigenstates that can be 5 = / -
treated as a quantum 2-level system. 8 ' ' 10
-40 20 0 20 40

|AM https://mediatum.ub.tum.de/1326240 {I}ext 23



General approach: Superconducting qubits

» General note: Superconducting circuits have

» Josephson junctions are elements which allow us to make
the energy spacing

* We can create a situation where all but 2 energy levels can be ignored
creating effectively a , 1.e., a qubit.

24
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Agenda for today

8. Superconducting quantum circuits

a. Qubits: Transmon qubit, Charge qubit, Flux qubit 1 DiVincenzo criteria
b. Circuit-QED: Rabi model
C. Rotating Wave approximation: Jaynes-Cummings model
a. b. C.
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General note; Circuit QED

* Qubits can be seen as artificial atoms and resonators as microwave
light.

* When we bring them close to each other we create “light-matter”
coupling that is treated in the same way as quantum optics.

» Superconducting circuits allow on-chip study of quantum optics in
regimes that cannot be reached in nature.

| QM
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Example: Flux qubit coupled to transmission line
resonator

Figure 1.1: Analogies between cavity and circuit QED architectures. (a) Schematic of a cavity
QED setup. The cavity (light blue) consists of two highly reflecting mirrors and supports
the formation of a standing electromagnetic wave with fundamental resonance frequency wr.
Mirror imperfections define a photon loss rate k. An atom (green) with a transition frequency
wa between the ground state |0) (blue) and the first excited state |1) (red) is placed inside
the cavity. Spontaneous emission into modes other than the cavity mode is modeled by the
atom decay rate y. The atom-photon interaction rate g (magenta) depends on the atom’s
dipole moment and the electromagnetic field strength. (b) Photograph of a circuit QED
setup as realized within this thesis. The cavity consists of a narrow, meandering strip of
superconducting metal interrupted by small discontinuities (light blue box) acting analogue
to the mirrors in the cavity QED setup. A superconducting flux qubit (green box) is fabricated
at a suitable position and resembles an artificial atom. The decay rates k and 7 and the atom-
photon interaction rate g are defined as in (a) but omitted in the picture for clarity.

| QM https://www.wmi.badw.de/publications/theses/Niemczyk_Doktorarbeit_2011.pdf



Generalized light-matter interaction:
The quantum Rabi model

a,~30xeum Ve recall the following physical properties and their quantum
mechanical description

) O VNA | O,

jokK amp”ﬁ%r Physical system / Effective Description
4K amplfier parameter
0.7 K circulator Qubit Hq _ %&z
0.1K

15 mK  flux qubit

_l:|'€: m )'IC

. 1
I(x) Resonator H = hw, (aua 4 _)

qubit

res r ays
esonato position

Magnetic field LI, (ﬁ + a,Tj

Figure 5.6: Measurement setup. images of the quantum circuit and sketch of the resonator’s QUbIt energy b|aS 6 (6‘ + é\' )
current distribution. (a) The amplified cavity transmission at w; is probed using a vector —|_ -
network analyzer. For spectroscopy, a second tone w. can be applied to the cavity (light
blue). For clarity, only one of the two qubits (dark red; crossed boxes represent Josephson

junctions) is sketched. The microwave components are explained in the caption of Fig. 5.3. If we br|ng qu|t and resonator |n Close V|C|n|ty, we Create a mutual

(b) Optical and false-color scanning electron images of the quantum circuit. The position . . . . R . .

of the flux qubits (magenta) is indicated by the red box and the light blue boxes mark the |nd ucta nce Ieadlng to a Coupllng term (lnte ra Ctlon Hamlltonlan)
position of the coupling capacitors. (c¢) Sketch of the current distribution I(z) of the first three

resonator modes. Their resonance frequencies are: wi /27 = 2.624 GHz (A\/2-mode, green),

A A A A
wa/2m = 5.244 GHz (A-mode, magenta) and wz/27 = 7.860 GHz (3\/2-mode, blue). The ﬁg (O.—l_ + O'_) (a + a-i-)

cavity has a length L = 23mm and with ', ~ 6 fF, all quality factors @Q,, > 15- 10%.

Here, we are hiding all physical properties in the coupling constant g

28
| QM https://www.wmi.badw.de/publications/theses/Niemczyk_Doktorarbeit_2011.pdf



Generalized light-matter interaction:
The quantum Rabi model

A, ~30x8pm?

Yy 300 K amplifier
4K cryog_enic
amplifier

07K circulator

01K

15 mK  flux qubit
~ resonator C,

qubit

C, position

Figure 5.6: Measurement setup. images of the quantum circuit and sketch of the resonator’s
current distribution. (a) The amplified ecavity transmission at w,¢ is probed using a vector
network analyzer. For spectroscopy, a second tone w. can be applied to the cavity (light
blue). For clarity, only one of the two qubits (dark red; crossed boxes represent Josephson
junctions) is sketched. The microwave components are explained in the caption of Fig. 5.3.
(b) Optical and false-color scanning electron images of the quantum circuit. The position
of the flux qubits (magenta) is indicated by the red box and the light blue boxes mark the
position of the coupling capacitors. (c¢) Sketch of the current distribution I(z) of the first three
resonator modes. Their resonance frequencies are: wi /27 = 2.624 GHz (A\/2-mode, green),
wa/2m = 5.244 GHz (A-mode, magenta) and wgz/27 = 7.860 GHz (3\/2-mode, blue). The
cavity has a length L = 23mm and with C,, ~ 6fF, all quality factors Q,, > 15- 10°.

Adding the individual terms for qubit and resonator results in the

system Hamiltonian

fwg a1 A A ~ ot
G, + hw, (a'a—+ 3 +hg(6.+06_) (a.—i—a )

HQH =

o

T

r:Hinl:
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| QM https://www.wmi.badw.de/publications/theses/Niemczyk_Doktorarbeit_2011.pdf



Generalized Iight-matter interaction:

The counter rotating and counter intuitive terms a 6_ and a+&T
give rise to the so-called Bloch-Siegert shift, which is hard to
observe in nature but possible with superconducting systems.

The structure of the quantum Rabi Hamiltonian is such that the
physical property “parity” is conserved. This is a special form of
symmetry and one of the most fundamental concepts in physics.

(a) even even (b) even

r Y

(la) (I Nia (&

Qo.‘.- -

odd

T 30 > & [ The concept of parity for
- o &% o . . ]
(c) 0 Zi.  example gives rise to selection
° i mm sl rules for allowed transitions in
’ &> - é‘_\#/ atoms. The same selection
,‘c\ie odd) Q,=0] “~m .
" ~ interaction ‘ . : B0 rules can be observed in
(<Y e '3 . . .
v Nl = superconducting circuits.
B/ a“ 3
¢ t‘c qubit- \
‘L—1  Key takeaway: Superconducting circuits

mag o\@
P X uP
AetiC o= % quad SRS

mad oRS > ~7 I ol follow the physics of and can
4ip°

reach that are
unreachable in nature.

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.121.060503
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General note; Circuit QED

* Qubits can be seen as artificial atoms and resonators as microwave
light.

* When we bring them close to each other we create “light-matter”
coupling that is treated in the same way as quantum optics.

» Superconducting circuits allow on-chip study of quantum optics in
regimes that cannot be reached in nature.

| QM
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Agenda for today

8. Superconducting quantum circuits

a. Qubits: Transmon qubit, Charge qubit, Flux qubit 1 DiVincenzo criteria
b. Circuit-QED: Rabi model
C. Rotating Wave approximation: Jaynes-Cummings model
a. b. C.
. ) (a) resonant regime
107 g ' ' ' ' (a) cavity QED
104k W Phase qubit - o ‘+’2> a
10° @
E{ 102k 0-7 (f-mode) A
&y @ Transmon ® ] .
(C-shunted)] atom cavitv
101l Flux qubit |
AU—E (y>-mode) (b)
AFluxonium ]
109 . . J
Quasicharge qubit 3
Coo*per pair box R rgscmaﬂ K’-tnt
T NS TV R T R T 02 108 g E g g

EL/Ec
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General note: Jaynes-Cummings model

» Usually one operates quantum circuits in a “practical” parameter
regime, called strong coupling limit.

* |n this limit, the coupling between qubit and electromagnetic field is
much stronger as their loss rates but smaller than their

eigenfrequencies.

* |[n this regime, the eigenstates experience a qubit state-dependent
energy shift. Detecting this shift is used for qubit readout.

| QM
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Rotating Wave approximation: Jaynes-Cummings

model

(b)\

\ \ .
Rk
\

resonator «,

|AM https://mediatum.ub.tum.de/1326240

We consider a transmon qubit that is capacitively coupled to a
transmission line resonator. We operate in the strong coupling

regime, where g << @,, o

This allows us to move into the interaction picture (a.k.a. rotating

frame) defined as

Hiy (t) = — (ao_e iwortwa)t 4 g5 giWrtwlt | g5 eil-wrtwylt 4 gig e—il-wrtwglt)
2 + +

This Hamiltonian contains both quickly and slowly oscillating

components
Wy 1 Wq Wy — Wq

To get a solvable model, the quickly oscillating "counter-rotating”
terms, are ignored. This is referred to as the rotating wave
approximation, and it is valid since the fast oscillating term couples

states of comparatively large energy difference.
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Rotating Wave approximation: Jaynes-Cummings

model

(b)\

=T

\

resonator «,

|AM https://mediatum.ub.tum.de/1326240

Transforming back into the Schrodinger picture the Jaynes-
Cummings Hamiltonian is thus written as

hw 1
Hic = Tqﬁz + hw, (t’ifﬁ- + 5) + hg(6..a+ ﬁ_{iT)J :

In the Jaynes-Cummings Hamiltonian, we can either excite the
qubit by absorbing a photon (5, @) or take one excitation from the
qubit and generate a photon(s_a')

In the basis of uncoupled resonator excitation number () and
qubit eigenstates, the Hamiltonian is transformed to

2. _h2nw, + wy gvn, +1
100 =3 \ gy T T (et D )

We can diagonalize this Hamiltonian and discuss two parameter
regimes: Resonant, i.e. no detuning between qubit and resonator,
and off-resonant, i.e. large detuning.
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Rotating Wave approximation: Jaynes-Cummings

model

resonator «,

|AM https://mediatum.ub.tum.de/1326240

The eigenfrequencies of the Jaynes-Cummings Hamiltonian are
given as

Wi = (1 + 2w £ 1/20/0° +49°(n, +1)

Here, we have defined the detuning 0 =w, —w;, and the ground
state is w_o=—10/2.

The new dressed eigenstates of the system are the superposition

states ‘—~—,72/1> — COS @nr |e;n/1> + Sll’l @nr ‘gjn/1>

|—n,) = cos O, [g,n,+1) —sinO, |e,n,)

Here, the mixing angle is a measure for the degree of
entanglement between qubit and resonator states:

0, = tan” ' (29\/n, +1/6)/2
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Rotating Wave approximation: Jaynes-Cummings

When qubit and light mode are on resonance, i.e., d ~ 0 the mixing

(a) resonant regime wq=uw; angle ©,, = 7/4is maximum and consequently there is strong
entanglement.

a a
o |+,2> o
: P : In this regime, a coherent exchange of excitations between qubit
2 ‘w 1 and resonator occurs with the vacuum Rabi frequency 2g. This
interaction lifts the degeneracy of the corresponding eigenenergies
-,2) By2g./n,. + 1 to new doublet eigenstates.
i i d_
~ {190 -1
g A! 7
| ) % Gge/ T
_!D b SOOKE 20mK §1A5K§300KLO %
O I g]/ L % - ! -
| ; . 1§ 19.0) - [1-)
|g> |e> L E:IJ}:_I Co Qubit Tl | i
; Resonator @ | i ; 3 h_ Al 5 ,‘ 5
https://arxiv.org/abs/0902.1827 1 : B e e

|AM https://mediatum.ub.tum.de/1326240
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Rotating Wave approximation: Jaynes-Cummings
model

(b) dispersive p——my o
regime —

In the dispersive regime, the detuning between qubit and resonator
frequency is much larger than the coupling, i.e., §>g.

In this regime, there is no exchange of excitations anymore but
virtual photons mediate a dispersive interaction between qubit and
light field. This interaction leads to frequency shifts of the qubit and
resonator eigenfrequencies. The dressed states are either more
photon-like or more atom-like.

In the atom-like case (close to qubit states), the Hamiltonian can

be derived as (a) photon number, n
0 25 50 75

o
o
a
o

Y s oy
Hdisp ~ hw, ((L a —+ /z) = 6.1 =
F L _A'I'J\ ) . 2 ~ =
+ h/2 (wq + QH;& +x)0,. £ 6.18 o
o 5 S 6.17 i
» 3 5 =
[
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.94.123602 ~ =3 o 6.15 0 m
@ =1 0 100
|AM https://mediatum.ub.tum.de/1326240 = probe power, Pre[ W]



Rotating Wave approximation: Jaynes-Cummings
model

In the photon-like case (close to resonator states), the Hamiltonian

b ' ' :
(b) dlspe:rswe — = can be derived as

g egime I— o NN

= Hdisp,r ~ qungz + h (wr + XUZ) (H' a -+ lfg)
3

— y — 1
describing the qubit state-dependent resonator frequency,
5 which we use for readout purposes.
O ~27 10 MHz

@J
seeeel,
™
S~
X
©
()

Key takeaway: In the

of the
19) Jaynes-Cummings model,
resonators can be used for

Transmission [Arb. units]
Phase shift [degrees]

https://journals.aps.org/pra/abstract/10.1103/PhysRevA.75.032329

|AM https://mediatum.ub.tum.de/1326240



General note: Jaynes-Cummings model

» Usually one operates quantum circuits in a “practical” parameter
regime, called strong coupling limit.

* |n this limit, the coupling between qubit and electromagnetic field is
much stronger as their loss rates but smaller than their

eigenfrequencies.

* |[n this regime, the eigenstates experience a qubit state-dependent
energy shift. Detecting this shift is used for qubit readout.

| QM
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Agenda for today

8. Superconducting quantum circuits
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