C1)							sexion	, ,			vetus		_				
C1)																	
(1)							C			•	h:4 a						
								uperco							Th		
							du	ıcting qubi	its are also	known as	Josephson	qubits, sin	ice they al	l employ J	e. These su osephson ju he following	inctions	
										_	(lumped n	,					
											m of the ci for the circ						
									-	-	suitable for		eration.				
							Al		_		etween thes			es.			
							far fie	miliar with	n finding in f the findin	nformation ngs are onl	from scien y reported	ntific pape	ers. Since	circuit QI	. The idea : ED is a very er to cite th	y young	
			_	rcondu						(2)	Ca)						
W	we will fill s	some of the	gaps to un	derstand the	derivation of	clearly.	mon qubit. In										
d	dispersion,	i.e., the de	pendence of	the energy o	n the gate c	harge, inti	vels, however tl roduces a drast			10	Expa	nd i	$\cos \phi$	OUN	of Tag	ycor e	xyoun .
				ain source of			arge qubit. Josephson jun	ction we			coto						
S	suppress th	e charge n	oise quite d	ramatically.	This type of	of qubit is	called transme e charge qubit,	on qubit.	-		φ,	Order	tor	n -			
				$=4E_{\rm C}(\hat{n}-n$				(1)		0-0	6 0	,	. 1	2	634	. ~	(pe)
J S	Josepshon c	oupling en et gate cha	ergy domina	tes the charg	ging energy,	thus suppi	$40 < \frac{E_1}{E_C} < 1$ ressing the charbias the transr	rge noise.		sos	Ø ~	(2	,	di	+ 00	-Ψ.
C	Consider th	e following	definitions:						-								
				$\hat{n} = i n_{zpi}$ $\hat{\varphi} = \varphi_{zpi}$				(2) (3)		20:	PCug	CNC	rine h	appu	om con	eg"	(h
v	where,										100	Cu's	σερ	appro) V	9	
				$n_{\text{zpf}} = \left(\frac{1}{2}\right)$	$E_{\rm J}$	7					(1).ce	dx°	(2.	- ی).			
				$\varphi_{zpf} = \left(\frac{1}{2} \right)$							Oac	ab	<u> </u>				
			.:	$\varphi_{zpf} = \left(\cdot \right)$ ion in charge	2,7												
(;	a) Show th	at by plus					g cosine potent	tial to φ^4		0				_			
T.	erm, you o	otain		$\hat{H}_{\rm tr} = \hbar \omega_0 \hat{c}^{\dagger} \hat{c}$	$\hat{c} + \frac{\delta}{2} \hat{c}^{\dagger} \hat{c}^{\dagger} \hat{c} \hat{c}$.			(4)		۶.	Iovo K	e 12	WA.	ign :	pro f	ast o	yc)(K
							clearly as poss oper steps why				_		^		of C	4	
te	erm $\hat{c}^{\dagger}\hat{c}^{\dagger}\hat{c}\hat{c}$	survives fr	om the tern	$(\hat{c}^{\dagger} - \hat{c})^4$.			$: j j\rangle, \hat{J} = \hat{c}^{\dagger}\hat{c}$				Ling.	terms	(ne	nher	of C	Shoc	Jl (V
tl				$\langle j =\hat{l}_{\mathbf{Q}}$ Sho	ow that the		uency has the a					0. 0			A		
			1	$\omega_j = j\omega_0 +$	-			(5)		/	se eq	well	to E	4 04	C)		
q	quantum ha						s not evenly-sp th the eigensta							C+ C+	~ ~		
q 	qubit.					_				-)	RC	er a	ry	CT CT	CC	_	
Λ		^	_ i ^->-	t													
		'م ِ '	ر سو	_													
C	(i wo														

Expre	ns Hau	ui lo	nan	of train	J Mor	'n	qu	ba't	eige	bani.	S \(\sum_{\dot} \)	_ 1}\<,	} =	Íq	
(b) Îg	·Htr	Îg	= <u>\</u>	K)CF/[(ħω. Ĉ	te t	20	i+ 6+ (5 18	> <j1< td=""><td></td><td></td><td></td><td></td></j1<>				
→	ure the														
	•			= c+ (Ec, c+] :											
	8	Ĵ()	> = &1}	> & Î	2 lð> =	; j ²	1 <i>8</i> >								
	•	< < < < < < < < < < < < < < < < < < <	<i>i></i> =	Skj o	, V	Z 1K	;}<κ,	! Ĥtr l	i> <i)< td=""><td></td><td></td><td></td><td></td><td></td><td></td></i)<>						
- >	In .	the e	nd, yo	o show	ld ge	#									
				Îg Ĥt	· •		toy,	(j)<,	j ,	with	wj	as ir	s (E)		

- <u>ta</u>	$\frac{\omega_2(11)(11-10)(01)}{2} = \frac{\hbar\omega_2}{2} \hat{\tau}_{\frac{1}{2}}$
f_ = 10><11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
V = V + T	
(c) A _{fc} =	$tw_{r}\hat{a}^{\dagger}\hat{a} + tw_{q}\hat{r}_{2} + tg(\hat{a}\hat{r}_{r} + \hat{a}^{\dagger}\hat{r}_{r})$ L $\hat{H}_{o} = \hat{H}_{R} + \hat{H}_{Q}$ \hat{H}_{ohe}
	picture: 10Ct) & (O) constant picture: 10Ct) & (OCt) evolve (determined by H)
1°. Schrödinger 2° treisen ber	s picture: 140t) & (0) constant s picture: 14) const-6 (00t) evolve (determined by H)
2° Dirae Ci	nteraction) picture; 14th evocution determined by Hinz and (Oct.) determined by Ho
Interaction Han	iltorian is interaction picture
	ethot A e - that [a x eiwrt; î x e iwat]
1φ ⁱ σω)> =	en Ho (yet) : state ket evolution en interaction
Ais Let = to	$g(\hat{\tau} \hat{a}^{\dagger} e^{i\Delta t} + \hat{r}_{t} \hat{a} e^{-i\Delta t}) : \Delta = \omega_{r} - \omega_{q}$

	Time	0110	(a.trà								Cony	octe 1	Banis	set		
	ìt	1 Z	φ ⁱ ν,	(+) (+)	2	^ ù	(t)	1 P is	(t)}		<u>΄</u> { Ιο,	7+1>	, 11:	n > 2		
)+`	_								١		>	٠.		047
4.26	vene,	wc t	otce	Che 1	Ansat	Z			12>-		en isoò		, corphio	۲,		n
					+ Ct					nwa	:	loir	1415	·		
									10>-							U=0
										<u> </u>	lubit K}&) In	>	necor s	ator	
In	gener	al,									, , ,		sor p			
	vt (Cico	t)(ō)	+ C	ct)	$ \epsilon\rangle$	2									
					5	(广	åte	iat -	V+1	r ēil	1t)((Cil	i\$ +	41+	+>)	
r																
2)	Či (Le) ($i \rangle$	Ξ.	ig Ir	n+1 (o i At	CFI	$ i\rangle$	5	ci 7	_	D -i	g [n+1e) à	T Ci	
	Č _b ('E) 1	ζţ	2 -	ig Ir	7+1 6	5 (at	cil	*>		et J	1-	g n+1 e-it	\t <u>+</u> 0	J C t	J
400	can	Choo	<u>c</u> e	to 1	lo We	Chic	, UG	uveri	ally	OF	aurei	lytic	ally	. 1	coou	ld
CUZE	<i>cst</i>	to	solv	e ĉ	t a	ralyt	iall	ly (t) ger	a	fe	el	tor	Ú-		
							_								+ O l	
(i)	For	a	le e	1 20	ì	3	· c	1 i	9 / n	4) C	F .	<u>d</u> /	Ĉ	and a	ply	
						, _	f	Z - (<i>j~''</i>	71 0			it i			
												ode		· V - (

હો) Fo	r O	ase	Δ	Fo,	;	Ci Cf	(1 Iv	- ig.	[n+	i e	iat	C E	-	-, ca	٤)	
ASS the	der	icat	we	d	Ci	-	det	Ce i	= at g	Ci ces	=	eia Prod	t g	CE)	Ctrer) fa	ke
En	ten	e en	d p	Cot =	P	Cej	1.1	1c.						Δ ‡ c) <i>Q</i> 4	nd	
⊕ b6	serve		e n	uance	21 G	, -Ch	e re	selt:	s ar	d u	งกัธ	6 (doc	υ ^ .			

							Qu	bit	Cont	rol							
		(c)				1	D'		 :								
C1)		(6)					Densit				t- J	:1 41	-t-t			TDL:-	
		~1~\				(allows us	to under						n system. better tha		
14)) [(°1)	+ 1/2			((a) The de	ensity ope	rator for						arbitrary		
								,	$\rho = \alpha ^2 0$	$\langle 0 + \alpha / \alpha \rangle$	$\beta^* \ket{0} ra{1}$ -	$\vdash \alpha^*\beta 1\rangle \langle$	$0 + \beta ^2 1$	$ 1\rangle\langle 1 $.		(1)	
16)	(41	- (x 1	0/4 A1	00/			(b) Expres $o_{ij} = \langle i \rho$					rm by usi	ng usual	natrix ele	ment defir	nition	
	. , ,									ρ	$= \begin{bmatrix} \alpha ^2 \\ \alpha^* \beta \end{bmatrix}$	$\begin{bmatrix} \alpha \beta^* \\ \beta ^2 \end{bmatrix}$.				(2)	
		K. C	014	P* (1											ically desc lensity ope		
		×10)	> ~	(0			formulatio	1 / 4 / /		willnes f	$\rho_2 = U_f$		or. bliow	лиат III (I	спысу оре	(3)	
																` '	
	r	∝k															
	"	(XI	2 (0)	(0)				(0)	2 ([0]							
		-															
								11)	N	[1							
	P:	121	12 10)	(0)	f -												
	,	1~[1 16)[1	0}	- ID	<12 1	1 0 6 0	7								
	-	101	()			•	' (.6 0									
	120€	11%	,	(6)	-	>	P2	11	142)	2						
		. (()2		1 4			V		192 U1		1	ь					
								۱۷)	01	φ_{l}	(Q1)	טקי					
								11	\cup	Sr	(24						
									_	5 -	7						

(0)									Bloch sphere representation	ı
(2)									2. As we have seen in the lecture, evolution of a qubit, especially during gate operations, can be visualized as rotations around the Bloch sphere. While we denote an arbitrary state of a	
Cρ	here	COOV	olina	ta:	()	0,4)		qubit using $\left \psi\right\rangle =\alpha\left 0\right\rangle +\beta\left 1\right\rangle , \tag{4}$	
l l		C00V			9	k φ	,		(a) show that it can be expressed as $ \psi\rangle = \cos\frac{\theta}{2} 0\rangle + e^{i\varphi}\sin\frac{\theta}{2} 1\rangle$, (5)	
						,			where θ , φ are rotation angles on the Bloch sphere as shown in figure 1. Hint: Express α and β in polar form of a complex number and use the probability	
(6 , c	9\							condition $ \alpha ^2 + \beta ^2 = 1$.	
			02						(b) Any point on a Bloch sphere can be represented by Bloch vector $\vec{V} = \begin{bmatrix} \sin \theta \cos \varphi \\ \sin \theta \sin \varphi \\ \cos \theta \end{bmatrix}$. This is just the position of a Bloch vector on a unit sphere in spherical coordinate. Show that the	
	K =	rx ei	- 0						expectation value of the Pauli operators is given by the Bloch vector. That is, show $\vec{x} = \frac{1}{2\pi} \left[\frac{\langle \sigma_x \rangle}{\sigma_x} \right]$	
	<u>ء</u> ک	rpei	Q _B						$\vec{V} = \langle \vec{\sigma} \rangle = \begin{bmatrix} \langle \sigma_x \rangle \\ \langle \sigma_y \rangle \\ \langle \sigma_z \rangle \end{bmatrix} \tag{6}$	
) (0) z	
(1/	(-+ (B17 =	1							
	ιει σ	100)	-[10	Loro	- i	φ. ₀	1.1	~ I	$Y \stackrel{ 0\rangle+i 1\rangle}{\sqrt{2}}$	
	4 (0	(4)					CII	Y × 1	× (0) + (1)	
		Ca	<u> 210)</u>	+ e	quino	115			$\sqrt{\frac{127+127}{\sqrt{2}}}$	
			2		2				x + 90°	
									- ✓ 1⟩ Figure 1: Bloch Sphere	
	= C	06 (010	10)	4				Hint: Evaluate the expectation value for Pauli operator for example, $\langle \sigma_x \rangle =$	
									$\langle \psi \sigma_x \psi \rangle$ for an arbitrary state $ \psi \rangle$ using equation (5). This shows us that we can describe any arbitrary state of a qubit using rotation angles (θ, φ)	
		4	U [Vy	11)	+		•		on a Bloch sphere. For single-qubit gates, the amplitude and duration of the microwave pulse determines the rotation angle θ and the pulse phase determines the angle φ .	ı
		(1104	105	+	_				
		(1104	11)						
						^				
ano	l c	Ne	(01	ء (ا	0	= <	110) .		

Qubit control

3. Consider the qubit drive Hamiltonian given by $\mathcal{H}_{qd} = \underbrace{\frac{\hbar\omega_0}{2}\sigma_z}_{\text{free}} + \underbrace{\hbar\gamma E_d\cos{(\omega_d t + \phi)[\sigma^+ + \sigma^-]}}_{\text{interaction}}$.

Now define a frame rotating at the qubit's frequency as $U(t) = e^{-i\omega_0 \frac{\sigma_x}{2}t}$, such that $|\Psi\rangle_{\rm RF} = U(t)|\Psi\rangle_{\rm qd}$, $H_{\rm RF} = U(t)H_{\rm qd}U^{\dagger}(t) - i\hbar U(t)\dot{U}^{\dagger}(t)$. Show that in the rotating frame the qubit drive Hamiltonian is off-diagonal.

Hint: $e^{i\gamma A}Be^{-i\gamma A} = B + i\gamma [A, B] + \frac{(i\gamma)^2}{2!} [A, [A, B]] + \dots$

	5 cos wat
-inorzt	$e^{\frac{i\omega_{0}}{2}\sigma_{2}t} = \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{2!}\right)^{2}-\left(\frac{\omega_{0}t}{4!}\right)^{4}-\ldots\right) + \sigma_{y}\left(\frac{\omega_{0}t}{2!}\right)^{2}+\left(\frac{\omega_{0}t}{4!}\right)^{4}+\left(\frac{\omega_{0}t}{4!}\right)^{5}-1 + \sin\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{2!}\right)^{2}-\left(\frac{\omega_{0}t}{4!}\right)^{4}+\left(\frac{\omega_{0}t}{4!}\right)^{5}-1 + \sin\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{2!}\right)^{2}-\left(\frac{\omega_{0}t}{4!}\right)^{4}+\left(\frac{\omega_{0}t}{4!}\right)^{5}-1 + \sin\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{2!}\right)^{2}-\left(\frac{\omega_{0}t}{4!}\right)^{4}+\left(\frac{\omega_{0}t}{4!}\right)^{5}-1 + \cos\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{2!}\right)^{2}-\left(\frac{\omega_{0}t}{4!}\right)^{4}+\left(\frac{\omega_{0}t}{4!}\right)^{5}-1 + \cos\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{2!}\right)^{2}-\left(\frac{\omega_{0}t}{4!}\right)^{4}+\left(\frac{\omega_{0}t}{4!}\right)^{5}-1 + \cos\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{4!}\right)^{2}+\left(\frac{\omega_{0}t}{4!}\right)^{4}+\left(\frac{\omega_{0}t}{4!}\right)^{5}+1 + \cos\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{4!}\right)^{2}+\left(\frac{\omega_{0}t}{4!}\right)^{4}+1 + \cos\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{4!}\right)^{2}+\left(\frac{\omega_{0}t}{4!}\right)^{4}+1 + \cos\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{4!}\right)^{2}+\left(\frac{\omega_{0}t}{4!}\right)^{4}+1 + \cos\omega_{0}t$ $= \sigma_{x}\left(1+\left(\frac{\omega_{0}t}{4!}\right)^{2}+\left(\frac{\omega_{0}t}{4!}\right)^{4}+1 + \cos\omega_{0}t\right)$
,	Ty (wet - (wet) of (wet) 5) sincet
	= Tx cos ost + Tq con wat
1405	= fired cos(count +p) (Trecorust + Try senust)
COSTINAL STA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
W3 (0 4) 4	$\Delta = \omega_d - \omega_s = 0$
o re	= Ital (Irx t, Ory)
· · · · · ·	
De Ho	clowing to gonometric identifies.
COSA-COS R	= $COS(A+B)+COS(A-B)$
(3 2 5	2
COSA.SER	= 86 (A+B) - SG(A-R)
	2
Son A. WIB	= sin (A+B) + sin (A-B)
	2
sing. Sing	- COS(A-B) - COS(A+B)
	2
Son A. CORB	= S \(\text{(A+B)} + S \(\text{(A-B)} \) = \(\cos(A-B) - \cos(A+B) \)