ELEC-E7450
 Performance Analysis

Basic probability theory

Samuli Aalto
Department of Communications and Networking

Contents

- Basic concepts
- Discrete random variables
- Conditional expectation and variance
- Discrete distributions (count distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other distributions and random variables

Sample space, sample points, events

- Sample space Ω is the set of all possible sample points $\omega \in \Omega$
- Events $A, B, C, \ldots \subset \Omega$ are measurable subsets of the sample space Ω
- Let F denote the set of all events A, which constitutes a σ-algebra
- Sure event: The whole sample space $\Omega \in \mathcal{F}$
- Impossible event: The empty set $\varnothing \in \mathcal{F}$
- Union "A or B":
- Intersection "A and B":
- Complement "not A":

$$
A \cup B=\{\omega \in \Omega \mid \omega \in A \text { or } \omega \in B\} \in \mathcal{F}
$$

$$
A \cap B=\{\omega \in \Omega \mid \omega \in A \text { and } \omega \in B\} \in \mathcal{F}
$$

- Events A and B are disjoint if $A \cap B=\varnothing$
- A set of events $\left\{B_{1}, B_{2}, \ldots\right\}$ is a partition of event A if
- (i) $B_{i} \cap B_{j}=\varnothing$ for all $i \neq j$
- (ii) $\cup_{i} B_{i}=A$

Probability

- Probability of event A is denoted by $P(A) \in[0,1]$
- Probability measure P is thus a real-valued set function defined on the set \mathcal{F} of events, $P: F \rightarrow[0,1]$
- Properties:
- (i) $0 \leq P(A) \leq 1$
- (ii) $P(\varnothing)=0$
- (iii) $P(\Omega)=1$
- (iv) $P\left(A^{c}\right)=1-P(A)$
- (v) $P(A \cup B)=P(A)+P(B)-P(A \cap B)$
- (vi) $A \cap B=\varnothing \Rightarrow P(A \cup B)=P(A)+P(B)$

- (vii) $\left\{B_{i}\right\}$ is a partition of $A \Rightarrow P(A)=\Sigma_{i} P\left(B_{i}\right)$
- \quad (viii) $A \subset B \Rightarrow P(A) \leq P(B)$

Conditional probability

- Assume that $P(B)>0$
- Definition:

The conditional probability of event A given that event B occurred is defined as

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

- It follows that

$$
P(A \cap B)=P(B) P(A \mid B)=P(A) P(B \mid A)
$$

Theorem of total probability

- Let $\left\{B_{i}\right\}$ be a partition of the sample space Ω
- It follows that $\left\{A \cap B_{i}\right\}$ is a partition of event A. Thus (by slide 4)

$$
P(A) \stackrel{(v i i)}{=} \sum_{i} P\left(A \cap B_{i}\right)
$$

- Assume further that $P\left(B_{i}\right)>0$ for all i. Then (by slide 5)

$$
P(A)=\sum_{i} P\left(B_{i}\right) P\left(A \mid B_{i}\right)
$$

- This is the theorem of total probability

Statistical independence of events

- Definition:

Events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- If A and B are independent, then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A)
$$

- Correspondingly:

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}=\frac{P(A) P(B)}{P(A)}=P(B)
$$

Random variables

- Definition:

Real-valued random variable X is a measurable function defined on the sample space $\Omega, X: \Omega \rightarrow \Re$

- Each sample point $\omega \in \Omega$ is associated with a real number $X(\omega)$
- Measurability means that all sets of type

$$
\{X \leq x\}:=\{\omega \in \Omega \mid X(\omega) \leq x\} \subset \Omega
$$

belong to the set F of events, i.e.,

$$
\{X \leq x\} \in \mathcal{F}
$$

- The probability of such an event is denoted by $P\{X \leq x\}$
- Notation:

Capital Letters (such as X) refer to random variables, while small letters (such as x) refer to their values

Indicators of events

- Let $A \in \mathcal{F}$ be an arbitrary event
- Definition:

The indicator of event A is a random variable defined by

$$
1_{A}(\omega)= \begin{cases}1, & \omega \in A \\ 0, & \omega \notin A\end{cases}
$$

- Clearly:

$$
\begin{aligned}
& P\left\{1_{A}=1\right\}=P(A) \\
& P\left\{1_{A}=0\right\}=P\left(A^{c}\right)=1-P(A)
\end{aligned}
$$

Cumulative distribution function

- Definition:

The cumulative distribution function (CDF) of a random variable X is a function $F_{X}: \Re \rightarrow[0,1]$ defined as follows:

$$
F_{X}(x):=P\{X \leq x\}
$$

- CDF determines the distribution of the random variable, i.e.,
- the probabilities $P\{X \in B\}$, where $B \subset \Re$ and $\{X \in B\} \in \mathcal{F}$
- Properties:
- (i) F_{X} is non-decreasing
- (ii) F_{X} is continuous from the right
- (iii) $F_{X}(-\infty)=0$
- (iv) $F_{X}(\infty)=1$

Statistical independence of random variables

- Definition:

Random variables X and Y are independent if for all x and y

$$
P\{X \leq x, Y \leq y\}=P\{X \leq x\} P\{Y \leq y\}
$$

- Definition:

Random variables X_{1}, \ldots, X_{n} are (totally) independent if for all i and x_{i}

$$
P\left\{X_{1} \leq x_{1}, \ldots, X_{n} \leq x_{n}\right\}=P\left\{X_{1} \leq x_{1}\right\} \cdots P\left\{X_{n} \leq x_{n}\right\}
$$

- Definition:

Random variables X_{1}, \ldots, X_{n} are IID if they are independent and identically distributed

- Note:

If X and Y are independent, then also random variables $f(X)$ and $g(Y)$ are independent for any (measurable) functions $f(x)$ and $g(y)$

Contents

- Basic concepts
- Discrete random variables
- Conditional expectation and variance
- Discrete distributions (count distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other distributions and random variables

Discrete random variables

- Definition:

Set $A \subset \Re$ is called discrete if it is

- finite, $A=\left\{x_{1}, \ldots, x_{n}\right\}$, or
- countably infinite, $A=\left\{x_{1}, x_{2}, \ldots\right\}$
- Definition:

Random variable X is discrete if there is a discrete set $S_{X} \subset \mathfrak{R}$ such that

$$
P\left\{X \in S_{X}\right\}=1
$$

- It follows that
- $\quad P\{X=x\} \geq 0$ for all $x \in S_{X}$
- $P\{X=x\}=0$ for all $x \notin S_{X}$
- Definition:

The set S_{X} is called the value space of X

Point probabilities

- Let X be a discrete random variable
- The distribution of X is determined by the point probabilities p_{i},

$$
p_{i}:=P\left\{X=x_{i}\right\}, \quad x_{i} \in S_{X}
$$

- Definition:

The probability mass function (PMF) of X is defined by

$$
p_{X}(x):=P\{X=x\}= \begin{cases}p_{i}, & x=x_{\mathrm{i}} \in S_{X} \\ 0, & x \notin S_{X}\end{cases}
$$

- CDF is in this case a step function:

$$
F_{X}(x)=P\{X \leq x\}=\sum_{i: x_{i} \leq x} p_{i}
$$

Example

probability mass function (PMF)

cumulative distribution function (CDF)

$$
S_{X}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
$$

Expectation

- Definition:

The expectation (mean value) of a discrete random variable X is defined by

$$
E[X]:=\sum_{x \in S_{X}} P\{X=x\} \cdot x
$$

- Note: Expectation of an indicator: $E\left[1_{A}\right]=P\left\{1_{A}=1\right\}=P(A)$
- Properties:
- (i) $\quad c \in \mathfrak{R} \Rightarrow E[c X]=c E[X]$
- (ii) $E[X+Y]=E[X]+E[Y]$
- (iii) X and Y independent $\Rightarrow E[X Y]=E[X] E[Y]$

Monotone Convergence Theorem

- Theorem:

If $X_{i} \geq 0$ for all i, then

$$
E\left[\sum_{i=1}^{\infty} X_{i}\right]=\sum_{i=1}^{\infty} E\left[X_{i}\right]
$$

Variance

- Definition:

The variance of X is defined by

$$
D^{2}[X]:=\operatorname{Var}[X]:=E\left[(X-E[X])^{2}\right]
$$

- Useful formula:

$$
D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}
$$

- Properties:
- (i) $\quad c \in \Re \Rightarrow D^{2}[c X]=c^{2} D^{2}[X]$
- (ii) X and Y independent $\Rightarrow D^{2}[X+Y]=D^{2}[X]+D^{2}[Y]$

Other distribution related parameters

- Definition:

The standard deviation of X is defined by

$$
D[X]:=\sqrt{D^{2}[X]}
$$

- Definition:

The coefficient of variation of $X \geq 0$ is defined by

$$
C[X]:=\frac{D[X]}{E[X]}
$$

- Definition:

The k th moment, $k=1,2, \ldots$, of X is defined as

$$
E\left[X^{k}\right]=\sum_{x} P\{X=x\} \cdot x^{k}
$$

Average of IID random variables

- Let X_{1}, \ldots, X_{n} be independent and identically distributed (IID) with mean μ and variance σ^{2}
- Denote the average (sample mean) as follows:

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- Then

$$
\begin{aligned}
& E\left[\bar{X}_{n}\right]=\mu \\
& D^{2}\left[\bar{X}_{n}\right]=\frac{\sigma^{2}}{n} \\
& D\left[\bar{X}_{n}\right]=\frac{\sigma}{\sqrt{n}}
\end{aligned}
$$

Law of large numbers (LLN)

- Let X_{1}, \ldots, X_{n} be independent and identically distributed (IID) with mean μ and variance σ^{2}
- Weak law of large numbers: for all $\varepsilon>0$

$$
P\left\{\left|\bar{X}_{n}-\mu\right|>\varepsilon\right\} \rightarrow 0
$$

- Strong law of large numbers: with probability 1

$$
\bar{X}_{n} \rightarrow \mu
$$

- It follows that for large values of n

$$
\bar{X}_{n} \approx \mu
$$

Theorem of total probability

- Let X be a random variable. If Y is a discrete random variable, then

$$
P\{X \leq x\}=\sum_{j} P\left\{Y=y_{j}\right\} P\left\{X \leq x \mid Y=y_{j}\right\}
$$

- Application of the theorem of total probability

Contents

- Basic concepts
- Discrete random variables
- Conditional expectation and variance
- Discrete distributions (count distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other distributions and random variables

Conditional expectation

- Definition:

Let X and Y be discrete random variables. The conditional expectation $E[X \mid Y]$ of X (conditioned on Y) is a random variable defined by

$$
\begin{aligned}
& E[X \mid Y]:=f(Y) \\
& f(y):=E[X \mid Y=y]:=\sum_{x \in S_{X}} P\{X=x \mid Y=y\} \cdot x
\end{aligned}
$$

- Properties:
- (i) $E[g(Y) X \mid Y]=g(Y) E[X \mid Y]$
- (ii) $E[X+Y \mid Z]=E[X \mid Z]+E[Y \mid Z]$
- (iii) X and Y independent $\Rightarrow E[X \mid Y]=E[X]$
- (iv) $E[E[X \mid Y]]=E[X] \quad$ (conditioning rule)

Wald's equation

- Let X_{1}, X_{2}, \ldots be IID random variables with mean $E[X]$. In addition, let N be another independent random variable taking values in $\{0,1,2, \ldots\}$. The mean of the random sum $X_{1}+\ldots+X_{N}$ is given by Wald's equation

$$
E\left[\sum_{i=1}^{N} X_{i}\right]=E[N] E[X]
$$

- Proof:

$$
\begin{aligned}
E\left[\sum_{i=1}^{N} X_{i}\right] & =E\left[E\left[\sum_{i=1}^{N} X_{i} \mid N\right]\right] \\
& =E[N \cdot E[X]] \\
& =E[N] \cdot E[X]
\end{aligned}
$$

Conditional variance

- Definition:

Let X and Y be discrete random variables. The conditional variance of X, conditioned on Y, is a random variable defined by

$$
D^{2}[X \mid Y]:=E\left[(X-E[X \mid Y])^{2} \mid Y\right]
$$

- Useful formula:

$$
D^{2}[X]=E\left[D^{2}[X \mid Y]\right]+D^{2}[E[X \mid Y]]
$$

Contents

- Basic concepts
- Discrete random variables
- Conditional expectation and variance
- Discrete distributions (count distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other distributions and random variables

Bernoulli distribution

$$
X \sim \operatorname{Bernoulli}(p), \quad p \in(0,1)
$$

- describes a simple random experiment (called Bernoulli trial) with two possible outcomes: success (1) and failure (0); cf. coin tossing
- success with probability p (and failure with probability $1-p$)
- Value space: $S_{X}=\{0,1\}$
- Point probabilities:

$$
P\{X=0\}=1-p, \quad P\{X=1\}=p
$$

- Mean value: $E[X]=(1-p) \cdot 0+p \cdot 1=p$
- Second moment: $E\left[X^{2}\right]=(1-p) \cdot 0^{2}+p \cdot 1^{2}=p$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=p-p^{2}=p(1-p)$

Binomial distribution

$$
X \sim \operatorname{Bin}(n, p), \quad n \in\{1,2, \ldots\}, p \in(0,1)
$$

- number of successes in a finite sequence of IID Bernoulli trials; $X=X_{1}+\ldots+X_{n}$ with $X_{i} \sim \operatorname{Bernoulli}(p)$
- $n=$ total number of experiments
- $\quad p=$ probability of success in any single experiment
- Value space: $S_{X}=\{0,1, \ldots, n\}$
- Point probabilities:

$$
\begin{aligned}
& \binom{n}{i}=\frac{n!}{i!(n-i)!} \\
& n!=n \cdot(n-1) \cdots 2 \cdot 1
\end{aligned}
$$

$$
P\{X=i\}=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

- Mean value: $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=n p$
- Variance: $D^{2}[X]=D^{2}\left[X_{1}\right]+\ldots+D^{2}\left[X_{n}\right]=n p(1-p)$

Geometric distribution

$$
X \sim \operatorname{Geom}(p), \quad p \in(0,1)
$$

- number of successes until the first failure in a sequence of IID Bernoulli trials
- $\quad p=$ probability of success in any single experiment
- Value space: $S_{X}=\{0,1, \ldots\}$
- Point probabilities:

$$
P\{X=i\}=p^{i}(1-p)
$$

- Mean value: $E[X]=\sum_{i} i^{i}(1-p)=p /(1-p)$
- Second moment: $E\left[X^{2}\right]=\sum_{i} i^{2} p^{i}(1-p)=2(p /(1-p))^{2}+p /(1-p)$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=p /(1-p)^{2}$

Memoryless property

- Geometric distribution has so called memoryless property: for all $i, j \in\{0,1, \ldots\}$

$$
P\{X \geq i+j \mid X \geq i\}=P\{X \geq j\}
$$

- Proof:

$$
P\{X \geq i+j \mid X \geq i\}=\frac{P\{X \geq i+j\}}{P\{X \geq i\}}=\frac{p^{i+j}}{p^{i}}=p^{j}=P\{X \geq j\}
$$

Poisson distribution

$$
X \sim \operatorname{Poisson}(a), \quad a>0
$$

- the limit of binomial distribution as $n \rightarrow \infty$ and $p \rightarrow 0$ so that $n p \rightarrow a$
- Value space: $S_{X}=\{0,1, \ldots\}$
- Point probabilities:

$$
P\{X=i\}=\frac{a^{i}}{i!} e^{-a}
$$

- Mean value: $E[X]=a$
- Second moment: $E[X(X-1)]=a^{2} \Rightarrow E\left[X^{2}\right]=a^{2}+a$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=a$

Properties

- (i) Sum: Let $X_{1} \sim \operatorname{Poisson}\left(a_{1}\right)$ and $X_{2} \sim \operatorname{Poisson}\left(a_{2}\right)$ be independent. Then

$$
X_{1}+X_{2} \sim \operatorname{Poisson}\left(a_{1}+a_{2}\right)
$$

- (ii) Random sample: Let $X \sim \operatorname{Poisson}(a)$ denote the number of elements in a set, and Y denote the size of a random sample of this set (each element taken independently with probability p). Then

$$
Y \sim \operatorname{Poisson}(p a)
$$

- (iii) Random sorting: Let X and Y be as in (ii), and $Z=X-Y$. Then Y and Z are independent (given that X is unknown) and

$$
Z \sim \operatorname{Poisson}((1-p) a)
$$

Contents

- Basic concepts
- Discrete random variables
- Conditional expectation and variance
- Discrete distributions (count distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other distributions and random variables

Continuous random variables

- Definition:

Random variable X is continuous if there is an integrable function $f_{X}: \Re \rightarrow[0, \infty)$ such that for all $x \in \mathfrak{R}$

$$
F_{X}(x):=P\{X \leq x\}=\int_{-\infty}^{x} f_{X}(y) d y
$$

- Function f_{X} is called the probability density function (PDF)
- Set S_{X}, where $f_{X}>0$, is called the value space
- Properties:
- (i) $P\{X=x\}=0$ for all $x \in \mathfrak{R}$
- (ii) $P\{a<X<b\}=P\{a \leq X \leq b\}=\int_{a}^{b} f_{X}(x) d x$
- (iii) $P\{X \in A\}=\int_{A} f_{X}(x) d x$
- (iv) $P\{X \in \mathfrak{R}\}=\int_{-\infty}^{\infty} f_{X}(x) d x=\int_{S_{X}} f_{X}(x) d x=1$

Example

probability density function (PDF) cumulative distribution function (CDF)

$$
S_{X}=\left[x_{1}, x_{3}\right]
$$

Expectation and other distribution related parameters

- Definition:

The expectation (mean value) of X is defined by

$$
E[X]:=\int_{-\infty}^{\infty} x f_{X}(x) d x
$$

- The expectation has the same properties as in the discrete case!
- The other distribution parameters (variance, standard deviation,...) are defined just as in the discrete case
- These parameters have the same properties as in the discrete case

Alternative mean value formula

- If $X \geq 0$ and $c \geq 0$, then

$$
\begin{aligned}
& E[X]=\int_{0}^{\infty} P\{X>x\} d x \\
& E[\min \{X, c\}]=\int_{0}^{c} P\{X>x\} d x
\end{aligned}
$$

Theorem of total probability

- Let X be a random variable. If Y is a continuous random variable, then

$$
P\{X \leq x\}=\int_{-\infty}^{\infty} f_{Y}(y) P\{X \leq x \mid Y=y\} d y
$$

- Application of the theorem of total probability

Contents

- Basic concepts
- Discrete random variables
- Conditional expectation and variance
- Discrete distributions (count distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other distributions and random variables

From geometric to exponential distribution

- Assume that $X_{n} \sim \operatorname{Geom}(1-\mu / n)$ for some $\mu>0$. Now

$$
P\left\{X_{n} \geq n x\right\}=\left(1-\frac{\mu}{n}\right)^{n x} \rightarrow e^{-\mu x}
$$

- Thus, the asymptotic CDF of the rescaled random variable X_{n} / n is

$$
F(x)=1-e^{-\mu x}
$$

Exponential distribution

$$
X \sim \operatorname{Exp}(\mu), \quad \mu>0
$$

- continuous counterpart of the geometric distribution ("failure" prob. $\approx \mu d t$)
- $\mu=$ intensity (of an exponential phase)
- $P\{X \in(t, t+h] \mid X>t\}=\mu h+o(h)$, where $o(h) / h \rightarrow 0$ as $h \rightarrow 0$
- Value space: $S_{X}=(0, \infty)$
- PDF and CDF:

$$
\begin{aligned}
& f_{X}(x)=\mu e^{-\mu x}, \quad x>0 \\
& F_{X}(x):=P\{X \leq x\}=1-e^{-\mu x}
\end{aligned}
$$

Moments

$$
X \sim \operatorname{Exp}(\mu), \quad \mu>0
$$

- Mean value: $E[X]=\int_{0}^{\infty} \mu x e^{-\mu x} d x=1 / \mu$
- Second moment: $E\left[X^{2}\right]=\int_{0}^{\infty} \mu x^{2} e^{-\mu x} d x=2 / \mu^{2}$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=1 / \mu^{2}$
- Standard deviation: $D[X]=\sqrt{ } D^{2}[X]=1 / \mu$
- Coefficient of variation: $C[X]=D[X] / E[X]=1$

Memoryless property and the residual lifetime

- Exponential distribution has so called memoryless property: for all $x, y \in(0, \infty)$

$$
P\{X>x+y \mid X>x\}=P\{X>y\}
$$

- In fact, only the exponential distribution has this property (among the continuous distributions)
- Consider a random interval of length $X \sim \operatorname{Exp}(\mu)$. Assume that we know that the interval is longer than x. Due to the memoryless property, the residual lifetime is also exponentially distributed with mean $1 / \mu$:

$$
\operatorname{MRL}(x):=E[X-x \mid X>x]=\frac{1}{\mu}
$$

- Thus, the mean residual lifetime function $\operatorname{MRL}(x)$ is constant

Hazard rate

- Consider a random interval of length $X \sim \operatorname{Exp}(\mu)$.

Assume that we know that the interval is longer than x. What is the probability that it will end in an infinitesimal interval of length h after time x ?

$$
\begin{aligned}
& P\{X \leq x+h \mid X>x\}=P\{X \leq h\}=1-e^{-\mu h} \\
& =1-\left(1-\mu h+\frac{1}{2}(\mu h)^{2}-\ldots\right)=\mu h+o(h)
\end{aligned}
$$

- Thus, in the limit $(h \rightarrow 0)$, the ending probability per time unit (hazard rate) is constant:

$$
h(x):=\lim _{h \rightarrow 0} \frac{1}{h} P\{X \leq x+h \mid X>x\}=\mu
$$

- Again, only the exponential distribution has this property

Minimum of exponential random variables

- Let X_{1}, \ldots, X_{n} be independent random variables with $X_{i} \sim \operatorname{Exp}\left(\mu_{i}\right)$. Then

$$
X^{\min }:=\min \left\{X_{1}, \ldots, X_{n}\right\} \sim \operatorname{Exp}\left(\mu_{1}+\ldots+\mu_{n}\right)
$$

since

$$
P\left\{X^{\min }>x\right\}=P\left\{X_{1}>x\right\} \ldots P\left\{X_{n}>x\right\}=e^{-\left(\mu_{1}+\ldots+\mu_{n}\right) x}
$$

- In addition, we have

$$
E\left[X^{\min }\right]=\frac{1}{\mu_{1}+\ldots+\mu_{n}}, \quad P\left\{X^{\min }=X_{i}\right\}=\frac{\mu_{i}}{\mu_{1}+\ldots+\mu_{n}}
$$

Erlang distribution

$$
X \sim \operatorname{Erl}(n, \mu), \quad \mu>0
$$

- IID exponential phases in a series; $X=X_{1}+\ldots+X_{n}$, where $X_{i} \sim \operatorname{Exp}(\mu)$
- $n=$ total number of phases
- $\mu=$ intensity of any single phase
- Value space: $S_{X}=(0, \infty)$
- PDF and CDF:

$$
\begin{aligned}
& f_{X}(x)=\mu \frac{(\mu x)^{n-1}}{(n-1)!} e^{-\mu x}, \quad x>0 \\
& F_{X}(x):=P\{X \leq x\}=1-\sum_{i=0}^{n-1} \frac{(\mu x)^{i}}{i!} e^{-\mu x}
\end{aligned}
$$

Moments

$$
X \sim \operatorname{Erl}(n, \mu), \quad \mu>0
$$

- Mean value: $E[X]=E\left[X_{1}\right]+\ldots+E\left[X_{n}\right]=n / \mu$
- Variance: $D^{2}[X]=D^{2}\left[X_{1}\right]+\ldots+D^{2}\left[X_{n}\right]=n / \mu^{2}$
- Second moment: $E\left[X^{2}\right]=E[X]^{2}+D^{2}[X]=n(n+1) / \mu^{2}$
- Standard deviation: $D[X]=\sqrt{ } D^{2}[X]=(\sqrt{ } n) / \mu$
- Coefficient of variation: $C[X]=D[X] / E[X]=1 /(\sqrt{ } n) \leq 1$

Mean residual lifetime

- Consider a random interval of length $X \sim \operatorname{Erl}(n, \mu)$.

Assume that we know that the interval is longer than x.
What is the mean residual lifetime?

$$
\begin{aligned}
\operatorname{MRL}(x) & :=E[X-x \mid X>x] \\
& =\frac{\int^{\infty}\left(1-F_{X}(y)\right) d y}{1-F_{X}(x)}=\frac{1}{\mu} \cdot \frac{\sum_{i=0}^{n-1}(n-i) \frac{(\mu x)^{i}}{i!}}{\sum_{i=0}^{n-1} \frac{(\mu x)^{i}}{i!}}
\end{aligned}
$$

- The mean residual lifetime function $\operatorname{MRL}(x)$ is in this case decreasing (starting from n / μ and approching $1 / \mu$)

Hazard rate

- Consider a random interval of length $X \sim \operatorname{Erl}(n, \mu)$.

Assume that we know that the interval is longer than x.
What is the probability that it will end in a short interval of length h after time x ?

$$
P\{X \leq x+h \mid X>x\}=\frac{P\{x<X \leq x+h\}}{P\{X>x\}}=\frac{f_{X}(x) h+o(h)}{1-F_{X}(x)}
$$

- Thus, the hazard rate is

$$
h(x):=\lim _{h \rightarrow 0} \frac{1}{h} P\{X \leq x+h \mid X>x\}=\frac{f_{X}(x)}{1-F_{X}(x)}=\mu \cdot \frac{\frac{(\mu x)^{n-1}}{(n-1)!}}{\sum_{i=0}^{n-1} \frac{(\mu x)^{i}}{i!}}
$$

- The hazard rate function $h(x)$ is in this case increasing (starting from 0 and approching μ)

Hyperexponential distribution

$$
X \sim \operatorname{Hyp}\left(n, p_{1}, \mu_{1}, \ldots, p_{n}, \mu_{n}\right), \quad \mu_{i}>0, p_{i}>0, \sum_{i} p_{i}=1
$$

- IID exponential phases in parallel; $X=I_{1} X_{1}+\ldots+I_{n} X_{n}$ where $X_{i} \sim \operatorname{Exp}\left(\mu_{i}\right)$ and $I_{i} \sim \operatorname{Bernoulli}\left(p_{i}\right)$ with $I_{1}+\ldots+I_{n}=1$
- $n=$ total number of phases
- $\quad \mu_{i}=$ intensity of phase $i, p_{i}=$ probability of phase i
- Value space: $S_{X}=(0, \infty)$
- PDF and CDF:

$$
\begin{aligned}
& f_{X}(x)=\sum_{i=1}^{n} p_{i} \mu_{i} e^{-\mu_{i} x}, \quad x>0 \\
& F_{X}(x):=P\{X \leq x\}=\sum_{i=1}^{n} p_{i}\left(1-e^{-\mu_{i} x}\right)
\end{aligned}
$$

Moments

$$
X \sim \operatorname{Hyp}\left(n, p_{1}, \mu_{1}, \ldots, p_{n}, \mu_{n}\right), \mu_{i}>0, p_{i}>0, \sum_{i} p_{i}=1
$$

- Mean value: $E[X]=E\left[I_{1} X_{1}\right]+\ldots+E\left[I_{n} X_{n}\right]=p_{1} / \mu_{1}+\ldots+p_{n} / \mu_{n}$
- 2nd moment: $E\left[X^{2}\right]=E\left[I_{1} X_{1}^{2}\right]+\ldots+E\left[I_{n} X_{n}^{2}\right]=2 p_{1} / \mu_{1}^{2}+\ldots+2 p_{n} / \mu_{n}^{2}$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=\ldots$
- Standard deviation: $D[X]=\sqrt{ } D^{2}[X]=\ldots$
- Coefficient of variation: $C[X]=D[X] / E[X]=\ldots \geq 1$

Mean residual lifetime

- Consider a random interval with length $X \sim \operatorname{Hyp}\left(n, p_{1}, \mu_{1}, \ldots, p_{n}, \mu_{n}\right)$. Assume that we know that the interval is longer than x. The mean residual lifetime is now

$$
\operatorname{MRL}(x):=\frac{\int_{x}^{\infty}\left(1-F_{X}(y)\right) d y}{1-F_{X}(x)}=\frac{\sum_{i=1}^{n} p_{i} \frac{1}{\mu_{i}} e^{-\mu_{i} x}}{\sum_{i=1}^{n} p_{i} e^{-\mu_{i} x}}
$$

- The mean residual lifetime function $\operatorname{MRL}(x)$ is in this case increasing (starting from $p_{1} / \mu_{1}+\ldots+p_{n} / \mu_{n}$ and approching $\max _{i} 1 / \mu_{i}$)

Hazard rate

- Consider a random interval with length $X \sim \operatorname{Hyp}\left(n, p_{1}, \mu_{1}, \ldots, p_{n}, \mu_{n}\right)$. Assume that we know that the interval is longer than x. The hazard rate is now

$$
h(x):=\frac{f_{X}(x)}{1-F_{X}(x)}=\frac{\sum_{i=1}^{n} p_{i} \mu_{i} e^{-\mu_{i} x}}{\sum_{i=1}^{n} p_{i} e^{-\mu_{i} x}}
$$

- The hazard rate function $h(x)$ is in this case decreasing (starting from $p_{1} \mu_{1}+\ldots+p_{n} \mu_{n}$ and approching $\min _{i} \mu_{i}$)

Pareto distribution

$$
X \sim \operatorname{Pareto}(b, \beta), \quad b>0, \beta>1
$$

- heavy tail distribution
- $\quad b=$ location parameter
- $\beta=$ shape parameter
- Value space: $S_{X}=(0, \infty)$
- PDF and CDF:

$$
\begin{aligned}
& f_{X}(x)=\beta b\left(\frac{1}{1+b x}\right)^{\beta+1}, \quad x>0 \\
& F_{X}(x):=P\{X \leq x\}=1-\left(\frac{1}{1+b x}\right)^{\beta}
\end{aligned}
$$

Moments

$$
X \sim \operatorname{Pareto}(b, \beta), \quad b>0, \beta>1
$$

- Mean value: $E[X]=\int_{0}^{\infty} \beta b x(1+b x)^{-\beta-1} d x=1 /(b(\beta-1)) \quad$ for $\beta>1$
- Second moment: $E\left[X^{2}\right]=\ldots=2 /\left(b^{2}(\beta-1)(\beta-2)\right) \quad$ for $\beta>2$
- Variance: $D^{2}[X]=\beta /\left(b^{2}(\beta-1)^{2}(\beta-2)\right)$
- Standard deviation: $D[X]=\sqrt{ } \beta /(b(\beta-1) \sqrt{ }(\beta-2))$
- Coefficient of variation: $C[X]=\ldots=\sqrt{ } \beta / \sqrt{ }(\beta-2) \geq 1$
for $\beta>2$
for $\beta>2$
for $\beta>2$

Mean residual lifetime

- Consider a random interval with length $X \sim \operatorname{Pareto}(b, \beta)$.

Assume that we know that the interval is longer than x.
The mean residual lifetime is now

$$
\operatorname{MRL}(x):=\frac{\int_{x}^{\infty}\left(1-F_{X}(y)\right) d y}{1-F_{X}(x)}=\frac{1+b x}{b(\beta-1)}
$$

- The mean residual lifetime function $\operatorname{MRL}(x)$ is in this case linearly increasing (starting from $1 /(b(\beta-1)$) and approching ∞)

Hazard rate

- Consider a random interval with length $X \sim \operatorname{Pareto}(b, \beta)$.

Assume that we know that the interval is longer than x.
The hazard rate is now

$$
h(x):=\frac{f_{X}(x)}{1-F_{X}(x)}=\frac{b \beta}{1+b x}
$$

- The hazard rate function $h(x)$ is in this case decreasing (starting from $b \beta$ and approching 0)

Contents

- Basic concepts
- Discrete random variables
- Conditional expectation and variance
- Discrete distributions (count distributions)
- Continuous random variables
- Continuous distributions (time distributions)
- Other distributions and random variables

Uniform distribution

$$
X \sim \mathrm{U}(a, b), \quad a<b
$$

- continuous counterpart of "casting a dice"
- Value space: $S_{X}=(a, b)$
- PDF:

$$
f_{X}(x)=\frac{1}{b-a}, \quad x \in(a, b)
$$

- CDF:

$$
F_{X}(x):=P\{X \leq x\}=\frac{x-a}{b-a}, \quad x \in(a, b)
$$

- Mean value: $E[X]=\int_{a} b x /(b-a) d x=(a+b) / 2$
- Second moment: $E\left[X^{2}\right]=\int_{a} b x^{2} /(b-a) d x=\left(a^{2}+a b+b^{2}\right) / 3$
- Variance: $D^{2}[X]=E\left[X^{2}\right]-E[X]^{2}=(b-a)^{2} / 12$

Standard normal (Gaussian) distribution

$$
X \sim \mathrm{~N}(0,1)
$$

- limit of the "normalized" sum of IID r.v.s with mean 0 and variance 1
- Value space: $S_{X}=\Re$
- PDF:

$$
f_{X}(x)=\varphi(x):=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^{2}}
$$

- CDF:

$$
F_{X}(x):=P\{X \leq x\}=\Phi(x):=\int_{-\infty}^{x} \varphi(y) d y
$$

- Mean value: $E[X]=0$
- Variance: $D^{2}[X]=1$

Normal (Gaussian) distribution

$$
X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), \quad \mu \in \mathfrak{R}, \quad \sigma>0
$$

- if $(X-\mu) / \sigma \sim \mathrm{N}(0,1)$
- Value set: $S_{X}=\Re$
- PDF:

$$
f_{X}(x)=F_{X}^{\prime}(x)=\frac{1}{\sigma} \varphi\left(\frac{x-\mu}{\sigma}\right)
$$

- CDF:

$$
F_{X}(x):=P\{X \leq x\}=P\left\{\frac{X-\mu}{\sigma} \leq \frac{x-\mu}{\sigma}\right\}=\Phi\left(\frac{x-\mu}{\sigma}\right)
$$

- Mean value: $E[X]=\mu+\sigma E[(X-\mu) / \sigma]=\mu$
- Variance: $D^{2}[X]=\sigma^{2} D^{2}[(X-\mu) / \sigma]=\sigma^{2}$

Properties

- (i) Linear transformation: Let $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ and $\alpha, \beta \in \mathfrak{R}$. Then

$$
Y:=\alpha X+\beta \sim \mathrm{N}\left(\alpha \mu+\beta, \alpha^{2} \sigma^{2}\right)
$$

- (ii) Sum: Let $X_{1} \sim \mathrm{~N}\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $X_{2} \sim \mathrm{~N}\left(\mu_{2}, \sigma_{2}^{2}\right)$ be independent. Then

$$
X_{1}+X_{2} \sim \mathrm{~N}\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

- (iii) Sample mean: Let $X_{i} \sim \mathrm{~N}\left(\mu, \sigma^{2}\right), i=1, \ldots n$, be IID. Then

$$
\bar{X}_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i} \sim \mathrm{~N}\left(\mu, \frac{1}{n} \sigma^{2}\right)
$$

Central limit theorem (CLT)

- Let X_{1}, \ldots, X_{n} be IID with mean μ and variance σ^{2} (and the third moment exists)
- Central limit theorem (CLT):

$$
\frac{1}{\sigma / \sqrt{n}}\left(\bar{X}_{n}-\mu\right) \xrightarrow{\text { i.d. }} \mathrm{N}(0,1)
$$

- It follows that for large values of n

$$
\bar{X}_{n} \approx \mathrm{~N}\left(\mu, \frac{1}{n} \sigma^{2}\right)
$$

Other random variables

- In addition to discrete and continuous random variables, there are so called mixed random variables
- containing some discrete as well as continuous portions
- Example:
- The customer waiting time W in an $\mathrm{M} / \mathrm{M} / 1$ queue has an atom at zero ($P\{W=0\}=1-\rho>0$) but otherwise the distribution is continuous

Summary

- Basic concepts
- Probability, conditional probability, independence, random variable, indicator, distribution, cumulative distribution function
- Discrete random variables
- Point probabilities, expectation, variance, coefficient of variation
- Conditional expectation and variance
- Conditioning rule, random sum of random variables, Wald's equation
- Discrete distributions (count distributions)
- Bernoulli(p), $\operatorname{Bin}(n, p), \operatorname{Geom}(p), \operatorname{Poisson}(a)$
- Continuous random variables
- Density function, expectation
- Continuous distributions (time distributions)
- $\operatorname{Exp}(\mu)$, memoryless property, phase-type distributions, hazard rate, MRL

Appendix: Useful formulas (1)

- Geometric sum:

$$
\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}, \quad 0<x<1
$$

- Exponential function (1):

$$
\sum_{i=0}^{\infty} \frac{x^{i}}{i!}=e^{x}, \quad x \in \mathfrak{R}
$$

- Exponential function (2):

$$
\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=e^{x}, \quad x \in \mathfrak{R}
$$

Appendix: Useful formulas (2)

- Binomial theorem:

$$
(a+b)^{m}=\sum_{n=0}^{m} \frac{m!}{n!(m-n)!} a^{n} b^{m-n}
$$

- Multinomial theorem:

$$
\begin{aligned}
& \left(a_{1}+\cdots+a_{k}\right)^{m}=\sum_{n \in S_{m}} \frac{m!}{n_{1}!\cdots n_{k}!} a_{1}^{n_{1}} \cdots a_{k}^{n_{k}} \\
& S_{m}:=\left\{n=\left(n_{1}, \cdots, n_{k}\right) \geq 0 \mid n_{1}+\cdots+n_{k}=m\right\}
\end{aligned}
$$

