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• System has service capacity that is used to serve customers

• Service discipline determines how the service capacity is shared

among the customers

• Customers arrive randomly (incoming traffic), have random service

requirements (service times), and depart after service (outgoing traffic)

• Traffic load depends both on the arrivals and the service requirements

• System performance depends on service capacity, service discipline

and traffic load

Stochastic service system

system

incoming

traffic

outgoing

trafficcustomers
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Interesting questions

• Design: 

Given the traffic load and the required system performance, 

what is the required service capacity (for a given service discipline)?

• Operation:

Given the service capacity and the required system performance, 

what is the maximum traffic load allowed?

• Analysis: 

Given the service capacity, the service discipline, and the traffic load, 

what is the system performance?

• Optimization: 

Given the service capacity and the traffic load, 

what is the optimal service discipline to maximize the performance?
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Relationships between different factors

• Relationships between capacity, load, and performance for any 

reasonable discipline are easy to understand qualitatively

• However, stochastic queueing models are needed to describe the 

relationships quantitatively

capacity performance performance

load load capacity
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performance
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capacity
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load
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Basic queueing model

• Customers arrive at rate l (customers per time unit)

– 1/l = average inter-arrival time (in time units)

• Customers are served by n parallel servers

• When busy, each server serves at rate m (customers per time unit)

– 1/m = average service time (in time units)

• There are p = n + m customer places in the system

– If all n + m customer places are occupied when a new customer arrives, 

the customer is not served but lost
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Kendall’s notation: A/B/n/p/k

• A refers to the arrival process.

Default: IID interarrival times.

• B refers to the service process.

Default: IID service times.

• Distribution codes for A and B:

– M = exponential (memoryless)

– D = deterministic

– G = generally distributed

• n = nr of (parallel) servers

• p = nr of customer places

• k = size of customer population

• Default values (usually omitted):

– p = , k = 

• Examples:

– M/M/1 (Single-server queue)

– M/D/1 (Single-server queue)

– M/G/1 (Single-server queue)

– M/M/n (Multi-server queue)

– M/G/n (Multi-server queue)

– M/G/ (Infinite-server system)

– M/M/ (Poisson model)

– M/M/n/n (Erlang loss system)

– M/M/k/k/k (Binomial model)

– M/M/n/n/k (Engset loss system)

IID = independently 

and identically distributed
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Single-server queue G/G/1

• Customers arrive at rate l (customers per time unit)

– 1/l = average inter-arrival time

• Customers are served by 1 server

• When busy, the server serves at rate m (customers per time unit)

– 1/m = average service time

• There is an infinite number of customer places

– No customers are lost, but they may be delayed and they may accumulate in 

the system if the traffic load is too high (causing delays and even instability)
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Multi-server queue G/G/n

• Customers arrive at rate l (customers per time unit)

– 1/l = average inter-arrival time

• Customers are served by n parallel servers

• When busy, each server serves at rate m (customers per time unit)

– 1/m = average service time

• There is an infinite number of customer places

– No customers are lost, but they may be delayed and they may accumulate in 

the system if the traffic load is too high (causing delays and even instability)

10
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Infinite-server system G/G/

• Customers arrive at rate l (customers per time unit)

– 1/l = average inter-arrival time

• Customers are served by an infinite number of parallel servers

• When busy, each server serves at rate m (customers per time unit)

– 1/m = average service time

• There is an infinite number of customer places

– No customers are lost nor delayed (i.e., an ideal system)

11
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Loss system G/G/n/n

• Customers arrive at rate l (customers per time unit)

– 1/l = average inter-arrival time

• Customers are served by n parallel servers

• When busy, each server serves at rate m (customers per time unit)

– 1/m = average service time

• There are no waiting places

– No customers are delayed, but they may be blocked

if the traffic load is too high (causing losses)
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Little’s formula

• Consider a service system where 

– new customers arrive at rate l

• Assume stability:

– Every now and then, the system is empty

• Consequence:

– Customers are not accumulated in the system so that they depart at rate l

• Let

– N = average number of customers in the system

– T = average time a customer spends in the system = average delay

• Theorem (Little’s formula):

l l

TN l=
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Proof (1)

• N(t) = the number of customers in the system at time t

• A(t) = the number of customers arrived in the system by time t

• B(t) = the number of customers departed from the system by time t

• Ti = the time customer i spends in the system = its delay

• Always

• Due to the stability assumption, we have, as t →  and n → ,
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Proof (2)

• We may assume that

– the system is empty at time t = 0

• Then (see the figures in the following slides) 

• Thus, 

• As t → , we have, by (1) and (2), 

• Q.E.D. 
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Proof (3)

• Single server and FIFO service discipline:
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Proof (4)

• Any number of servers and any service discipline:
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Exponential distribution

– continuous counterpart of the geometric distribution (“failure” prob.  mdt)

– m = intensity (of an exponential phase)

– P{X  (t,t+h] | X > t} = mh + o(h), where o(h)/h → 0 as h → 0

• Value space: SX = (0,)

• PDF and CDF:
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Moments

• Mean value: E[X] = 0
 mx e−mx dx = 1/m

• Second moment: E[X2] = 0
 mx2 e−mx dx = 2/m2

• Variance: D2[X] = E[X2] − E[X]2 = 1/m2

• Standard deviation: D[X] = D2[X] = 1/m

• Coefficient of variation: C[X] = D[X]/E[X] = 1

0   ),(Exp > mmX
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Memoryless property

• Exponential distribution has the so called memoryless property

since

• In fact, only the exponential distribution has this property (among the 

continuous distributions)

• It follows that the mean residual lifetime (MRL) remains the same: 
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• Let X1,…, Xn be independent random variables with Xi  Exp(mi). Then

since 

• In addition, we have 

)(Exp},,min{: 11
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Stochastic processes (1)

• Definition: A (real-valued) stochastic process X = (Xt | t  I) is a 

collection of random variables Xt

– taking values in some (real-valued) set S, Xt(w)  S, and 

– indexed by a real-valued (time) parameter t  I.

• Stochastic processes are also called random processes

– The index set I   is called the parameter space of the process

– The value set S   is called the state space of the process

• As a shorthand notation, Xt is used to refer to the whole stochastic 

process (in addition to a single random variable related to time t)
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Stochastic processes (2)

• Each (individual) random variable Xt is a mapping from the sample 

space W into the real values :

• Thus, a stochastic process X can be seen as a mapping from the 

sample space W into the set of real-valued functions I (with t  I as 

an argument):

• Each sample point w  W is associated with a real-valued function 

X(w). Function X(w) is called a realization of the process.

)(    : ww tt X,X →W

)(    : ww X,X I →W
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Stochastic processes (3)

• Given the sample point w  W

– X(w) = (Xt(w) | t  I) is a real-valued function (of t  I)

• Given the time index t  I, 

– Xt = (Xt(w) | w  W) is a random variable

• Given the sample point w  W and the time index t  I, 

– Xt(w) is a real value
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Examples

• Point process tn

– model for random events in time 

(e.g., arrivals in a queueing system)

– tn = the occuring time of the n-th event

– discrete-time, I = {1,2,…}

– continuous-state, S = (0,)

• Counter process A(t)

– counting random events as time evolves

(e.g., arrivals in a queueing system)

– A(t) = the number of arrivals until time t

– continuous-time, I = [0,)

– discrete-state, S = {0,1,…}

A(t)

t1 t2 t3 t4
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Poisson distribution

– limit of binomial distribution as n →  and p → 0 in such a way that np → a

• Value space: SX = {0,1,…}

• Point probabilities:

• Mean value: E[X] = a

• Second moment: E[X2] = a2 + a

• Variance: D2[X] = E[X2] − E[X]2 = a

0   ),(Poisson > aaX
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Poisson process

• Definition 1: 

A point process (tn | n = 1,2,...) is a Poisson process with intensity l
if the intervals tn − tn−1 are IID with distribution Exp(l)

• Remark: 

The probability that there is a point during a short time interval 

(t, t + h] is lh + o(h) independently of the other time intervals

• Definition 2: 

A counter process (A(t) | t  0) is a Poisson process with intensity l
if its increments A(t) − A(s) in disjoint intervals (s, t] are independent 

obeying the Poisson distribution with parameter l(t − s)
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Three characterizations

• It is possible to show that the different characterizations for a Poisson 

process are, indeed, equivalent

A(t)

t1
t2 t3 t4

t4−t3

a point with probability lh + o(h)

s

A(s)

t

A(t) – A(s)
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Uniformly distributed points

• Property 1 (Uniform distribution):

Let A(t) be a Poisson process with intensity l. If A(t) − A(s) = n, 

these n points are independently and uniformly distributed within

the interval (t, t + s]

– Proof: 

Follows from the discrete-time construction.

l
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Sum process

• Property 2 (Sum): 

Let A1(t) and A2(t) be two independent Poisson processes with 

intensities l1 and l2. Then the sum (superposition) process 

A1(t) + A2(t) is a Poisson process with intensity l1 + l2.

– Proof: 

Probability that there are no points in an interval (t, t+h] the superposition is 

On the other hand, the probability that there is exactly one point is 

)()(1))(1))((1( 2121 hohhohhoh ++−=+−+− llll

)()())())((1())(1))((( 212121 hohhohhohhohhoh ++=++−++−+ llllll

l1

l2

l1+l2
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Random sampling

• Property 3 (Random sampling): 

Let tn be a Poisson process with intensity l.  Denote by sn the point 

process resulting from a random and independent sampling (with 

probability p) of the points of tn. Then sn is a Poisson process with 

intensity pl.

– Proof: 

Probability that there are no points in an interval (t, t+h] the superposition is 

On the other hand, the probability that there is exactly one point is

)(1))()(1())(1( hohphohphoh +−=+−++− lll

)())(( hohphohp +=+ ll
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pl
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Random sorting

• Property 4 (Random sorting): 

Let tn be a Poisson process with intensity l.  Denote by sn the point 

process resulting from a random and independent sampling (with 

probability p) of the points of tn. Denote by rn the point process 

resulting from the remaining points. Then sn and rn are independent 

Poisson processes with intensities lp and l(1 − p), respectively. 

– Proof: 

Due to Property 2, it is enough to prove that the resulting two processes are 

independent. This boils down to show that the number of points during an 

interval in the two processes are independent, which follows from the

discrete-time construction.

l

lp

l(1−p)
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PASTA

• Property 5 (PASTA): 

Consider a stable service system with Poisson arrivals. Let X(t) denote 

the state of system at time t (continuous-time process) and Xn* the 

state of the system seen by the nth arriving customer (embedded 

discrete-time process). Then the limiting distribution of X(t) is the same 

as the limiting distribution of Xn*. Thus, we can say that arriving 

customers see the system in the steady state.

– PASTA = “Poisson Arrivals See Time Averages”

• The PASTA property is only valid for Poisson arrivals (but not for other 

arrival processes)

– Consider e.g. your own laptop. Whenever you start a new session, the 

system is always idle. In continuous time, however, the system is not only 

idle but also busy (when you use it).
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Markov process

• Consider a continuous-time and discrete-state stochastic process X(t)

with a countable state space S

• Definition: 

Process X(t) is a Markov process with transition rates qij  0, j  i, if 

– holding times Ti in state i are independent and exponentially distributed 

with intensity qi := Sji qij

– when jumping, X(t) jumps from state i to state j  i with probability

pij := qij/qi (independently of everything else)

• Remark: 

Each Markov process has the following Markov property

})(|)({})(,,)(|)({ 111111 nnnnnnnn xtXxtXPxtXxtXxtXP ====== ++++ 
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Transition matrix

• State transitions in a Markov process X(t) are time-homogeneous:

• The transition rates qij, j  i, and qi satisfy 

• Denote the corresponding transition matrix by Q, 

with diagonal elements qii := −qi

),;(: SjiqQ ij =

})0(|)({lim

})0(|)({lim

1

0

1

0

iXihXPq

iXjhXPq

hh
i

hh
ij

==

===





})0(|)({})(|)({ iXjtXPisXjtsXP =====+



ELEC-C7210 recap

40

Transition diagram

• A Markov process can be represented by a transition diagram, which is 

a directed graph where

– nodes correspond to states and 

– one-way links correspond to potential state transitions: 

there is a link from node i to j if and only if qij > 0

• Example: 

Markov process with three states, S = {0,1,2}
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Global balance equations (1)

• Definition:

Let p = (pi | pi  0, i  S) be a distribution defined on the state space S, 

It is an equilibrium distribution of the Markov process X(t) if the following 

global balance equations (GBE) are satisfied for each i  S:

• It is possible that no equilibrium distribution exists, or there may be 

multiple of them.

• However, if a unique equilibrium distribution p exists, it is the same as the

limiting distribution:

(N)                             1= Si ip

(GBE)                 = ij jijij iji qq pp

})({lim itXPti == →p
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Global balance equations (2)

• The global balance equations (GBE) are linearly dependent: 

– any one fixed equation is automatically satisfied if the other ones are satisfied

• Therefore, the normalization condition (N) is always needed 

when solving the equilibrium distribution
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Irreducibiliity

• Definition:

There is a path from state i to state j (i → j) if there is a directed path 

from state i to state j in the corresponding transition diagram.

– In this case, starting from state i, the process visits state j with a positive 

probability (sometimes in the future)

• Definition: 

States i and j communicate (i  j) if i → j and j → i.

• Definition: 

Markov process is irreducible if all states i, j  S communicate
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Equilibrium distribution (1)

• Theorem: 

Assume that an irreducible Markov process X(t) has an equilibrium

distribution p.

(i) Then the equilibrium distribution is unique, and equals the limiting

distribution of the process, 

(ii) If additionally the equilibrium distribution is the initial distribution, 

then the process is stationary, and the equilibrium distribution equals

the stationary distribution, 

})({lim itXPti == →p

titXPi   allfor    })({ ==p
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Equilibrium distribution (2)

• Proposition: 

If an irreducible Markov process X(t) does not have an equilibrium

distribution, then

• Proposition: 

An irreducible Markov process X(t) with a finite state space has always

a unique equilibrium distribution p.

iitXPt   allfor     0})({lim ==→
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Example
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Detailed balance equations

• Proposition: 

Let X(t) be a Markov process defined by transition rates qi,j and 

p = (pi | pi  0, i  S) a distribution defined on the state space S: 

•

If the detailed balance equations (DBE)

are satisfied for each pair i,j, then p is an equilibrium distribution of X(t).

– Proof: 

(GBE) follows from (DBE) by summing over all j  i

(N)                             1= Si ip

(DBE)                         jijiji qq pp =
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Birth-death process

• Definition: 

A one-dimensional Markov process X(t) is a birth-death process if 

the state transitions are possible only between neighbouring states, 

• In this case, we denote

• These are called the birth and death rates, respectively.
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Irreducibility

• Remark: 

A birth-death process is clearly irreducible if and only if 

li > 0 and mi+1 > 0 for all i

• State transition diagram of an infinite-state irreducible BD process:

• State transition diagram of a finite-state irreducible BD process:

1 2
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Equilibrium distribution (1)

• Consider an irreducible birth-death process X(t). 

• The equilibrium distribution p (if it exists) can be derived using the 

detailed balance equations (DBE):

• Thus we get the following recursive formula:

• The normalizing condition (N) gives 
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Equilibrium distribution (2)

• Thus, the equilibrium distribution exists if and only if 

• Finite state space: The sum above is always finite, and the equilibrium 

distribution is

• Infinite state space: If the sum above is finite, the equilibrium 

distribution is
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Example (M/M/1/2)
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Pure birth process

• Definition: 

A birth-death process is a pure birth process if mi = 0 for all i  S

• Example: 

Poisson process is a pure birth process with a constant birth rate 

li = l for all i  S = {0,1,…}

1 2
l

0
l l
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Single-server queue M/M/1

• Customers arrive according to a Poisson process at rate l

– 1/l = average inter-arrival time

– IID inter-arrival times obeying the exponential distribution with intensity l

• Customers are served by 1 server

• When busy, the server serves at rate m

– 1/m = average service time

– IID service times obeying the exponential distribution with intensity m

• There is an infinite number of customer places

56

m
l 
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Service discipline

• Definition: 

Service discipline determines the way the customers are served

– It specifies whether the customers are served one-by-one or simultaneously

– If the customers are served one-by-one, it specifies 

the order in which they are taken to service

– If the customers are served simultaneously, it specifies 

how the service capacity is shared among them

• Service discipline is also called as 

queueing discipline, or scheduling discipline

• Definition:

A service discipline is work-conserving

if customers are served whenever the system is non-empty
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Work-conserving service disciplines

• First In First Out (FIFO)

– customers are served one-by-one until completion

– service in the arrival order (“ordinary queue”)

– the customer that arrived first is served with rate m

– also known as First Come First Served (FCFS)

• Processor Sharing (PS)

– customers are served simultaneously

– the service capacity is shared evenly among all customers (“fair queue”)

– when i customers are in the system, each of them is served with rate m/i

– ideal version of the Round Robin (RR) service discipline

• Definition:

A service discipline is non-anticipating

if the service decisions are based only on the history of the system (e.g., 

on the attained service times, but not on the remaining service times)
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Queue length process

• A(t) = the number of arrivals until time t
= arrival process

• B(t) = the number of departures until time t
= departure process

• X(t) = the number of customers at time t
= queue length process
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Related random variables

• X = the number of customers in the system in equilibrium  

= queue length in equilibrium

• X* = the number of customers in the system at a typical arrival time 

= queue length seen by an arriving customer

• W = the waiting time of a typical customer

• S = the service time of a typical customer

• T = W + S = the total time in the system of a typical customer = delay
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Traffic load in M/M/1

• Definition: 

Traffic load r is defined by

• Assume r  1. By applying Little’s formula to the subsystem consisting

of just the server, we get
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State transition diagram

• Let X(t) denote the number of customers in the system at time t

– Assume that X(t) = i at some time t, and 

consider what happens during a short time interval (t, t+h]

– With probability lh + o(h), 

a new customer arrives (state transition i → i+1)

– If i > 0, then, with probability mh + o(h), 

a customer leaves the system (state transition i → i−1)

• Process X(t) is clearly a Markov process with transition diagram

• Note: X(t) is an irreducible birth-death process with an infinite state 

space S = {0,1,2,...}
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Equilibrium distribution (1)

• Detailed balance equations (DBE):

• Normalizing condition (N):
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Equilibrium distribution (2)

• Thus, for a stable system (r  1), the unique equilibrium distribution for 

the queue length X is a geometric distribution:

• This result is valid for any work-conserving and non-anticipating

discipline (incl. FIFO and PS)

• Note on insensitivity: 

– For FIFO, this result is not insensitive to the service time distribution

– However, for any symmetric service discipline (such as PS) 

the result is, indeed, insensitive to the service time distribution
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Mean queue length vs. traffic load
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Mean delay for M/M/1

• Let T = W + S denote the delay of a typical customer

– including both the waiting time W and the service time S

• Applying Little’ formula for a stable system (r  1): 

• The mean delay E[T] is the same for any work-conserving and 

non-anticipating discipline (incl. FIFO and PS)

• But the variance D2[T] and the delay distribution P{T  t} depend on 

the discipline
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Mean waiting time for M/M/1

• Let W denote the waiting time of a typical customer

• Since W = T − S, we have for a stable system (r  1):

• The mean waiting time E[W] is the same for any work-conserving and 

non-anticipating discipline (incl. FIFO and PS)

• But the variance D2[W] and the waiting time distribution P{W  t}
depend on the discipline
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Summary

• Stochastic service system

– service capacity, service discipline, traffic load, system performance

• Basic queueing models

– Kendall’s notation, M/M/1, M/G/1, M/G/n, M/G/

• Little’s formula

• Exponential distribution

– memoryless property

• Poisson process

– IID exponential intervals, merging/splitting, PASTA

• Markov processes

– exponential holding times, transition matrix, transition diagram, GBE, 

equilibrium distribution, irreducibility

• Birth-death processes

– DBE

• M/M/1 queue


