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Superconducting qubits

1. In the lecture, we saw a "z00” of superconducting qubit architecture. These supercon-
ducting qubits are also known as Josephson qubits, since they all employ Josephson junctions
in certain topological order. For ransmon, Flux, and Phase qubits; do the following:

e Sketch the circuit diagram (lumped model).

o Write down the Hamiltonian of the circuit.

o Draw the potential energy for the circuit.

o Identify the region that is suitable for qubit operation.

Also, mention the distinctions between these qubit architectures.

You can find plenty of literature online to help you answer these questions. The idea is to get
familiar with finding information from scientific papers. Since circuit QED is a very young
field, most of the findings are only reported in science journals. Remember to cite the paper
from which you obtain your answers.

Quantization of superconducting qubits

2. In the lecture, we saw the derivation of the quantization of Transmon qubit. In this task,
we will fill some of the gaps to understand the derivation clearly.

A charge qubit provides an excellent anharmonicity to the energy levels, however the charge
dispersion, i.e., the dependence of the energy on the gate charge, introduces a drastic charge
noise. Thus, charge noise is the main source of decoherence in the charge qubit.

By adding an additional large shunt capacitance in parallel with the Josephson junction, we
suppress the charge noise quite dramatically. This type of qubit is called transmon qubit.
The Hamiltonian of the transmon qubit is of the same form as of the charge qubit,

17:4Ec(r3—12g)?—Eycos,2.€' 1)
However, for the transmon qubit the energy ratio is in the range 40 < £L < 100. The

Josepshon coupling energy dominates the charging energy, thus suppressing the charge noise.
Set the offset gate charge n, = 0. since it does not matter how we bias the transmon with
the gate charge.

Consider the following definitions:

= ingp(é + ) (2)
¢ = pupi(e — &), 3

where,
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corresponds to zero-point fluctuation in charge and phase states.
(a) Show that by plugging (2) and (3) in (1) and Taylor éXpanding cosine potential fo "
term, you obtain

" S,
Hy = hwoétée + ;c' (4)
Please don’t write down the steps from slides and fill in the details as clear]; possible, that
is, workout the missing steps from the lecture slide. Explain with proper steps why only the
survives from the term (¢f — &)t

term éféfee
(b) Express the (HAMIlfoRaN(4) in qubit cigenbasis i.c. l\/) = jlj) J = é'¢ and use
the completeness relation Z;J.:ﬂ 17) Gl = Iﬂ. Show that the qubit frequency has the analytical
form: 5

wj = jwo+ 53 —1). (5)

This shows that the qubit frequency depends on the state j and is not evenly-spaced like
quantum harmonic oscillator. The anharmonicity scales linearly with the eigenstate of the
qubit.

N
3&&
A

&) (a)
° E_KW CD&‘(P Oﬂ%ﬁ To;vu‘er EJQ{JM(Cbﬂ
O e e~

g o 14+ O - D o (¢
21 Y

\a

T Py ooe f ogun O & f):

e Jxm (229)-
T Trveke QWA Tty (ot ot
Loy tewe (pnder op EF stotd

be eqbel to Ffbﬁaw



Erpreny Howilhorsan & Lranimon o quilt efgenboid S 1) - T,
)
)Ty - T = S0OCE] [@\woa C o+ 5””‘*55]2— 115¢¢ )
£
3 Oce M Toupw(\‘;gf

Ap ~r A A ~ At n n
o ctetie - f(el-Ne = ¢

porBh e, lt] 2 Y =1 S CCtay s Cte
COTW s 4> £ TP T 4TI
C LRI = Sy o ?_’r 1Y Gk | e [544)

= Tn e eldrgou roolal 9@6

Tgt—\e,f_l’q < JZ‘!F\D?[,DCJ‘ PRST wd, o¢ in (S).



Uu = 22D A n (&L L)
o - 2pf- [P
< ¢

<
S
1]
~

/N
A ) n a4y
Vp = o= g b (AT u%:mjn_«;rcr

r

Q N ~ ~
T Hp + Bg + How

() (atht)®(cr C)

A~ /N
5 alt + A8 r QT £ QL

¢ thuwoke (ooA>

INDY
>
-}
L]
ISEN
o>
r:
+
i
o

NS
()
"

Actde:

Hoer

Tboo ﬂauf_ﬂ

Aﬁpfbx imnador (LA

s
(f
~
1
Q\M
M

€, lo) (o] + E,l1pC1)

\
T
&

1

Jaynes-Cummings Hamiltonian

3. In this exercise, we study a coupled interaction between the resonator and the transmon
qubit.

(a) Form the total Hamiltonian of the transmon-resonator system, which contains the un-
coupled diagonalized Hamiltonians of the resonator and the qubit and the interaction Hamil-
tonian. The interaction between the resonator and the qubit is modeled by the interation
Hamiltonian,

My = +CVo @ Vh. (©)
where, the voltage operators take the form Vo = 72{;71 and Vg = Ci for the qubit and the

resonator respectively. Here, Cy, = C; + Cy + Cy is the sum capacitance.

(b) Invoke rotating wave approximation, and obtain the Jaynes-Cummings Hamiltonian

e = hwdla + hWT(r thyo_ it +6,.®a), )
A oty ot
He = heata A 2,

2!!1’ = Bt

open -end
Figure 1: Coupled resonator and transmon qubit. a) Experimental realization, and b)

Lumped-circuit model.

where 6_ = {0) (1| and 64 = |1) (0.

(c) Solve the Jaynes-Cummings Hamiltonian for the case i) A = w,—wq = 0,1i) A = w,—wq =
0.5GHz, and iii) A = w, —w, = 1 GHz. Initially, there are n + 1 photons in the resonator
and the qubit is in the ground state. Plot the probability density of the transmon being in
the excited states for n = 1, 10 and 100 photons. § < [0o pbHg .

7
As usual, the state of the cavity mode can be written in terms of the number-state basis,{|n)},
and the qubit state in terms of the computational basis, {|0), [1)}. The overall state of
the system can therefore be described as a tensor product of these two subsystems, e.g.,
[n,0) = |n) ®0).

(A) Show that the following relations hold: &0’\04 \
Hyo|n,0) = hgv/n|n —1,1)
Hjc|n,1) = hgv/n+1|n+1,0)
(B) Consider now the case where the cavity starts in the vacuum state (|0)) and the qubit
is initially in the excited state (|1)). Use the previous results to show that:
Hyc[0,1) = hg[1,0)
Hij [0,1) = (hg)*[0,1)

(C) Because the interaction Hamiltonian is time-independent, the Schrédinger equation can
be solved in the usual way to give the unitary evolution operator:

it = it\’ Hio
U(t) :exp(—ﬁHJc) :]2:0: (_ﬁ) T

Given the initial state [¢/(¢)) = |0,1), use Taylor expansion of the unitary evolution
operator to show that the state of the overall system after time ¢ will be:

W(t)) = U(t) [4(0)) = cos (gt) [0,1) —isin (gt)]1,0)
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Density matrix

1. Density operator is an alternative way to describe the state of a quantum system. This
definition allows us to understand decoherence in quantum system much better than the
state-vector representation.

(a) The density operator for a pure state is defined b§ p =@} {@]: Given‘an arbitrary state
of a qubit |¢b) = @]0) + B]1), show that the density matrix assumes the following form:

p=lal*|0) (0] + aB* [0} (1] + o B[1) (O] + 8 [1) (1] 1)

(b) Express the density operator in a matrix form by using usual matrix element definition
P = (il p]jy and show that you obtain

| et e
/J*|:Q*H 182 | )

(¢) The evolution of a quantum state from state |¢y) to |i)2) is mathematically described
by [¢2) = U |¢1), where U describes the evolution operator. Show that in density operator
formulation, it is given by

pa=UpU". 3)
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Bloch sphere representation

(2)

2. As we have seen in the lecture, evolution of a qubit, especially during gate operations, can
be visualized as rotations around the Bloch sphere. While we denote an arbitrary state of a
qubit using

CPNQ Coovalihost=s * Cff 8,C€> [0} = al0) + 31D, @

(a) show that it can be expressed as

4\ * c‘e ) :cos%\())Jrﬁ“’sil]g\l). (5)

where 6, ¢ are rotation angles on the Bloch sphere as shown in figure 1.

Hint: Express a and J in polar form of a complex number and use the probability

condition |af? 4 [3[> = 1.
C @/ Ce = sin 6 cos ¢
(b) Any point on a Bloch sphere can be represented by Bloch vector V = |: sin f sin ¢ } . This
o cosf
| 90( is just the position of a Bloch vector on a unit sphere in spherical coordinate. Show that the
P( — r—D’< & expectation value of the Pauli operators is given by the Bloch vector. That is, show
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Figure 1: Bloch Sphere

e (ol
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- CD(‘% < o f;( { O> ‘f’ T Hint: Evaluate the expectation value for Pauli operator for example, (0,) =

(¢| o, [) for an arbitrary state |¢)) using equation (5).

This shows us that we can describe any arbitrary state of a qubit using rotation angles (6, ¢)

<’ O [V}\ l {> + - on a Bloch sphere. For single-qubit gates, the amplitude and duration of the microwave pulse

determines the rotation angle # and the pulse phase determines the angle ¢.
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Qubit control

hw,
3. Consider the qubitdrive Hamiltoniamgiven by H,q = Tnaz + hyE4cos (wat + ¢)[ot +07].
St interaction

free
Now define a frameTotating at the'qubit’sfrequency as U(t) = e 0%t such that |¥)pp =
U(t) |9) g Hre = U(t)HoaU'(t) — ihU(t)U(t). Show that in the rotating frame the qubit
drive Hamiltonian is off-diagonal. '
Hint: ¢"4Be=4 = B+ iy[A, B] + S2[A,[A,B] + . . .
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