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Background

I Conventional von Neumannn computing architecture based on
moving data between Central Processing Unit (CPU) and the
memory (e.g Random Access Memory, RAM)

I The interface between the CPU and the memory introduces
latency and consumes significant amount of power ("memory wall")

I Especially problematic in computationally intensive tasks, such as
Machine Learning (ML) applications

I 1990’s introduced near-memory computing, still physical
separation between memory and CPU

I In-memory computing: Perform computation inside the physical
memory, rather than moving data back and forth between the CPU
and memory
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Background

Figure: Illustration of differences between the conventional (a) and
in-memory (b) computational architectures. 1

1Sebastian, A. et al. https://doi.org/10.1038/s41565-020-0655-z
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In-memory computing: Introduction

I In-memory computing (IMC) quite literally translates to performing
logic operations with the memory elements

I Memory devices used can be roughly grouped to two:
charge-based and resistance-based devices

I Charge-based memory: state of memory cell is determined by the
presence or absence of charge on certain circuit node

I Primitive structures: Dynamic RAM (DRAM), Static RAM (SRAM)
or Flash

I Flash-based devices seem to be rare, due to high-voltage
requirement for writing, slow access time and reliability issues

I DRAM and SRAM are extensively utilized in IMC as primitives
used to realize different logic functions
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DRAM IMC macro

CA CB CSEL

SA

Vref

Vout

Figure: Example of a DRAM IMC macro

I States stored in capacitances CA and CB , CSEL selects between AND
and OR

I Connect all capacitors in parallel, bit line voltage approximates average
of voltages A, B and SEL

I Vref selected tactically (near VDD)
I Using complementary output of SA, we get complete set of Boolean

operations!
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SRAM IMC macro

Vref

SA

Vref

SA

A AND B A NOR B

B

A

Cpar Cpar

Figure: Example of a SRAM IMC macro

I Bit lines precharged to VDD
I Parasitic capacitance of BL charges/discharges to some

intermediate value between VSS . . .VDD depending on inputs
I Once again, complementing outputs of SA yields functionally

complete set of Boolean operations
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Matrix-vector Multiplication (MVM)

I Matrix-vector Multiplication is a predominant kernel used in ML
applications (e.g. image processing) 2

I Multiplication requires cascaded logic operations using IMC
macros, what if we want to do better?

I Idea is to multiply vector b with matrix A to get output c

A · b = c (1)

I A in above equation represents the weights (multipliers) for the
input data in vector b

I Multiply and accumulate (MAC) between 2-D memory array
(weights) and input data

2N. Verma et al., doi: 10.1109/MSSC.2019.2922889
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MVM kernel for MAC operations

Figure: Conceptual illustration of a MVM kernel performing MAC
operations on input data b. 2

2N. Verma et al., doi: 10.1109/MSSC.2019.2922889
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Comparison of conventional and IMC architectures

Figure: Comparison of conventional and IMC architectures in terms of
basic performance metrics. 2

2N. Verma et al., doi: 10.1109/MSSC.2019.2922889
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In-memory classifier using 6T SRAM 3

Figure: Top-level architecture. Figure: Column-based weak
classifier.

I Application: low-power continuous coarse detection for a fully
functional ML core

I 1-bit weights for each input

3J. Zhang et al., doi: 10.1109/JSSC.2016.2642198.



ELEC-L352001
20.04.2022

14/35

In-memory classifier using 6T SRAM: The DAC 3

I Problem: pre-charged BL/BL voltages may pull the internal nodes
high or low, flipping the state of the SRAM latch!

I The work solves the problem to driving the WL voltage only to 0.4V
(1/3 of supply)

I Offset current source in parallel with IDAC to reduce non-linearity
of lower range of input codes

3J. Zhang et al., doi: 10.1109/JSSC.2016.2642198.
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In-memory classifier using 6T SRAM 3

3J. Zhang et al., doi: 10.1109/JSSC.2016.2642198.
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Robust In-Memory Machine Learning Classifier with
On-Chip Training 4

Figure: Top-level architecture.

I Instead of voltage-based DAC, generate PWM signal (pulse width
proportional to input)

I PVT compensation by on-chip training: reduction in
misclassification rate from 18 % down to 8% with training

4S. K. Gonugondla, et al., doi: 10.1109/ISSCC.2018.8310398.



ELEC-L352001
20.04.2022

17/35

Robust In-Memory Machine Learning Classifier with
On-Chip Training 4

Figure: Effect of PVT compensation by on chip-training.

4S. K. Gonugondla, et al., doi: 10.1109/ISSCC.2018.8310398.
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Robust In-Memory Machine Learning Classifier with
On-Chip Training 4

Figure: Comparison to prior work.

4S. K. Gonugondla, et al., doi: 10.1109/ISSCC.2018.8310398.
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Compute-in-Memory SRAM Macro with Multi-bit
Input, Weight and Output 5

Figure: Top-level architecture.
Figure: 8T SRAM cell.

I Replace 6T SRAM with 8T for better resilience to internal SRAM
errors

I 4-bit input realized with 4 bit unit pulses on RWL line, more linear
than PWM

I Weights realized by sampling RBL on binary weighted capacitors
I 4-b flash ADC for digital output

5M. E. Sinangil et al., doi: 10.1109/JSSC.2020.3031290.
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Compute-in-Memory SRAM Macro with Multi-bit
Input, Weight and Output 5

5M. E. Sinangil et al., doi: 10.1109/JSSC.2020.3031290.
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Compute-in-Memory SRAM Macro with Multi-bit
Input, Weight and Output 5

5M. E. Sinangil et al., doi: 10.1109/JSSC.2020.3031290.
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An SRAM-Based Multibit In-Memory MVM With a
Precision That Scales Linearly in Area, Time, and
Power 6

I Pipelined MAC operation enables scaling of area, time and power
linearly with resolution

6R. Khaddam-Aljameh, et al., doi: 10.1109/TVLSI.2020.3037871.
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An SRAM-Based Multibit In-Memory MVM With a
Precision That Scales Linearly in Area, Time, and
Power 6

I Precision scaling indicates efficiency while taking into account the
accuracy

6R. Khaddam-Aljameh, et al., doi: 10.1109/TVLSI.2020.3037871.
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DIANA: An End-to-End Energy Efficient Digital and
Analog Hybrid Neural Network SoC 7

I SRAM-based analog core used for low-accuracy, but
computationally intensive tasks (convolutional problems, etc)

I Digital core used for simpler, medium-accuracy, tasks
7K. Ueyoshi et al., doi: 10.1109/ISSCC42614.2022.9731716
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DIANA: An End-to-End Energy Efficient Digital and
Analog Hybrid Neural Network SoC 7

7K. Ueyoshi et al., doi: 10.1109/ISSCC42614.2022.9731716
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DRAM-based approach 8

I Memory, DAC and ADC all based on DRAM cells

8S. Xie, et al. doi: 10.1109/ISSCC42613.2021.9365932.
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DRAM-based approach 8

8S. Xie, et al. doi: 10.1109/ISSCC42613.2021.9365932.
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DIMC: Digital In-Memory Computing Macro Based on
Approximate Arithmetic Hardware 9

9D. Wang, et al. doi: 10.1109/ISSCC42614.2022.9731659.
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DIMC: Digital In-Memory Computing Macro Based on
Approximate Arithmetic Hardware 9

9D. Wang, et al. doi: 10.1109/ISSCC42614.2022.9731659.
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DIMC: Digital In-Memory Computing Macro Based on
Approximate Arithmetic Hardware 9

9D. Wang, et al. doi: 10.1109/ISSCC42614.2022.9731659.
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Conclusion

I Traditional von-Neumann architectures suffer from CPU-RAM
bottleneck ("memory wall")
I Throughput (speed)
I Energy penalty

I Bottleneck becomes significant especially computationally
intensive applications, such as ML

I In-memory computing (IMC) is one possible approach of alleviating
the "memory wall" problem

I IMC utilizes memory macros
I SRAM (predominant)
I DRAM
I Flash



ELEC-L352001
20.04.2022

33/35

Conclusion

I Possiblity of using AMS, fully digital approach (or combination of
both)
I AMS-based approaches

I Massive parallelism ⇒ improved bandwidth.
I Loss of generality, flexibility
I Suffer from PVT variations and reduction in SNR
I Suitable for low-accuracy applications

I Digital approaches
I Parallelism requires huge area footprint, limited bandwidth.
I Robust with respect to PVT and noise
I More flexible than AMS approaches

I Surveyed state-of-the-art approaches almost exclusively use
AMS-based approaches and compensate for PVT
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Homework assignment

CA CB CSEL

SA

Vref

Vout

Figure: Example of a DRAM macro

Assumptions: CA = CB = CSEL = C, Cpar ,BL is negligible, SA input
is high-impedance, Vref =

VDD
2

1 Derive output voltages for each input combination assuming VSEL = 0
2 Derive output voltages for each input combination assuming VSEL = VDD

3 Which Boolean operation (AND, OR) is realized in case 1? What about
case 2?
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