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Basic probability theory

Sample space, sample points, events

Sample space () is the set of all possible sample points @ €
Events A,B,C,... — Q) are measurable subsets of the sample space (2
Let F denote the set of all events A, which constitutes a o-algebra

Sure event: The whole sample space (2 € F
Impossible event: The empty set &  F

Union “A or B”: AuB={weQ|lwecAorweB}e F
Intersection “A and B”: ANB={weQ|weAandwe B} e F
Complement “not A”: A={weQ|lowegA}e F

Events A and B are disjointif AN B =

A set of events {B;, B, ...} is a partition of event A if
+ () BinBj=Yforalli#]
o (i) U B, =A




Basic probability theory

Probability

- Probability of event A is denoted by P(A) < [0,1]

— Probability measure P is thus
a real-valued set function defined on the set f of events, P: f — [0,1]

 Properties:
- (1) 0<PA)<1
- (i) P(@)=0
— (i) P(QY)=1
— (iv) P(A)=1-P(A)
- (v) PAuUB)=P(A)+P(B)-P(ANnB)
- (i) AnB=YJd= P(AuB)=P(A)+P(B)
— (vii) {B;} is a partition of A = P(A) =2; P(B;)
— (viii) AcB=P(A) <P(B)

A




Conditional probability

Assume that P(B) > 0
Definition:

The conditional probability of event A given that event B occurred
IS defined as

P(ANB)

P(AIB)="15,

It follows that

P(AnB)=P(B)P(A|B)=P(A)P(B|A)




Theorem of total probability

Let {B;} be a partition of the sample space (2
It follows that {A M B;} is a partition of event A. Thus (by slide 4)

(vii)
P(A) = 2;P(ANB;)
Assume further that P(B;) > O for all i. Then (by slide 5)

P(A) =2 P(Bj)P(A|B;j)

This is the theorem of total probability




Statistical independence of events

Definition:
Events A and B are independent if

P(AnB)=P(A)P(B)

If A and B are independent, then

_ P(AnB) _ P(A)P(B) _

Correspondingly:

_ P(AnB) _ P(A)P(B) _




Random variables

Definition:
Real-valued random variable X is a measurable function
defined on the sample space 2, X: QQ — R

— Each sample point @ € Q) is associated with a real number X(®)
Measurability means that all sets of type

{X<x}={oeQ| X(w)Lx}cQ

belong to the set F of events, i.e.,
{X<x}e F

The probability of such an event is denoted by P{X < x}

Notation:
Capital Letters (such as X) refer to random variables, while
small letters (such as x) refer to their values




Indicators of events

Let A € T be an arbitrary event

Definition:
The indicator of event A is a random variable defined by
1l weA
1a(w) =
Al@) {O, o ¢ A
Clearly:

P{lp =1} =P(A)
P{lp =0}=P(A®%) =1-P(A)




Cumulative distribution function

Definition:
The cumulative distribution function (CDF) of a random variable X is a
function Fy: R — [0,1] defined as follows:

Fx (X) =P{X <X}

CDF determines the distribution of the random variable, i.e.,
— the probabilities P{X € B}, where Bc Rand {X € B} € F
Properties:
— (i) Fyisnon-decreasing
— (i) Fyis continuous from the right FX(X) /
— (i) Fy(—0)=0
— (iv) Fy(o)=1 ¢« | X




Statistical independence of random variables

Definition:
Random variables X and Y are independent if for all X and y

P{X <Xx,Y <y}=P{X <x}P{Y <y}

Definition:
Random variables X4,..., X, are (totally) independent if for all I and X;

Definition:

Random variables X,..., X, are |ID if they are independent and
identically distributed

Note:

If X and Y are independent, then also random variables f(X) and g(Y)

are independent for any (measurable) functions f(x) and g(y)
11
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Basic probability theory

Discrete random variables

« Definition:
Set A — R is called discrete if it is
— finite, A ={Xq,..., X}, or
— countably infinite, A = {X;, X,...}
« Definition:
Random variable X is discrete if
there is a discrete set Sy — R such that

P{X eSy}=1

» It follows that
— P{X=x}=0 forallx € Sy
— P{X=x}=0 forallx ¢ Sy
« Definition:
The set Sy is called the value space of X

13




Point probabilities

Let X be a discrete random variable
The distribution of X is determined by the point probabilities p;,

pi =P{X =X}, X €Sx

Definition:
The probability mass function (PMF) of X is defined by

Pi, X=Xj€Sx
=P{X =x}=
px (X) =P{X =x} {0, Sy

CDF is in this case a step function:

Fx (X)=P{X <x}= 2. p;

X <X

14




Basic probability theory

Example

[ Px(X) [ Fx(®

X{  Xp XgXg X;  Xp XgXg

v

probability mass function (PMF) cumulative distribution function (CDF)

Sx = X1, X, X3, X4}

15




Basic probability theory

Expectation

* Definition:
The expectation (mean value) of a discrete random variable X is
defined by

E[X]= > P{X =x} x

XESX
— Note: Expectation of an indicator: E[1,] = P{1,=1}=P(A)
 Properties:
— (i) ¢ e R = E[cX]=CcE[X]

— (i) E[X+Y]=E[X]+ E[Y]
— (iii) Xand Y independent = E[XY] = E[X]E[Y]

16




Monotone Convergence Theorem

Theorem:
If X; = 0 for all I, then

E[%O:Xi] = OZO:E[Xi]
i=1 i=1

17




Basic probability theory

Variance

* Definition:
The variance of X is defined by

D2[X]:= Var[X]:= E[(X — E[X])?]
« Useful formula:
D2[X]=E[X?]- E[X]?

 Properties:
— (i) ¢ e R = D?cX]=c?DX]
— (i) X and Y independent = D?[X + Y] = D?[X] + D?[Y]

18




Other distribution related parameters

Definition:
The standard deviation of X is defined by

D[X]:=D?[X]

Definition:
The coefficient of variation of X > 0 is defined by
DIX]
C[X]:= E[X]
Definition:

The kth moment, k = 1,2...., of X is defined as

E[XK1=3, PLX = x3-xK




Average of lID random variables

Let X4,..., X, be independent and identically distributed (IID)
with mean £ and variance o
Denote the average (sample mean) as follows:

. n
Xn =+ X
i=1
Then
E[Xn]=u
_ 2
D[Xp]=S"

D[xn]:%

20




Basic probability theory

Law of large numbers (LLN)

« Let Xy,..., X, be independent and identically distributed (IID)
with mean £ and variance o

« Weak law of large numbers: for all £> 0
P{| X — u> £} -0
- Strong law of large numbers: with probability 1
Xy > u
« It follows that for large values of n

Xn =~ u

21




Theorem of total probability

Let X be a random variable. If Y is a discrete random variable, then
PIX <x}=2 i P{Y = yjIP{X <x]Y =yj}

Application of the theorem of total probability

22
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Basic probability theory

Conditional expectation

* Definition:
Let X and Y be discrete random variables. The conditional expectation
E[X|Y] of X (conditioned on Y) is a random variable defined by

E[X [Y]:= f(Y)

f(y)=E[X|Y=y]l= > P{X=x|Y =y} X
XESX

 Properties:
= () E[9(Y) X[Y]=g(Y) E[X]Y]
— (i) E[X+Y|Z] =E[X|Z] + E[Y]|Z]
— (iii) X and Y independent = E[X]|Y] = E[X]
— (iv) E[E[X|Y]]=E[X] (conditioning rule)

24




Wald’s equation

Let X{, X, ,... be IID random variables with mean E[X]. In addition, let
N be another independent random variable taking values in {0,1,2,...}.
The mean of the random sum X, + ... + X is given by Wald’s equation

E[>N, Xi1= E[N]E[X]

Proof:

E[X N, Xi1=E[E[ZN, X; IN]]
— E[N - E[X]]
— E[N]-E[X]

25




Conditional variance

Definition:
Let X and Y be discrete random variables. The conditional variance of X,
conditioned on Y, is a random variable defined by

DA[X |Y]:= E[(X —E[X [Y])?|Y]

Useful formula:

D2[X]=E[D?[X | Y]]+ D?[E[X | Y]]

26
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Bernoulli distribution

X ~ Bernoulli(p), pe<(0,1)

— describes a simple random experiment (called Bernoulli trial) with two
possible outcomes: success (1) and failure (0); cf. coin tossing

— success with probability p (and failure with probability 1 — p)
Value space: Sy = {0,1}
Point probabilities:

P{X =0}=1-p, P{X=L=p

Mean value: E[X] = (1 —-p)-0+p1l=p
Second moment: E[X?] = (1 — p)-0% + p-1% =p
Variance: D?[X] = E[X?] - E[X]?=p — p? = p(1 — p)

28




Binomial distribution

X ~Bin(n,p), ne{l2,..},pe(0,1)

— number of successes in a finite sequence of IID Bernoulli trials;
X=X+ ... + X, with X; ~ Bernoulli(p)

— N =total number of experiments
— P = probability of success in any single experiment (P ): i'(nn! 5
Value space: Sy = {0,1,...,n RN |
: i . X (0,1} n'=n-(n-1)...2:1
Point probabilities:

P(x == (7' a- ™

Mean value: E[X] = E[X{] + ... + E[X ] =np
Variance: D?[X] = D?[X] + ... + D?[X,] = np(1 - p)

29



Geometric distribution

X ~Geom(p), pe(0])

— number of successes until the first failure
in a sequence of IID Bernoulli trials

— P = probability of success in any single experiment
Value space: Sy = {0,1,...}
Point probabilities:
P{X =i}=p'(1-p)
Mean value: E[X] = > ip'(1 - p) = p/(1 - p)
Second moment: E[XZ] =2 izpi(l —p)=2(p/(1 - p))2 +p/(1-p)
Variance: D?[X] = E[X?] - E[X]? = p/(1 - p)?

30




Memoryless property

« Geometric distribution has so called memoryless property:
foralli,j € {0,1,...}

P{IX>1+ | X21}=P{X > j}
 Proof:

. . . P X_- = |+J ; )
P{X >i+j|X2i}= “F[,{;';i}’}:ppi —pl=pP{x > j}

31




Poisson distribution

X ~Poisson(a), a>0

— the limit of binomial distributionas n — cocand p — 0 so that np — a
Value space: Sy = {0,1,...}
Point probabilities:

P{X = i}:"’i‘—:e_a

Mean value: E[X] = a
Second moment: E[X(X —-1)] =a? = E[X?] =a? + a
Variance: D?[X] = E[X?] - E[X]? = a

32




Properties

(i) Sum: Let X, ~ Poisson(a,) and X, ~ Poisson(a,) be independent.
Then

X1+ X9 ~Poisson(a; +as)

(i) Random sample: Let X ~ Poisson(a) denote the number of
elements in a set, and Y denote the size of a random sample of this set
(each element taken independently with probability p). Then

Y ~ Poisson(pa)

(i) Random sorting: Let X and Y be as in (i1), and Z= X — Y. Then
Y and Z are independent (given that X is unknown) and

Z ~ Poisson((1- p)a)

33
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Basic probability theory

Continuous random variables

* Definition:
Random variable X is continuous if there is an integrable function
fy: 9 — [0, o0) such that for all X € R

X
Fx (x):=P{X <x}= [ fx (y)dy

—Q0

— Function fy is called the probability density function (PDF)
— Set Sy, where fy > 0, is called the value space
 Properties:
— (i) P{X=x}=0 forallx € R
— (i) P{la<X<b}=P{a<X<b} :fab fy(X) dx
— (i) P{X & A} =], f (%) dx
— (iv) P{X € R} =]_"f(x) dx = ISX f (x) dx =1 35




Basic probability theory

Example

[ fx() [ Fx(®

v

probability density function (PDF)  cumulative distribution function (CDF)

SX = [Xl’ X3]

36




Expectation and other distribution related parameters

Definition:
The expectation (mean value) of X is defined by

E[X] = Ofx fy (X) dx

—Q0

The expectation has the same properties as in the discrete case!

The other distribution parameters (variance, standard deviation,...) are
defined just as in the discrete case
— These parameters have the same properties as in the discrete case

37




Alternative mean value formula

If X>0andc >0, then

E[X]= ojOP{X > XX
0

E[min{X,c}] :Tp{x > X}dx
0

38




Theorem of total probability

Let X be a random variable. If Y is a continuous random variable, then
P{X <x}=[" fy (y)P{X <x|Y = y}dy

Application of the theorem of total probability

39
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From geometric to exponential distribution

+ Assume that X, ~ Geom(1 — z/n) for some x> 0. Now
P{Xp2n}=@1-)" >e
* Thus, the asymptotic CDF of the rescaled random variable X,/n is

F(x)=1-e #

41




Exponential distribution

X ~Exp(u), ©>0

— continuous counterpart of the geometric distribution (“failure” prob. ~ zdt)
— = intensity (of an exponential phase)
- P{X e (t,t+nh] | X >t} = ph + o(h), where o(h)/h > 0ash — 0

* Value space: Sy = (0,0)

« PDF and CDF:

fy ()= ™, x>0
Fy (X):=P{X <x}=1-e"#




Basic probability theory

Moments

X ~Exp(y), ©>0

« Mean value: E[X] = IOOO uxe Hdx=1/u

- Second moment: E[X?] = IOOO X% e THX dx = 2/47
. Variance: D?[X] = E[X?] — E[X]? = 1/,/2

. Standard deviation: D[X] = VD?[X] = 1/u

« Coefficient of variation: C[X] = D[X]/E[X] =1

43




Memoryless property and the residual lifetime

Exponential distribution has so called memoryless property:
for all X,y € (0,00)

P{X >Xx+y| X >x}=P{X >y}

In fact, only the exponential distribution has this property (among the
continuous distributions)

Consider a random interval of length X ~ Exp(w).

Assume that we know that the interval is longer than X.

Due to the memoryless property, the residual lifetime is also
exponentially distributed with mean 1/

MRL(X) = E[X — x| X >x]:%

Thus, the mean residual lifetime function MRL(X) is constant
44




Hazard rate

Consider a random interval of length X ~ Exp(w).
Assume that we know that the interval is longer than Xx.
What is the probability that it will end in an infinitesimal interval of

length h after time x?
P{X <x+h|X >x}=P{X <h}=1—¢ AN
=1-(1- ph+1 (uh)? -...) = ph + o(h)

Thus, in the limit (h — 0), the ending probability per time unit (hazard
rate) is constant:

h(x) :=Iimh_)0%P{X <x+h|X >x}=pu

Again, only the exponential distribution has this property

45




Minimum of exponential random variables

«  Let Xq,..., X,, be independent random variables with X; ~ Exp(z4). Then

XM~ min{Xq,..., Xp}~ Exp(eg + ...+ 1)

since
PEX MM S 3= PEXy > X]... P{Xpy > X} =g (KL F - tin)X

 |n addition, we have

E[x Minq_ 1 p xmin _y.y_ A
[x M+ +in { i3 M+ +in

46




Erlang distribution

X ~Erl(n, ), >0

— 1ID exponential phases in a series; X = X; + ... + X, where X; ~ Exp()

— N =total number of phases

— = intensity of any single phase

Value space: Sy = (0,00)

PDF and CDF:

n-1
fy (X) = y(é’ )1)| e x>0

Fx (x):= P{X < x}=1- z(“x) e HX
=0

47




Basic probability theory

Moments

X ~Erl(n, ), >0

« Mean value: E[X] = E[X{] + ... + E[X,] =n/u

»  Variance: D?[X] = D[X,] + ... + D?[X,] = n//?

- Second moment; E[X?] = E[X] % + D?[X] = n(n +1)/./
. Standard deviation: D[X] = VD?[X] = (\n)/u

. Coefficient of variation: C[X] = D[X]/E[X] = 1/(\n) < 1

48




Mean residual lifetime

« Consider a random interval of length X ~ Erl(n, ).

Assume that we know that the interval is longer than Xx.
What is the mean residual lifetime?

MRL(X):=E[X —x| X > X]

© i

J@=Fx (y)dy > (n_i)(ﬂi)l()
=X _1.i=0 -
1-Fx (x) 7 El(ﬂl).()l

« The mean residual lifetime function MRL(X) is in this case decreasing
(starting from N/ and approching 1/1:)
49




Hazard rate

« Consider a random interval of length X ~ Erl(n, ).
Assume that we know that the interval is longer than Xx.
What is the probability that it will end in a short interval of length h after
time x?
P{x<X<x+h} fx (x)h+o(h)
P{X>x} 1-Fx (X)

P{X <x+h|X >x}=
e Thus, the hazard rate is

()"
fx (x) _ (n—l)'

= U
1-Fx (x) z(ux)

h(X) —|'mh—>ohP{X <X+h| X >x}=

« The hazard rate function h(x) is in this case increasing (starting from 0

and approching ) 50




Hyperexponential distribution

X ~Hyp(n, p1. t1,.... Pn ), 445 >0, pj >0, 2 pj =1

— 1ID exponential phases in parallel; X = 1;X; + ... + | X, where
X; ~ Exp(z4) and |; ~ Bernoulli(p;) with I, + ... +1,=1

— N =total number of phases

— 1 = intensity of phase i, p; = probability of phase i
* Value space: Sy = (0,0)
« PDF and CDF:

fx (X) = XLy piie #", x>0

Fx (x)=P{X <x}=Y1, pjd—e #i*)

o1




Basic probability theory

Moments

X ~Hyp(n, Pt g41,.... Pns ), 4 >0, pj >0, 2 pj =1

« Meanvalue: E[X] = E[I{X{]+ ... + E[I . X ] =P/ + ... + P/ 1,

+ 2nd moment: E[X?] = E[1,X,%] + ... + E[I. X°] = 2p,/1t,% + ... + 2P/ 1,2
- Variance: D?[X] = E[X?] - E[X]?= ...

. Standard deviation: D[X] = VD?[X] = ...

« Coefficient of variation: C[X] = D[X]J/E[X]=... > 1

52




Mean residual lifetime

Consider a random interval with length X ~ Hyp(n, pq, 24, ---, Ppy £4,)-
Assume that we know that the interval is longer than Xx.
The mean residual lifetime is now

[A-Fx (Mdy 3 p Lo

MRL(x) := X E— =‘=1n
RS% — L X
> pie

=1

The mean residual lifetime function MRL(X) is in this case increasing
(starting from p,/z, + ... + p,/x, and approching max; 1/.s)

53




Hazard rate

Consider a random interval with length X ~ Hyp(n, pq, 24, ---, Ppy £4,)-
Assume that we know that the interval is longer than Xx.
The hazard rate is now

3 pisie 1%
h(x) = 1:X (x) _i=l A
(0 L
i=1

The hazard rate function h(X) is in this case decreasing (starting from
P14+ ... + P, and approching min; zz)
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Pareto distribution

X ~Pareto(b,5), b>0, 5>

— heavy tail distribution

— b =location parameter

— 3= shape parameter

Value space: Sy = (0,0)

PDF and CDF:

1

i (9=lL )™, x>0

Fy (X) = P{X < x}=1_(1+%

y

95




Basic probability theory

Moments

X ~Pareto(b,5), b>0,5>1

Mean value: E[X] = [, fox(1 + bx) 7 Ldx=1/(b(B- 1))
. Second moment; E[X?] = ... = 2/(b%(B— 1)(B—2))
. Variance: D?[X] = f/(b%(B— 1)2(B-2))
- Standard deviation: D[X] = VA/(b(S— DN(B-2))
- Coefficient of variation: C[X] = ... =VgN(f—-2) > 1

for f>1
for > 2
for > 2
for > 2
for > 2
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Mean residual lifetime

Consider a random interval with length X ~ Pareto(b, /).
Assume that we know that the interval is longer than Xx.
The mean residual lifetime is now

[@-Fx (y))dy

MRL(x) = X LRl

1-Fy (x)  b(B-1)

The mean residual lifetime function MRL(X) is in this case linearly
increasing (starting from 1/(b(/— 1)) and approching o)

S7




Hazard rate

Consider a random interval with length X ~ Pareto(b, /).
Assume that we know that the interval is longer than X.
The hazard rate is now

h(x) = fX(X) _ b
1-Fyx (x) 1+bx

The hazard rate function h(X) is in this case decreasing (starting from
b/ and approching 0)

58
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Uniform distribution

X ~U(a,b), a<b

— continuous counterpart of “casting a dice”
Value space: Sy = (a,b)
PDF:

fy (X) :ﬁ, x e (a,b)
CDF:

Fy (X) = P{X gx}zﬁ, X € (a,b)

Mean value: E[X] =].” x/(b — a) dx = (a + b)/2
Second moment: E[X?] = [.” x?/(b — a) dx = (a® + ab + b?)/3
Variance: D?[X] = E[X?] — E[X]? = (b — a)%/12
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Standard normal (Gaussian) distribution

X ~N(0,)

— limit of the “normalized” sum of IID r.v.s with mean 0 and variance 1
Value space: Sy = R
PDF:

fx (X) = o(x) =

Y
N

CDF:
Fy (X):= P{X <x}=d(x):= [*_g(y)dy

Mean value: E[X] =0
Variance: D?[X] = 1

61




Normal (Gaussian) distribution

X ~N(,u,0'2), ueR, o>0

- if(X=w/o~N(0,1)
Value set: Sy = i
PDF:

fx (9= Fx (9= of *2#)

(o)
CDF:

Fx (X) =P{X <x}= p{X;ﬂ < x—y}: (D(X_—“)

Mean value: E[X] = 1+ oE[(X — w)/c] = u
Variance: D?[X] = 0°D?[(X — u)/o] = &°

62




Basic probability theory

Properties

- (i) Linear transformation: Let X ~ N(z,062) and .3 € R. Then
Y =aX + B~ N(au+ B,a’c?)

« (i) Sum: Let X; ~ N(z1,5¢%) and X, ~ N(15,5,°) be independent.
Then

2 2
X1+ X2 ~N( + 4,00 +05)
(Ii1) Sample mean: Let X; ~ N(z,62),1=1,...n, be IID. Then
n

VAl 2
Xp=13Xj~N(u,to%)
=1

63




Central limit theorem (CLT)

Let Xq,..., X, be IID with mean x and variance o2
(and the third moment exists)
Central limit theorem (CLT):
1 o 1.d.
Xn— N(0,1
7 Xn =) —>NOD

It follows that for large values of n

va 2
Xnp = N(ﬂ,%ﬁ )

64




Other random variables

 |n addition to discrete and continuous random variables,
there are so called mixed random variables

— containing some d
 Example:

iscrete as well as continuous portions

— The customer waiting time W in an M/M/1 queue has an atom at zero
(P{W =0} =1 - p> 0) but otherwise the distribution is continuous

Fy(X)

0

A
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Basic probability theory

Summary

* Basic concepts

— Probability, conditional probability, independence, random variable, indicator,
distribution, cumulative distribution function

» Discrete random variables
— Point probabilities, expectation, variance, coefficient of variation

« Conditional expectation and variance
— Conditioning rule, random sum of random variables, Wald’s equation

« Discrete distributions (count distributions)
— Bernoulli(p), Bin(n,p), Geom(p), Poisson(a)

 Continuous random variables
— Density function, expectation

« Continuous distributions (time distributions)
— Exp(n), memoryless property, phase-type distributions, hazard rate, MRL
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Appendix: Useful formulas (1)

Geometric sum:

o0 .
Zx' :ﬁ, O<x<l1
i1=0

Exponential function (1):

Exponential function (2):

_ N
lim (1+5) —e*, xeNm
n—o N
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Appendix: Useful formulas (2)

Binomial theorem:

" m' npym-—-nmn
m _— pm-
(a+Db) :E:n=0nl(n1—-n)!a

Multinomial theorem:

(ay + -+ @)™ =)

m!

n n
' 'alln-akk
nESm]ll' ...]lk'

Smi=m =g, -, M) 20| ng + -+ =mj
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