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QUANTIZATION OF ELECTRICAL NETWORKS

DiVincenzo’s Criteria:

1. A scalable physical system with well characterized qubit

2. The ability to initialize the state of the qubits to a simple fiducial state
3. Long relevant decoherence times

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability

Harmonic Oscillator:

The harmonic oscillator is an important primer for studying quantum circuits. In par-

ticular, we will see that the canonical position and momentum in a classical harmonic

oscillator are analogues of charge and flux in an LC circuit.

We consider a pendulum of length ¢ and mass m that subtends an angle # with respect

to the center.



The kinetic energy is T = imov? = %m@@z, and the potential energy is V' = mgh, where

h = (1 — cosf)(. Considering only small 6, we have h ~ (1 — 1 + 4)¢ = (4. Therefore, the
potential energy is V' = %mgﬁ@? Since the Lagrangian is L = T — V, the Lagrangian of our
system is
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L= §m€292 - %mng (1)

Upon introducing generalized coordinates ¢ and p:

q=10 (2)
_8LN3 1L 5 mg 5\ B
p‘aq”a(z q %q>_mq_m£9 )

The Euler-Lagrange equation is

d OL L
(5:) -5 =0, (4)
dt \ 0q q
and since T'(q) = 0, i.e., there is no dependence of the kinetic energy on ¢, only ¢, we have
%—Z = —%—‘g. Further, since p = %—5, we have
d, oV
= (5)
dt dq

Now, inserting Eq. 2 and Eq. 3 into Eq. 4, we have

p=—mgh . (6)

However, directly differentiating 3 with respect to time, yields

p=mll . (7)

Upon equating Eq. 6 and Eq. 7, we have

mll +mgh =0, (8)
i.e., the equation of motion:
b+ %9 ~0. 9)



Taking as a usual trial function § = C'exp(iwt), where C' # 0 is a constant, and w is the

angular frequency, Eq. 9 becomes:

< —w? + %)C’exp(iwt) =0. (10)
This valid at all ¢ only iff
45 =0, (11)

This is the so-called characteristic polynomial of the linearized equation of motion, and

solving for w we find the natural angular frequency of small vibrations of the pendulum:

w=+/g/l. (12)

Starting from energy considerations, we have derived the eigenfrequency of the system!

Superconducting LC oscillator:

Once you understand the harmonic oscillator, you can easily apply the concept

Let us consider a classical superconducting LC oscillator. The electrical energy will
oscillate between the potential energy stored in the capacitor U, and the kinetic energy
associated with the magnetic flux in the coil ® = LI, where L is the inductance of the coil,

and I = —Q is the current (direction consistent with the figure below).
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From the above circuit figure, we also see that the voltage drop across the inductor is U;

hence, from Lenz’s law we have ® = U. Therefore,

U=LI (13)



And since the instantaneous power fed into an electric circuit is simply the product of the

voltage across circuit times the current flowing into the positive voltage node, we have

P=UQ. (14)
The electrical kinetic energy in the coil is then

b b t . I ’ ’ 1 @2
T:/ Pdt:/ UIdt:/ (LI)[dt:/ LI'dl = LI? = — | (15)
to to 2 2L

to 0
and the electrical potential energy stored in the capacitor is

f i b dQ Q. 1@Q* 1 1
vz/ Pdt:/ Uth:/ Ul—=dt :/ 2dQ = - =-QU ==-CU*. (16
o o o (dt ) o C 20 2 2 (16)

From Eq. 15 and Eq. 16 we have T' = %L[2 = %LQ2 and V = %CU2 = %

The Lagrangian is therefore

¢=Q, (18)
pz%:LQ:—LI:—®. (19)
q
Indeed the equation of motion is
O+ Q=0 (20)
Lc~

where the natural angular frequency of oscillations is

—L (21)
W—m.

Compare this with w = /¢/¢ for the pendulum.

To summarize, the pendulum and LC oscillator analogues are

5



LN

Momentum p <+— Charge
+— Flux

K>

Position

Mass m <+— Capacitance

1

Resonance frequency w, +— w, = ”ﬁ

C

Legendre transformation to Hamiltonian:

The general definition for a Hamiltonian is
H=¢gp—L. (22)
We take the total time derivative to analyze the system dynamically
dH oL oL .
T v oy (23)
Further, we take p = dL/0q, and dp/dt = p, as p = p(t) only.
Therefore, the total time derivative of the Hamiltonian is
dH L :
TR (24)
(25)

Simplifying this formula further yields
dH .| d /0L oL -
dt dt \ 0q dq

Since the Lagrangian is time-independent, L = 0, due to the Euler-Lagrange equation,

(26)

we have
dH
—=0.
dt

That is to say, the Hamiltonian is a constant of motion, i.e.; energy is conserved in the

system.
Furthermore, in terms of our generalized coordinates, Eq. 22 is
. . 1 . Q2 1 . 2
H=Q(LQ) — (;LO* - 5) = 5LQ* + %, 2
QULQ) - (FLQ* - ) = L@ + 1= (27)
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Further, from our standard definitions, we have

(1)2 Q2
H= 455 (28)

Therefore, the Hamiltonian represents the total energy of the system

H=T+V. (29)

We have derived the total energy of the system starting from the Lagrangian. This is

necessary to derive energy quantization!

Quantization of Oscillators

A

Epot /B, Ey /B

Quantization means we see the effects of single particles of excitations or excitations, e.g.
the photoelectric effect, where the electromagnetic field is quantized and hence the energy

FE = hw is quantized.
e In a harmonic oscillator, the energy is quantized equidistantly.

e Energy quantization can be seen as counting the number of photons stored in the

oscillator.



In quantum mechanics, variables are replaced by operators, i.e.

q—q:H—>H,
p—=>p:-H—->H,

some examples being the charge ¢ and flux ) operators.

For practical reasons, we often use matrix representations, e.g.,

Qe = (ex|qlec) -

Generically, an operator acting on a state is a matrix times a vector and may be repre-

sented as

(Ow)l 011 012 --. Olj e 77[)1
(O¢)2 021 022 cee O2j . ¢2
Two conjugate variables obey the commutation relation:

For pedagogical purposes, it is convenient to transform systems into the basis of number
states (give matrix representation of a)

0

V1 0

0 V2
0 0 3 -

0
0
0

o o o O

0




0v1i 0 0 --- 0
00 +v20 -~ 0
00 0 +vV3--- 0
a=10 0 0 0 - (33)

Epot /B, Ey /R

These can be interpreted as ladder operators raising and lowering the excitation number

O +ig _—
a= bl is the annihilation operator. (34)
2w, Ch
OO —ig :
af=2r2"4 is the creation operator. (35)
2w, Ch

Their product gives the excitation number of a system



= a'a (36)
Quantization of the LC oscillator
For the superconducting resonator, we have
~2 )
2 p 4q
H="—+—. 37
oL " 2C (37)

We aim to diagonalize H into a form involving only one operator. This can be achieved

via a change of variables:

h“’L(amT), i= hgci(a—af), (33)

where w is a free scalar parameter, which we will choose later. The square root factors

p=

have been inserted for convenience.
Note that (a + a') and i(a — a') are Hermitian and independent.

Eq. is now

2 2
R I e )
=
57 * 2C (39)
hw
-2 (aa* +afa +aat + aTa) (40)
- % (aa* + aTa) . (41)

Using [a,af] = 1, it follows that aa’ = a'a + 1, we obtain

- 1
= m(a*a + 5) . (42)
This tells us that the total energy of the system is given by vacuum fluctuations (+1/2)

and the number of photons stored at frequency w!
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