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In many economic settings, we learn not only by observing information directly, but

also by observing information filtered through the decision of others. Before deciding

what restaurant to go to, what school to send my kids to, what phone to buy, I look

and see what decision others have made in similar situations, and try to incorporate

the information contained in their decision into my own decision. This sort of social

learning is an important part of economic decision making. In these three lectures, I’m

going to provide a brief overview of some of the main concepts, tools, and models of

social/observational learning.

Unlike in most of the learning models we’ve seen in previous lectures, in these models

decision makers do not observe all information directly. Instead, they observe decisions

that are the result of private information held by other individuals. Throughout these

lectures, we focus on settings where individuals are short-lived or myopic, and thus face

a severe informational externality. As we’ve already seen, in many settings optimal

learning requires decision makers to carefully balance trade-offs between exploration

and exploitation. Here this trade-off manifests as a trade-off between imitation and

communication. In order to most effectively communicate additional private information,

decision makers may need to make suboptimal choices today, to facilitate better choices

in the future. But, decision makers naturally do not internalize this externality; they

always have the option to follow the lead of others, diminishing the connection between

their own private information and their action. We’ll show in simple settings how this

imitation can lead to relatively extreme failures of information aggregation.

Given these forces, a natural first question to ask is what features of the environment

enable or prevent long-run learning. In the first lecture, we’ll study the canonical ob-

servational learning model (Bikhchandani, Hirshleifer, and Welch 1992; Banerjee 1992;

Smith and Sørensen 2000), and characterize if and when decision makers learn to adopt
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the efficient action in the long run. The focus of this lecture is a characterization of what

information structures that enable information aggregation look like, and how failures

of aggregation can manifest.

In the second lecture, we’ll discuss the speed of learning. How much slower to do

agents learn if information is filtered through the actions of others. In this section, we’ll

go through some basics of large deviation theory and study the social learning model of

Harel, Mossel, Strack, and Tamuz (2021).

Finally, we’ll think about how these information aggregation results depend on our

agents social networks. If decision makers only observe subsets of the population, will

this help or hurt learning. In this section, we focus on two specific observation structures

which provide insights into the forces driving the more general version of results in the

literature. Acemoglu, Dahleh, Lobel, and Ozdaglar (2011) provides a much more general

treatment of this than the examples we study here.

This is a large literature, that encompasses a number distinct models, in both

Bayesian and non-Bayesian settings. In addition to the models I’ll cover in this course,

I’ve also included a non-exhaustive list of other work in this area.

1 Sequential Observational Learning

1.1 A Simple Example

Consider an urn filled with Red and Blue balls.

• There are two states of the world. In the Red state, the proportion of red balls is

γ > 1/2. In the Blue state it is 1− γ.

• Prior probability p ∈ (1/2, γ) that the state is red.

• Agents sequentially guess whether urn has more red or blue balls.

• Before guessing:

– Draw a ball with replacement.

– See all past guesses.

In the long run, will agents learn if there are more red or blue balls?

First agent

• Guess red iff you draw a red ball since

Pr(Red State|1 red) =
pγ

pγ + (1− p)(1− γ)
> p > 1/2
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and

Pr(Red State|1 blue) =
p(1− γ)

p(1− γ) + (1− p)γ
< p < 1/2.

Next agent

• Inverts first guess, effectively sees two draws w/ replacement

• But now, if the first guess was red, then even after drawing an blue ball

Pr(Red State|1 red, 1 blue) =
pγ(1− γ)

pγ(1− γ) + (1− p)γ(1− γ)
= p > 1/2.

and after drawing a red ball

Pr(Red State|2 red) =
pγ2

pγ2 + (1− p)(1− γ)2
> p > 1/2.

• So guesses red no matter what

• Her guess contains no new info.

Everyone else is in the same position, so learning effectively shuts down. We have

herding. Regardless of an individuals private information, their decision determined

solely by the public history. It’s easy to see that, in this simple model, if #Blue guesses-

#Red guesses≥ 2 or if #Red guesses-#Blue guesses≥ 1, we are in a herd.

1.2 The Baseline Model

• Time is discrete t = 1, 2, . . ..

• There are two states of the world θ ∈ {B,R}.1 Let p = Pr(R).

• Signal process: st ∈ R from distribution Fθ with pdf/pmf fθ, iid conditional on θ.

• Assume signals are:

– Not perfectly revealing: suppFB = suppFR.

– Informative: FB ̸= FR.

• At each time t, there is a single agent who chooses an action at ∈ {B,R}.

• Time t agent observes (a1, a2, . . . at−1, st).

1This assumption is consequential. Specifically, generalizing our condition for information aggre-
gation mutatis mutandis to the finite but > 2 state model misses some situations where information
aggregates. See Kartik, Lee, and Rappoport (2021).
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• Agents have preferences u(a, θ) = 1{θ=a}.
2

We make the following normalization. Normalize signals so that s satisfies

s = log
fR(s)

fB(s)
.

Under this normalization, higher signals are now stronger evidence of state R, and the

likelihood ratio satisfies
fR(s)

fB(s)
= es.

Given a prior p and a signal s, Bayes rule is straightforward

log
Pr(θ = R|s)
Pr(θ = B|s)

= s+ log
p

1− p
.

Throughout these notes, we adopt the convention that 0/0 = 1. Somewhat sloppily, let

[L,L] = conv(suppFR). It’s easy to see that L < 0 < L.

Definition 1. We say that signals are bounded if −∞ < L < 0 < L < ∞ and

unbounded if L = −∞ and L = ∞.

1.3 Analysis

The belief process that matters here is the public belief,

Lt = log
Pr(θ = R|a1, a2, . . . at)
Pr(θ = B|a1, a2, . . . at)

.

This is a stochastic process. Each agent’s decision depends entirely on the realization of

their signal st and Lt−1, as the private belief satisfies

Lpriv
t = log

Pr(θ = R|a1, a2, . . . at−1, st)

Pr(θ = B|a1, a2, . . . at−1, st)
= Lt−1 + st.

Given a public belief L, an agent follows decision rule

a(L, s) =

R if L+ s > 0

B if L+ s < 0.

Thus, the Lt process is Markovian. In each period, it either jumps up or down, and the

size and likelihood of updates are fully pinned down by the state dependent probabilities

of each action.
2This is relatively innocuous as long as the action space is finite, including if we allow for unobserved

heterogeneity across agents. Lee (1993) and more recently Ali (2018b) discuss what happens with richer
action spaces. Smith and Sørensen (2000) provide a brief treatment of another possible failure of learning
that happens if agents disagree on whether B or R is optimal in state R.
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Unfortunately, describing the short-run properties of this process, and the corre-

sponding action process, are difficult. Almost all work in this literature focuses on

asymptotics. The following result is immediate from what you’ve seen in part 1

Theorem 1. Suppose the true state of the world is B. Then there exists a random

variable L∗ with values contained in [−∞,∞) s.t. Lt → L∗ FB-almost surely. An

analogous result holds in state R.

Proof. Martingale convergence theorem applied to the random variable eLt . □

1.3.1 The Belief Process

Let’s look more carefully at the belief process. Given Lt−1 we know that if at = R then

Lt = Lt−1 + log
1− FR(−Lt−1)

1− FB(−Lt−1)

and if at = B is

Lt = Lt−1 + log
FR(−Lt−1)

FB(−Lt−1)
.

It’s easy to see that the log likelihood always moves down after a B action and up after

an R action.3 This is immediate from

FR(L)− FB(L) =

∫ L

−∞
(es − 1)fB(s) ds.

The right-hand side is decreasing below L = 0, increasing above L = 0 and is equal to

0 at L and L, so FR(L)− FB(L) ≤ 0 for all L, strictly so for L ∈ (L,L).

1.4 Bounded Signals

Theorem 2. If signals are bounded, then agents never learn the state of the world, i.e.

there exists a bounded random variable L s.t. Lt → L a.s. Moreover limt→∞ Pr(at ̸=
θ) > 0.

Proof. Suppose that Lt > −L, then Lt > 0 and

Lt + st > Lt + L > 0

so the optimal action is R, regardless of the signal, and Lt+1 = Lt. Similarly, if Lt < −L,

then B is optimal after every signal, so Lt+1 = Lt.

Let U = supL log
1−FR(−L)
1−FB(−L)

and D = infL log
FR(−L)
FB(−L)

. These are both finite (in fact,

they are bounded by L and L respectively), and D < 0 < U .

3Unsurprisingly given our normalization, FR and FB are ordered by stochastic dominance.
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Now suppose Lt−1 ≤ −L. Then by construction Lt ≤ −L + U . A similar argument

establishes that Lt ≥ −L+D. So Lt ≤ max{L0,−L+ U} and Lt ≥ min{L0,−L+D}.
Therefore, Pr(θ = R|a1, a2, . . . at) converges a.s. to some random variable L∗ with

bounded support contained (and can’t converge a.s. to 1/2). By the dominated and

martingale convergence theorems

ER

(
lim
t→∞

Pr(θ = B|a1, a2, . . . at)
Pr(θ = R|a1, a2, . . . at)

)
= ER

(
Pr(θ = B)

Pr(θ = R)

)
and similarly

EB

(
lim
t→∞

Pr(θ = R|a1, a2, . . . at)
Pr(θ = B|a1, a2, . . . at)

)
= EB

(
Pr(θ = R)

Pr(θ = B)

)
This immediately implies that with probability bounded away from 0 agents are asymp-

totically wrong in at least one state. □

When we look at the action and belief processes, there are a number distinct but

closely related phenomena here. The language in the literature is a bit imprecise, I draw

the following distinction, which roughly follows Smith and Sørensen (2000)

• A [Information] Cascade: An event where beliefs converge in finite time

• A Limit Cascade: An event where beliefs converge to an interior belief. At the

limiting belief an information cascade occurs.

• A Herd: An event where at all future times, agents choose the same action.

• Action Convergence: An event where the frequency of an action converges to 1

Our theorem establishes that action convergence obtain a.s. It is relatively straightfor-

ward to see that limit cascades also obtain. In the finite signal case, information cascades

also must arise, but this is not necessarily true in rich signal spaces. Somewhat more

subtly, a herd also arises in finite time

Theorem 3. A herd on some action arises in finite time a.s.

Proof. Note that if at = R then Lt ≥ 0 and if at = B then Lt ≤ 0. Intuitively, since

the time t agent has more information than the time t+ 1 agent does before the signal

is realized, it must be optimal for them to imitate the time t agent before seeing any

additional information. Moreover, an information cascade occurs at beliefs above −L or

below −L.

Beliefs can only converge to points above −L or below −L a.s. To see this, note that

if any point in L ∈ (0,−L) was in the support of our limiting random variable, note
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that if Lt lies in a min(L,−L)/2-ball around that point, with probability 1 eventually

it either exits that ball or a B action is realized. So convergence to L is impossible.

Clearly convergence to 0 is also impossible.

So, beliefs must converge to points in (−∞,−L] ∪ [−L,∞). Thus, along almost all

sample paths, there exists a time T where for all t > T either Lt > 0 or Lt < 0. This

implies that all actions from time t on are the same. □

1.5 Unbounded Signals

With unbounded signals, this breakdown no longer occurs. Just looking at the belief

process, we see that after a B action

Lt = Lt−1 + log
FR(−Lt−1)

FB(−Lt−1)
.

Given our relationship between fB and fR and the fact that signals are unbounded

log FR(−Lt−1)
FB(−Lt−1)

< 0, and in any fixed neighborhood of an interior likelihood, this is uni-

formly bounded away from 0. The update after an R action is similarly uniformly

bounded away from 0 in any neighborhood of any interior likelihood ratio. Thus, beliefs

cannot converge to any such neighborhood.4 So we can conclude that agents learn the

state.

Theorem 4. Suppose θ = B, then if signals are unbounded then almost surely Lt → −∞.

Similarly, if θ = R, Lt → ∞.

Note that this also implies that agents herd on the correct action in finite time a.s.

So decision makers are eventually correct.

Many continuous distributions we use to model information are unbounded (e.g.

normals with different means). At least in terms of asymptotics, these results suggest

that this assumption is to some extent not innocuous. Do you think this assumption of

unbounded signals makes sense? Are there other aspects of this model that contribute

to the analysis we’ve done that, depending on the context, may not make much sense?

2 Rates of Learning

How fast do agents learn? Given our focus on asymptotics, it would be nice to know

the rate that we approach the limit, not simply the limit itself. Even in the cases

where agents learn the state of the world asymptotically, it seems like a great deal of

information is being lost, and information about rates would be a first step in quantifying

the magnitude of that loss.

4Alternatively the imitation argument in the previous theorem, combined with the observation
that both actions always occur with positive probability uniformly bounded away from 0 across a
neighborhood of the belief implies this.
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2.1 A Brief Introduction to Large Deviations

We’ve said very little about rates of learning in any setting. Before we return to the

more complicated social learning settings, it’s going to be useful to think about what, if

anything, we can say in the much simpler iid world. Consider the following

• Time is discrete t = 1, 2, . . .

• Two equally likely states of the world θ ∈ {θ0, θ1}

• Sequence of real valued random variables Xt, drawn iid conditional on the state

from distribution F0 or F1 (with corresponding pdfs/pmfs).

• In each period, choose an action at ∈ {0, 1}, with utility u(a, θ) = 1{θa=θ}.

What is the probability that you guess wrong at time t? You’ve (hopefully) already

spent a bunch of time thinking about problems like this. When? What if we rewrote

this as

H0 : θ0

H1 : θ1.

The test statistic that Bayes rule induces should seem familiar. Each player finds at = 0

optimal iff

Pr(θ = θ0|X1, X2 . . . Xt) ≥ 1/2

which, is equivalent to

log
Pr(θ = θ1|X1, X2 . . . Xt)

Pr(θ = θ0|X1, X2, . . . Xt)
≤ 0.

Finally, a now familiar consequence of Bayes rule lets us write this as

t∑
i=1

log
f1(Xt)

f0(Xt)
≤ 0.

What is the probability you’re wrong at time t. It’s the average of the type 1 and type

2 errors under this specific likelihood ratio test. Our goal is to characterize the rate that

this error probability goes to 0. Large deviation theory is a set of results and tools that

focus on characterizing the rate that the probability of atypical things goes to 0 in large

samples. This is important; even though we know that eventually mistakes disappear,

it would be worrying if agents were very confident of something that’s very wrong for

a very long time. Our goal is going to be, for a given sequence of iid random variables
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X1, X2, . . . to characterize a function λ∗(k) : (E(x),∞) → R+ s.t.

lim
t→∞

1

t
logPr

(
t∑

i=1

Xi ≥ k

)
= −λ∗(k).

Then, applying this result to our likelihood ratio process will tell us the speed that

log-likelihoods concentrate around their mean, giving us an idea of how likely it is that

strongly held misconceptions persist.

2.1.1 Chernoff Bounds

The object we’re interested in is

Pr0

(
t∑

i=1

log
f1(Xt)

f0(Xt)
> 0

)
,

that is, the probability of being wrong when the null hypothesis is true. Let L = log f1(X)
f0(X)

be the random variable given by X’s log-likelihood. We already know one way to bound

this. In math camp, we saw that Chebyshev’s inequality

Pr0

(∣∣∣∣∣1t
t∑

i=1

log
f1(Xt)

f0(Xt)
− E0(L)

∣∣∣∣∣ > k

)
≤ σ2

tk2

So if we set k = −E0(L) then this includes all events where the sum of the log-likelihoods

are positive. So, our error probability goes to 0 at least linearly.

At the same time, this is not a great bound. Can we be more clever? Recall Markov’s

Inequality. For any positive random variable

Pr(X ≥ k) ≤ E(X)

k
.

We can’t apply this directly to our test statistic, since it’s not positive. But, for all

positive z, we can rewrite things. For any random variable X

Pr(X ≥ k) = Pr(ezX ≥ ezk) ≤ E(ezX)

ezk
.

This is a bound on the probability in terms of the moment generating function. So,

if the moment generating function is finite, we can construct a pretty tight bound by

taking the inf over positive z’s

Pr(ezX ≥ ezk) ≤ inf
z≥0

E(ezX)

ezk
.
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This is called a Chernoff bound. It gives us a tool for controlling the probability of tail

events using an object we know a lot about.5 In our specific case

Pr

(
1

t

t∑
i=1

log
f1(Xt)

f0(Xt)
≥ k

)
= Pr

(
exp

(
z ·

(
t∑

i=1

log
f1(Xt)

f0(Xt)

))
≥ exp(z · k)

)

≤
(
E(e

z log
f1(X)
f0(X) e−zk)

)t

So we get the bound

1

t
logPr

(
1

t

t∑
i=1

log
f1(Xt)

f0(Xt)
≥ k

)
≤ inf

z≥0
logE(e

z log
f1(X)
f0(X) )− zk.

Let λ(z) = logE(e
z log

f1(X)
f0(X) ). This is the log of the moment generating function of the

likelihood ratio, which is called the cumulant generating function. The object we care

about is

λ∗(k) = − inf
z≥0

λ(z)− zk = sup
z≥0

zk − λ(z).

This is the Legendre transform of λ. For now, simply observe that:

• λ∗ is strictly convex.

• λ∗ is well defined and finite above E(L).

• For each k, the optimal z exists and is the unique solution to k = λ′(z) (or 0).

• λ∗ is increasing and is 0 at E(L). It is strictly increasing on the set of k’s where

there exists a z s.t. λ′(z) = k

To summarize, for any k > E(L)

Pr

(
1

t

∑
log

f1(Xt)

f0(Xt)
≥ k

)
≤ exp(−λ∗(k)t)

So our probability of errors decays at least at an exponential rate, which we can char-

acterize using the cumulant generating function.

5For another application, a slightly subtle concavity argument gives us Hoeffding’s Inequality

Pr(|
∑

Xn − E(Xn)| ≥ k) ≤ 2 exp(−2k2/(

n∑
i=1

(bi − ai)))

where bi and ai are numbers such that ai ≤ Xi ≤ bi a.s. This and the Borel-Cantelli lemma that we’ll
see next class immediately give us a strong law of large numbers for bounded random variables, in a
way that doesn’t involve any 4th order polynomials. If you’re desperate to see how to finish the proof
for unbounded random variables, I think Steele (2015) provides a very nice, straightforward argument.
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2.1.2 Cramer’s Theorem

In fact, this form of the Chernoff bound is also in some sense a lower bound, in that we

can show the following result (stated here in the context of our problem)

Theorem 5 (Cramer’s Theorem). Fix any k > L. Then

lim
t→∞

1

t
logPr

(
1

t

t∑
i=1

log
f1(Xt)

f0(Xt)
≥ k

)
= −λ∗(k)

Proof. The Chernoff bound we constructed already tells us that this is bounded above

by something that goes to 0 exponentially at rate λ∗(k).

So to show this result, we need to construct a lower bound on the error probability.

Fix an arbitrary random variable Y and consider the random variable Y η with density

fη(y) = eηy−λ(η)fY (y),

where λ(η) = logE(eηY ) is the cumulant generating function for Y . This is called the

tilted distribution.6 Note that

E(Y η) =
E(Y exp(ηY ))

E(exp(ηY ))
= λ′(η),

So, by choosing η we can choose the mean of this random variable, in a way that relates

it closely to our desired bound.

Finally, if we let Y t =
∑t

i=1 Yi and let Y
η

t =
∑t

i=1 Y
η
i . Then, if we let η be the

6Geometrically, we can view the distribution we’re constructing as in some sense as looking for the
closest random variable that is has expectation above k, in the sense that, for the appropriate choice
η, fη solves the problem

min
g∈∆(R)

E

(
log

fY (s)

g(s)

)
s.t. Eg(s) ≥ k.

It’s straightforward for finite random variables, and slightly less straightforward for arbitrary random
variables to see that this is solved by the unique tilted distribution with mean k, and λ∗(k) gives the
value of this program. We’re selecting the random variable that’s most similar to Y with the desired
mean, where similarity is measured using relative entropy. So this is in sort of the minimal cost way of
adjusting our random variable so that its mean is above k.
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solution to k = λ′(η) then 7

Pr(Y t ≥ tk) =

∫ ∞

tk

fY t
(s) ds =

∫ ∞

tk

etλ(η)−η
∑t

i=1 yifY η
t
(s) ds ≥ e−tλ∗(k)Pr(Y

η

t ≥ tk).

This gives us

Pr

(
1

t

∑
Yt ≥ k

)
≥ e−tλ∗(k)Pr

(
1

t

∑
Y η
t ≥ k

)
.

The law of large numbers tells us Pr(1
t

∑
Y η
t ≥ k) converges to 1. So, applying this to

our test statistic, for any k ≥ E(L)

1

t
logPr

(
1

t

∑
log

f1(Xt)

f0(Xt)
≥ k

)
≥ −λ∗(k) + o(t)

and from our Chernoff bound

1

t
logPr

(
1

t

∑
log

f1(Xt)

f0(Xt)
≥ k

)
≤ −λ∗(k) + o(t)

So

lim
t→∞

1

t
logPr

(
1

t

∑
log

f1(Xt)

f0(Xt)
≥ k

)
→ −λ∗(k).

□

So, not only do our probabilities of errors go to 0, they go to 0 screamingly fast.

It is going to be useful to generalize this bound to sample paths. The following

theorem, presented here without proof, follows from theorem 7 of Harel et al. (2021),

elegantly reproduced here as theorem 6.

Theorem 6. Fix a sequence of iid random variables X1, X2, . . .. For every k such that

k > E(X1) and any deterministic sequence (xt)
∞
t=1 s.t. lim supxt/t = k and P (Xt ≥

xt) > 0 for all t, it holds that

lim
t→∞

1

t
logP

(
t⋂

τ=1

{Xt ≥ xt}

)
= −λ∗(k).

7That this relationship holds for the sum is perhaps not immediate. But, recall that the distribution
of the sum of two iid random variables is given by

fY1+Y2
(y) =

∫ ∞

−∞
f(t)f(y − t) dt.

How the densities of Yt and Y η
t relate is pretty direct from there :).
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2.2 Social Learning

Can we get similar bounds for social learning. At least in the model we’ve seen this ques-

tion only makes sense in the unbounded signal case. I’m going to focus on a different

model where we get information aggregation in the long-run under all signal distribu-

tions, but before I do, let me briefly summarize some of what we know in the canonical

setting with unbounded signals:

• Hann-Caruthers, Martynov, and Tamuz (2018) shows that 1
t
logPr(at ̸= θ) → 0,

so it goes to 0 sub-exponentially. In the Gaussian case, for any ε > 0 there exists

a k s.t. Pr(at ̸= θ) ≥ k
t1+ε .

• They also show that Lt/t → 0 where Lt is the log-likelihood, and for any rt s.t.

rt/t → 0 we can find a distribution where limLt/rt > 0. So the log-likelihood grows

sublinearly (while it converges linearly with iid signals), but can grow arbitrarily

close to linearly for some distribution. In state R, this rate rt s.t. Lt/rt → 1 is

characterized by the solution to the differential equation ṙt = FB(−rt), so the tail

of the distribution of log-likelihoods determines the rate.8

• Rosenberg and Vieille (2019) show that in state B the expect time until the first

correct choice is finite iff the expected number of mistakes is finite. Both of these

conditions are equivalent to the condition that
∫ 1

0
1/F (p) dp < ∞, where F (s) is

the distribution of Pr(θ = R|s).

All these conditions effectively say (i) social learning is slower, (ii) it isn’t much slower

if the signal distribution has fat tails. This should in some sense match our intuition.

If a lot of really precise signals are realized, then actions are also going to be pretty

informative. We’re still losing a lot of information through actions, but if decision

makers adopt an incorrect action, the fatter the tails of the signal distribution the faster

that mistake will be corrected. So incorrect “herds” break faster with fat tails, while

correct herds aren’t going to be erroneously abandoned, because very precise signals

that go against the state must be incredibly unlikely.

8One may be curious how a differential equation shows up here. In state R, we know that eventually

Lt+1 = Lt + log
1− FR(−Lt)

1− FB(−Lt)
.

A standard trick for solving such recurrences relations is to approximate them with the corresponding
differential equation, moreover for high enough Lt, the adjustment term is approximately FB(−Lt). So,
there’s reason to hope that the solution to ṙt = FB(−rt) tells us approximately how beliefs behave in
the long-run. These sorts of continuous time approximations lie at the heart of all three of these results.
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2.3 Another Model

Let’s move away from the unbounded/bounded signal dichotomy and think about social

learning in a setting where agents always eventually learn the state.

• Time is discrete, t = 1, 2, . . .

• Two states θ ∈ {B,R}, Pr(θ = R) = 1/2.

• There are N myopic decision makers, indexed by i ∈ {1, 2, . . . N}.

• In each period each agent draws a signal sit, conditionally iid, normalized to be the

log-likelihood, informative but not perfectly, etc.

• Agents then choose an action ait ∈ {B,R}.

• Agents observe the history of all actions, and their past signals.

So now, as a decision maker, I have to decide whether to go with my own private

information, or to follow the lead of the group. It’s immediate that asymptotically our

players will learn the state of the world, but a natural question to ask is how much slower

do they learn relative to if everyone in the group just disclosed their private information.

How much information is lost through the social aspect of this learning problem?

It turns out, quite a bit. We already know that for each i

lim
t→∞

1

t
logPr(ait ̸= θ) = −nλ∗(0)

if decision makers could observe every signal. This gives us a natural benchmark. How

much slower is the rate of learning in our model than this rate?

Learning in this model is a bit less straightforward, as after t = 1 the probabilities

of different actions for different agents depend on the entire history of private signal

realizations for that agent, and the action vector gives an imperfect signal of the signal

vector and to interpret that signal we need to understand how the each other agent is

interpreting the action vector given their private signal realization and...

So, let’s try to find another approach. Suppose the true state is R. Let

Gt =
n⋂

i=1

t⋂
τ=1

{aiτ = B},

the event that agents have taken the wrong action in every period. Denote i’s private

likelihood ratio by Li,priv
t =

∑t
τ=1 st. There clearly exists some threshold qt s.t.

Gt = Gt−1 ∩
n⋂

i=1

{Li,priv
t ≤ qt}.
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This threshold qt is deterministic, and can be written recursively as

qt = −(n− 1) log
PR(W

1
t−1)

PB(W 1
t−1)

where W i
t =

⋂
1≤τ≤t{L

i,priv
t ≤ qt}.

So now everything has become a function of the private beliefs. A very complicated

function of the private beliefs, but a function of the private beliefs nonetheless. First

order stochastic dominance immediately tells us that these qt’s are all positive. Moreover,

we know that

lim
t→∞

1

t
logPR(W

1
t−1) = −λ∗

R(lim inf(−qt/t)),

where λ∗
R is associated with −st. So, not only does lim qt/t exist, it satisfies the equation

lim
t→∞

qt
t
= lim

t→∞
−(n− 1)

1

t
logPR(W

1
t−1) + (n− 1)

1

t
logPB(W

1
t−1) = (n− 1)λ∗

R

(
− lim

t→∞

qt
t

)
Since in state B this probability goes to 1 and in state R it goes to 0. Thus β must be

the unique solution to

β = (n− 1)λ∗
R(−β).

So we’re almost done, this β gives the rate

lim
t→∞

1

t
logPR(Gt) = lim

t→∞

n

t
logPR(W

1
t−1) = −nλ∗

R(−β) = − n

n− 1
β.

Note that β depends on n. Given our goal, we’d like a lower bound on this rate that was

independent in n. Since this rate when agents observe all private information explodes,

this would tell us that in large groups we’re losing a ton of information. Finally, note

that n
n−1

β ≤ ER(s).
9 So we finally get our result:

lim
t→∞

1

t
logPR(at ̸= θ) ≥ −ER(s).

9Since we know that λ∗
R is strictly convex and equal to 0 at the expected likelihood ratio −L =

ER(−s), and 0 > −β > −L since λ∗ is strictly increasing and 0 at −L. Looking at convex combinations,
we get

λ∗
R(−β) <

β

L
· 0 + L− β

L
λ∗(0)

1

n− 1
β <

L− β

L
λ∗(0)

n

n− 1
β < ER(s)

where the last line follows from the observation that λ∗(0) < L.
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In contrast, if signals were observable

lim
t→∞

1

t
logPR(at ̸= θ) = −nλ∗

R(0).

So as the group size grows large, mistakes would vanish much faster if decision makers

saw all information. The highly correlated signals we get from social learning in large

groups convey orders of magnitude less information, at least as t grows large. This

failure is especially interesting because, for any ε > 0, conditional on the even that all

agents have always taken the wrong action, there exists an agent who’s private belief

is with ε of placing probability 1 on the true state. So, conditional on this event, the

social information swamps the agents much more precise private information (Of course,

probability that every agent has always taken the wrong action is very unlikely as t grows

large). Finally, if signals are Gaussian, they show that in each period t, the probability

that agents all adopt the action the majority took in period 1 converges to 1 as the

number of players go to ∞. So we can always find a group large enough that arbitrarily

far in the future, agents prefer to herd on the consensus.

3 Observability

For the final part of the course, let’s return to our canonical social learning setting. A

natural question to ask here is what would happen if we relax the assumption that each

agent observes all their predecessors actions. Acemoglu et al. (2011) provides a fairly

general answer to that question. To avoid a bunch of technical complications, I’ll focus

on a few examples that highlight what can change.

3.1 A little more probability

Before we start, we need a bit more probability. The following theorem is a somewhat

subtle, but powerful, implication of the countable additivity of probability.

Theorem 7 (First Borel-Cantelli Lemma). Let E1, E2, . . . be a collection of events. If

∞∑
i=1

Pr(Ei) < ∞

then

Pr(
∞⋂
n=1

∞⋃
k=n

Ek) = 0

This says that if we have a set of infinitely many events whose probabilities sum to
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something finite, then with probability 1 only finitely many of these events occur.10 This

is a very powerful result. Almost all the tools we have for establishing convergence in-

volve constructing bounds on the probabilities of events. These are great for establishing

convergence in probability, but clearly are going to give us trouble if we want to show

something like almost sure convergence. This gives us a way to turn these statements

from statements about convergence in probability to statements about almost sure con-

vergence. If we can show that these probabilities go to 0 really fast, so fast that the

sum converges, then we can turn our bounds into statements about probability 0 and 1

events. We can also establish a converse to this theorem

Theorem 8 (Second Borel-Cantelli Lemma). If
∑

Pr(Ei) = ∞ and the events are

independent, then

Pr(
∞⋂
n=1

∞⋃
k=n

Ek) = 1

So, with the addition of independence, we can also show that if the sum diverges then

our sequence of events must occur infinitely often. We’ve informally made statements

along these lines a bunch, statements like if we flip a coin infinitely many times it will

eventually generate any finite sequence of heads and tails is basically what this lemma

shows.11

3.2 Bounded Signals

The fundamental issue we encountered with bounded signals was that the information

contained in the history very quickly swamped the information contained in any single

signal, so information transmission shut down. What would change if we introduced a

small chance that our decision makers just didn’t observe any of the previous actions.

10The proof of this is pretty brief.

∞⋃
n=1

En ⊇
∞⋃

n=2

En . . . ⊇
∞⋂

n=1

∞⋃
k=n

Ek.

The continuity property of probability tells us

Pr(

∞⋂
n=1

∞⋃
k=n

Ek) = lim
N→∞

Pr(

∞⋃
n=N

EN )

and subadditivity tells us that

Pr(

∞⋃
n=N

EN ) ≤
∞∑

i=N

Pr(Ei)

since the sum starting at index 1 is finite and all terms are positive, the RHS must converge to 0.
11There are other versions of this lemma that relax the independence assumption in different ways,

for instance by showing the appropriate sequence of conditional probabilities is infinite. A reasonably
sophisticated probability textbook like Durrett “Probability: Theory and Examples” or the aforemen-
tioned Williams “Probability with Martingales” will have a lot on these results.
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Assume this was unobserved by others. Specifically, suppose with probability Q(t) a

decision maker only observes their private signal, otherwise everything is the same.

What can we say about

lim
t→∞

Pr(at ̸= θ)?

For simplicity, let’s assume there are two signals st ∈ {s, s}, s < 0 < s and prior

likelihood that lies between them. The fundamental logic here would be unchanged

for any bounded signal distribution, but this makes things a bit more straightforward.

Given our Borel-Cantelli theorems and our intuition about herds, the following seems

like a reasonable conjecture:

lim
t→∞

Pr(at ̸= θ) = 0 ⇐⇒
∞∑
t=1

Q(t) = ∞ and Q(t) → 0

Turns out, this conjecture is true

Theorem 9.

lim
t→∞

Pr(at ̸= θ) = 0 ⇐⇒
∞∑
t=1

Q(t) = ∞ and Q(t) → 0

Proof. Clearly, we need Q(t) → 0 to have any hope here. The Borel-Cantelli lemma

tells us that intuitively we “observe” infinitely many signals if the sum condition holds,

while we only observe finitely many if it does not. So in one case we should be able to

deduce the state, and in the other we shouldn’t.

Suppose
∑

Q(t) = ∞. We know that the history observing types likelihood ratio

a.s. converges. We want to show that it can’t converge to any interior belief. At any

belief we are in one of two situations. Either (i) the history observing types are in a

cascade, suppose they are all playing R. Then they know a B action comes from an

agent who doesn’t observe the history, so their beliefs must update by s. Therefore, for

any belief in the cascade set, beliefs exit a ball around that belief of radius min(−s, s)

with probability 1 (with some minor adjustments if that ball includes beliefs outside of

the cascade set). If we aren’t in the cascade set, then both types are acting based on

their private signal, so beliefs update by s after a B action and the same logic applies.

Since beliefs converge, the public likelihood ratio must converge to the truth, which

means that a.s. in finite time all types that observe the history play the correct action.

So Pr(at ̸= θ) → 0.

In the other case, note that there exists an N s.t. for any T > N if all ac-

tions have been B and we are at time t > T then all players who observe the his-

tory find B optimal. Moreover, by the Borel-Cantelli lemma, there exists a T ∗ s.t.

Pr(
⋃∞

t=T ∗{Player t doesn’t observe the history}) < 1. This is independent for the sig-
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nal process, so with positive probability in state R after time T ∗ everyone observes the

history and before time T ∗ all realized signals are s, so all players played at = B for all

t ≤ T ∗. Thus, players herd on the wrong action with positive probability. □

3.3 Unbounded Signals

It seems intuitive that with unbounded signals decision makers can learn the state of the

world even if they observe a fairly small subset of the history. On the other hand, it’s

also clear that for learning to happen in any of these models, agents need to consistently

observe actions that depend on a lot of the history. If, for instance, every decision maker

only observed their private signal and the first realized action, there’s no way we can

get asymptotic learning. No subset of agents can be too influential, as learning requires

both contrarian behavior and that behavior to be observed by future agents.

We begin with an example to show how the unbounded signal result can generalize

to fairly sparse networks. Suppose that each decision maker only observe their own

private signal and the action of the previous agent. It turns out, in this setting, decision

makers eventually take the correct action with probability 1. Like in much of what we’ve

done in the last two lectures, beliefs here are a bit of a nightmare. So let’s take try an

alternative plan of attack

Observation. It must be that the ex-ante probability of taking the correct action is

increasing, Pr(at = θ) ≥ Pr(at−1 = θ) ≥ 1/2.

I can always choose to copy the previous agent’s action, so I must do weakly better

than them in expectation. Note that this tells us that ex-ante the probably of being

right converges, but we need more if we want to show it converges to 1. A “natural”

path forward would be to try to find a continuous function Z : [1/2, 1] → [1/2, 1] such

that Z(x) > x for any x < 1 and Pr(at = θ) ≥ Z(Pr(at−1 = θ)). Let’s call such a Z an

improvement function.

Intuitively, it seems like such a function must exist. No matter how far along we get

in time, we know that, because of unbounded signals, there’s a set of signals where we’d

prefer to follow the signal rather than imitate the previous decision maker. Specifically

let Ut = log Pr(at−1=B|θ=R)
Pr(at−1=B|θ=B)

and Dt = log Pr(at−1=R|θ=R)
Pr(at−1=R|θ=B)

. The agents optimal decision

satisfies

at =


R if st > −Ut

B if st < −Dt

at−1 otherwise.

Each player isn’t mimicking the previous agent in one of the first two regions, so if we

can show the probability of each of these regions is bounded away from 0 for any interior

action probability, then we’re in good shape.
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Theorem 10. Define the function Z : [1/2, 1] → [1/2, 1] as

Z(α) = α +
1

2
min{(1− FB(log((2− α)/(1− α)))), FR(− log((2− α)/(1− α)))}.

This works.

Proof. The probability that our time t agent is right can be written in terms of the time

t− 1 probabilities

Pr(at = θ) = Pr(θ = R)(Pr(st > −Ut|R) + Pr(at−1 = R|R)(Pr(st ∈ (−Dt,−Ut)|R)))

+ Pr(θ = B)(Pr(st < −Dt|B) + Pr(at−1 = B|B)(Pr(st ∈ (−Dt,−Ut)|B)))

=
1

2
[(1− Pr(at−1 = R|R))(1− FR(−Ut)) + (1− Pr(at−1 = B|B))(FB(−Dt))

+ (1− FR(−Dt))Pr(at−1 = R|R) + (FB(−Ut))Pr(at−1 = B|B)].

The first two terms capture the probability of the previous agent making a mistake and

the current agent correcting it. Collect the terms where the t− 1 agent was choosing B,

how much do we improve in that situation

(1− Pr(at−1 = R|R))(1− FR(−Ut)) + (FB(−Ut))Pr(at−1 = B|B)− Pr(at−1 = B|B)

= Pr(at−1 = B|R)

∫ ∞

−Ut

es dFB(s)− (1− FB(−Ut))Pr(at−1 = B|B)

= Pr(at−1 = B|R)

∫ ∞

−Ut

es − e−Ut dFB(s)

≥ Pr(at−1 = B|R)

∫ ∞

−Ut+log(k+1)

es − e−Ut dFB(s)

≥ kPr(at−1 = B|B)(1− FB(−Ut + log(k + 1))).

for any k > 0, where the second line follows from our signal normalization, and the third

line follows from the definition of U . Similarly, for any k > 0

(1− Pr(at−1 = B|B))(FB(−Dt)) + (1− FR(−Dt))Pr(at−1 = R|R)

≥ Pr(at−1 = R|R)(1 + kFR(−Dt − log(k + 1))).

So

Pr(at = θ)

≥ Pr(at−1 = θ) +
1

2
(k1Pr(at−1 = B|B)(1− FB(−Ut + log(k1 + 1)))

+ k2Pr(at−1 = R|R)FR(−Dt − log(k2 + 1))).
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Let α = Pr(at−1 = θ). First suppose Pr(at−1 = B|B) ≥ α. Then we get a lower bound

by letting k1 = eUt + 1, k2 = 1 + e−Dt of

Pr(at = θ)

≥ α + Pr(at−1 = B)(1− FB(log(1 + 2e−Ut))) + Pr(at−1 = R)FR(− log(2eDt + 1))

≥ α + Pr(at−1 = B)(1− FB(log((2− α)/(1− α))))

+ Pr(at−1 = R)FR(− log((2− α)/(1− α))).

Since one of either Pr(at−1 = B) or Pr(at−1 = R) must be greater or equal to 1/2 we

get

Pr(at = θ) ≥ α +
1

2
min{(1− FB(log((2− α)/(1− α)))), FR(− log((2− α)/(1− α)))}.

The right hand side is our desired function Z(·) (with Z(1) = 1, which is the limit).

This is continuous for continuous densities.12 Therefore, since signals are unbounded,

unless Pr(at−1 = θ) = 1

Pr(at = θ) ≥ Z(Pr(at−1 = θ)) > Pr(at−1 = θ)

and since Pr(at = θ) converges, it must converge to 1. □

What’s really going on here? The important ingredients are (i) people further in

the future observe decisions made by agents who are more likely to be correct, (ii)

agents can, with positive probability, do better than imitating the people they observe,

no matter how much information the people they observe have. (ii) is what we need

unbounded signals for. (i) comes from our observability assumption, the farther in the

future we get, the agents we observe are making decisions that are indirectly informed

by the actions of all previous agents. A general version of this property is the following.

Let Qt be a distribution over subsets of {1, 2, . . . t − 1}. Assume agent t observes the

actions taken by agents in the set H drawn from Qt. This gives us a pretty rich set of

possible observation networks to look at.

12In fact, we can make it continuous for any density by taking the function

Z̄(α) = α+ sup
[1/2,α]

1

2
min{(1− FB(log((2− α)/(1− α)))), FR(− log((2− α)/(1− α)))}

and making the observations that if Z̄(Pr(at−1 = θ)) > Pr(at = θ) then we can find an α′ between
0 and 1/2 where Z(α′) > Pr(at = θ) and note that our agent can always add noise to the previous
observation to make it as-if they observed an agent who was right with probability α′.
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Definition 2. (Qt)
∞
t=1 has expanding observations if for all K ∈ N we have

lim
t→∞

Qt({H : max
i∈H

i < K}) = 0.

In a network with expanding observations, the likelihood that agents only observe

early actions is vanishing in the long-run. This rules out, for instance, networks where

there’s a set of agents C whose actions are all the most players observe. Clearly, in

both the bounded and unbounded signal case, we need expanding observations to get

asymptotic learning. It turns out, using a similar argument to the one we used to for

the only previous action model, with unbounded signals expanding observations is all

we need.

Theorem 11. Suppose private beliefs are unbounded and the Qt has expanding obser-

vations. Than asymptotic learning occurs in every equilibrium.
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4 More Social Learning Papers

• Networks/other observability structures:

– Acemoglu et al. (2011)

– Herrera and Hörner (2013)

– Monzón and Rapp (2014)

– Lobel and Sadler (2015)

– Mossel, Sly, and Tamuz (2015)

– Arieli and Mueller-Frank (2019)

– Dasaratha and He (2021)

• Speed of social learning

– Hann-Caruthers et al. (2018)

– Rosenberg and Vieille (2019)

– Harel et al. (2021)

• Changing States

– Frongillo, Schoenebeck, and Tamuz (2011)

– Dasaratha, Golub, and Hak (2018)

• Behavioral

– Demarzo, Vayanos, and Zwiebel (2003)

– Eyster and Rabin (2010)

– Guarino and Jehiel (2013)

– Molavi, Tahbaz-Salehi, and Jadbabaie (2018)

– Bohren (2016)

– Frick, Iijima, and Ishii (2020)

– Bohren and Hauser (2021)

– Frick, Iijima, and Ishii (2022)

• Search/Info Acquisition

– Burguet and Vives (2000)

– Mueller-Frank and Pai (2016)
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– Song (2016)

– Ali (2018a)

– Bobkova and Mass (2020)

• Market Microstructure/Financial Markets

– Avery and Zemsky (1998)

– Chari and Kehoe (2004)

– Park and Sabourian (2011)

• Other Twists

– Mossel, Mueller-Frank, Sly, and Tamuz (2020) (Static Equilibrium concept)

– Wolitzky (2018) (Observing outcomes and confounded learning)

– Callander and Hörner (2009) (uncertainty about precisions)

– Ottaviani and Sørensen (2001) (how agents should be ordered)

– Eyster, Galeotti, Kartik, and Rabin (2014) (negative congestion externality)

– Arieli, Koren, and Smorodinsky (Forthcoming) (Pricing)

• Some Design Questions

– Kremer, Mansour, and Perry (2014)

– Che and Hörner (2017)
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