

ELEC-L352001: Postgraduate Course in Electronic Circuit Design In-memory computing using charge-based memory elements

Santeri Porrasmaa

Department of Electronics and Nanoengineering Aalto University, School of Electrical Engineering santeri.porrasmaa@aalto.fi

20.04.2022

Outline

Background and motivation

Charge-based in-memory computing

State-of-the-Art

Conclusion

Homework assignment

ELEC-L352001 20.04.2022 2/35

Background

- Conventional von Neumannn computing architecture based on moving data between Central Processing Unit (CPU) and the memory (e.g Random Access Memory, RAM)
- The interface between the CPU and the memory introduces latency and consumes significant amount of power ("memory wall")
- Especially problematic in computationally intensive tasks, such as Machine Learning (ML) applications
- 1990's introduced near-memory computing, still physical separation between memory and CPU
- In-memory computing: Perform computation inside the physical memory, rather than moving data back and forth between the CPU and memory

Background

Figure: Illustration of differences between the conventional (a) and in-memory (b) computational architectures. ¹

¹Sebastian, A. et al. https://doi.org/10.1038/s41565-020-0655-z

Outline

Background and motivation

Charge-based in-memory computing

State-of-the-Art

Conclusion

Homework assignment

ELEC-L352001 20.04.2022 5/35

In-memory computing: Introduction

- In-memory computing (IMC) quite literally translates to performing logic operations with the memory elements
- Memory devices used can be roughly grouped to two: charge-based and resistance-based devices
- Charge-based memory: state of memory cell is determined by the presence or absence of charge on certain circuit node
- Primitive structures: Dynamic RAM (DRAM), Static RAM (SRAM) or Flash
- Flash-based devices seem to be rare, due to high-voltage requirement for writing, slow access time and reliability issues
- DRAM and SRAM are extensively utilized in IMC as primitives used to realize different logic functions

DRAM IMC macro

Figure: Example of a DRAM IMC macro

- States stored in capacitances C_A and C_B, C_{SEL} selects between AND and OR
- Connect all capacitors in parallel, bit line voltage approximates average of voltages A, B and SEL
- V_{ref} selected tactically (near V_{DD})
- Using complementary output of SA, we get complete set of Boolean operations!

SRAM IMC macro

Figure: Example of a SRAM IMC macro

- Bit lines precharged to V_{DD}
- Parasitic capacitance of BL charges/discharges to some intermediate value between V_{SS}...V_{DD} depending on inputs
- Once again, complementing outputs of SA yields functionally complete set of Boolean operations

Matrix-vector Multiplication (MVM)

- Matrix-vector Multiplication is a predominant kernel used in ML applications (e.g. image processing)²
- Multiplication requires cascaded logic operations using IMC macros, what if we want to do better?
- Idea is to multiply vector b with matrix A to get output c

$$A \cdot b = c \tag{1}$$

- A in above equation represents the weights (multipliers) for the input data in vector b
- Multiply and accumulate (MAC) between 2-D memory array (weights) and input data

²N. Verma et al., doi: 10.1109/MSSC.2019.2922889

MVM kernel for MAC operations

Figure: Conceptual illustration of a MVM kernel performing MAC operations on input data b.²

²N. Verma et al., doi: 10.1109/MSSC.2019.2922889

Comparison of conventional and IMC architectures

Figure: Comparison of conventional and IMC architectures in terms of basic performance metrics.²

²N. Verma et al., doi: 10.1109/MSSC.2019.2922889

Outline

Background and motivation

Charge-based in-memory computing

State-of-the-Art

Conclusion

Homework assignment

ELEC-L352001 20.04.2022 12/35

In-memory classifier using 6T SRAM ³

Figure: Top-level architecture.

Figure: Column-based weak classifier.

VDD SRAM

- Application: low-power continuous coarse detection for a fully functional ML core
- 1-bit weights for each input

³J. Zhang et al., doi: 10.1109/JSSC.2016.2642198.

In-memory classifier using 6T SRAM: The DAC ³

- Problem: pre-charged BL/BL voltages may pull the internal nodes high or low, flipping the state of the SRAM latch!
- The work solves the problem to driving the WL voltage only to 0.4V (1/3 of supply)
- Offset current source in parallel with IDAC to reduce non-linearity of lower range of input codes

³J. Zhang et al., doi: 10.1109/JSSC.2016.2642198.

In-memory classifier using 6T SRAM ³

³J. Zhang et al., doi: 10.1109/JSSC.2016.2642198.

ELEC-L352001 20.04.2022 15/35

Robust In-Memory Machine Learning Classifier with On-Chip Training⁴

Figure: Top-level architecture.

- Instead of voltage-based DAC, generate PWM signal (pulse width proportional to input)
- PVT compensation by on-chip training: reduction in misclassification rate from 18 % down to 8% with training

⁴S. K. Gonugondla, et al., doi: 10.1109/ISSCC.2018.8310398.

Robust In-Memory Machine Learning Classifier with On-Chip Training⁴

Figure: Effect of PVT compensation by on chip-training.

⁴S. K. Gonugondla, et al., doi: 10.1109/ISSCC.2018.8310398.

Robust In-Memory Machine Learning Classifier with On-Chip Training ⁴

	[1]	[2]	[5]	[6]	[3]	[4]	this work		
Technology	65nm	28nm HPC	40nm	65nm	65nm	180nm	65nm		
Algorithm	CNN	FC-DNN	matrix mult.	filtering	SVM	AdaBoost	SVM		
Data set	ImageNet	MNIST			MIT-CBCL	MNIST	MIT-CBCL		
Architecture	digital	digital	analog	analog	in-memory	in-memory	in-memory		
On-chip learning	No	No	No	No	No	No	Yes		
Total SRAM size (kb)	1449.2	9248	-	-	128	103.6	128		
Energy/Decision	7.94mJ ^d	0.56uJ	-	-	0.4nJ	0.6nJ	0.042nJ		
Decisions/s	35	28.8k ^d	-	-	9.2M	7.9M	32M		
# of MACs/Decision	2663M	334k	-	-	512	-	128		
Max. accuracy (%)	-	98	-	-	96	91	96		
MAC level metrics									
MAC precision ^a $(B_x \times B_w)$	16°×16°	85×85	35×65	8×14⁵	8×8	5×1	8×8s		
Efficiency (TOPS/W)	0.336 ^d	0.56 ^d	3.84 ^b	0.5 ^b	1.25	-	3.125		
MAC energy (E _{MAC}) (pJ)	2.98 d	1.79 ^d	0.26 ^b	2 ^b	0.8	-	0.32		
precision-scaled MAC energy ^c (fJ)	11.6	28	14.4 ^b	17.857 ^b	12.5	-	4.9		
Estimated performance of prior art to realize SVM algorithm with vector dimension of 128									
Energy/Decision (nJ)	0.381	0.229	0.033 ^b	0.256 ^b	0.102	-	0.042		
Decisions/s	250M	75M	19.5M	350k	36.8M	-	32M		
# MACs per cycle	168	8	1	64	256	10,368	128		
^a s indicates signed; B _x : input precision; B _w : weight precision ^b does not include SRAM memory access			n ^c normalize	$^{\circ}$ normalized to account for operand precision ($E_{MAC}/(B_X \times B_w)$) d estimated from reported data					

Figure: Comparison to prior work.

⁴S. K. Gonugondla, et al., doi: 10.1109/ISSCC.2018.8310398.

Compute-in-Memory SRAM Macro with Multi-bit Input, Weight and Output ⁵

Figure: 8T SRAM cell.

Figure: Top-level architecture.

- Replace 6T SRAM with 8T for better resilience to internal SRAM errors
- 4-bit input realized with 4 bit unit pulses on RWL line, more linear than PWM
- Weights realized by sampling RBL on binary weighted capacitors
- <u>4-b flash ADC for digital output</u>
 - ⁵M. E. Sinangil et al., doi: 10.1109/JSSC.2020.3031290.

Compute-in-Memory SRAM Macro with Multi-bit Input, Weight and Output ⁵

Fig. 6. Comparison of (a) pulsewidth modulation and (b) multiple unit pulses with respect to linearity of multi-bit representation. Multiple unit pulses provide better linearity when comparing the total charge removed for 4'd1 and 4'd2 input activations.

⁵M. E. Sinangil et al., doi: 10.1109/JSSC.2020.3031290.

ELEC-L352001 20.04.2022 20/35

Compute-in-Memory SRAM Macro with Multi-bit Input, Weight and Output ⁵

TABLE I

COMPARISON OF THIS WORK TO PREVIOUSLY PUBLISHED WORK

	JSSC'17 [15]	ISSCC'18 [16]	ISSCC'18 [17]	ISSCC'18 [18]	ISSCC'19 [19]	This Work		
Technology	130nm	65nm	65nm	65nm	55nm	7nm		
Array Size	16kb	128kb	4kb	16kb	3.8k	4	4kb	
Cell Type	6T	6T	S6T	10T	T8T	8	T	
Push Rule	No	No	Yes	No	Yes	Yes		
Bitcell Area (µm²)	4.334	NA	0.525	NA	0.865	0.053		
Input Bits	4	1	1	7	4	4		
Weight Bits	1	8	1	1	5	4		
Output Bits	1	4	1	7	7	4		
Power Supply (V)	1.2 & 0.4	1.0	1 & 0.8	1.2 & 0.9	1.0	0.8	1.0	
Cycle Time (ns)	20	NA	2.3	150	10.2	5.5	4.5	
Throughput (GOPS)	NA	4	1780 ¹⁾	10.67	17.6	372.4 2)	455.1	
Energy Efficiency (TOPS/W)	NA	3.125	55.8	28.1	18.4	262.3 ~ 610.5 351 in average	189.3 ~ 435.5 321 in average	

1) Each operation is only 1b X 1b

2) Each 4b X 4b is considered as 2 operations

⁵M. E. Sinangil et al., doi: 10.1109/JSSC.2020.3031290.

ELEC-L352001 20.04.2022 21/35 An SRAM-Based Multibit In-Memory MVM With a Precision That Scales Linearly in Area, Time, and Power ⁶

Pipelined MAC operation enables scaling of area, time and power linearly with resolution

⁶R. Khaddam-Aljameh, et al., doi: 10.1109/TVLSI.2020.3037871.

An SRAM-Based Multibit In-Memory MVM With a Precision That Scales Linearly in Area, Time, and Power ⁶

Metric Thorows RexCP (J) RexCP (J) RexCP (J) RexCP (J) Opendry Margin IV 0.8 1.0 1.0 0.0 0.0 0.0 Opendry Margin IV 0.8 1.0 1.0 0.0						
Technology (perspiny blags) 14 um Stankard Stankard (perspiny blags) 14 um Stankard (perspiny blags) 14 um Stankard (perspiny blags) 14 um Stankard (perspiny blags) 65 um Stankard (perspiny blags) 75 um Stankard (perspiny blags) <th75 um<br="">Stan</th75>	Metric	This work	ISSCC*20 [30]	JSSC'19 [18]	JSSC'19 [17]	JSSC'20 [31]
Operating Solution 0.8 1.0 1.0 0.9, 0.08, 1.02 1 Instends obtained from Stable Prof. Portality New registering Mesourcesing Inget DA coversion Pails Digital Portality Portality New registering New registering <td>Technology</td> <td>$14\mathrm{nm}$</td> <td>$7\mathrm{nm}$</td> <td>$65\mathrm{nm}$</td> <td>$65\mathrm{nm}$</td> <td>$65\mathrm{nm}$</td>	Technology	$14\mathrm{nm}$	$7\mathrm{nm}$	$65\mathrm{nm}$	$65\mathrm{nm}$	$65\mathrm{nm}$
Number of participants Simulation Monument Monument Monument Monument Input DA Conversion PII Dirag PNM Aused Normany Normany Normany Model DA Conversion PII Dirag Outper during Normany	Operating Voltage in V	0.8	1.0	1.0	0.94, 0.68, 1.2	1
Input DA conversion Full P [SM PRI P	Numbers obtained from:	Simulation	Measurement	Measurement	Measurement	Measurement
Weight DAC concersion Fall p End	Input D/A conversion	Fully Digital FSM	PWM-based	Partially PWM-based	Not required (binary only)	Not required (binary only)
Openp AD conversion Bits SAR ADC 4th Flash-ADC Number of prediction	Weight D/A conversion	Fully Digital FSM	Charge-sharing- based	Not required (binary only)	Not required (binary only)	Not required (binary only)
SRAM sizer 296 KB 4KB 2KB 205 KB 10 KB SRAM bacel RT RT RT 10 11 11 SRAM shoel 12 1 16 1 1 SRAM shoel 12 1 16 1 1 SRAM shoel 10 1 1 1 1 SRAM shoel 10 1 1 1 1 SRAM sheel 10 4 0 1 1 1 Number of inpubsion 8 4 7 1 5 1 5 And indersema sheet of weight kin , -	Output A/D conversion	8bit SAR ADC	4bit Flash-ADC	7bit charge- sharing ADC	Batch-Norm. using 6bit DAC	5bit Flash-ADC
SRAM backell SPT SPT IOT IOTLC STLC SRAM backell SRAM backell SPT 4 61 1 1 SRAM backell SRAM backell SPT 4 61 1 1 Number of uppebba (n_x + sign) 6 4 6 1 1 Number of uppebba (n_x + sign) 6 4 7 1 5 Relation brevene multer of evide harm ,	SRAM size	$256\mathrm{KB}$	$4 \mathrm{KB}$	$2 \mathrm{KB}$	$295\mathrm{KB}$	16 KB
SRAM works per MCU (nature) 12 1 16 1 1 Mather of weight kins - man (reg + min) 0 4 0 1 1 Number of organ kins 8 4 7 1 5 Relation between mather of weight kins - 	SRAM bitcell	8T	8T	10T	10T1C	8T1C
$\label{eq:second} \begin{split} & \text{Number of wight bits} (m_{\mu} \to 4 m) & 6 & 4 & 1 & 1 & 1 \\ \text{Number of struct bits} & & 8 & 4 & 7 & 1 & 5 \\ \text{Minder of struct bits} & & 8 & 4 & 7 & 1 & 5 \\ Harming the origination of the structure of$	SRAM words per IMCU (nshared)	32	1	16	1	1
Number of graph-bits (n ₁ + sign.) 6 4 6 1 1 Relative breveen number of veight-hits num (schlare trapped bits num (schlare trapped bits) 6 4 6 1 5 Relative breveen number of veight-hits num (schlare trapped bits) 1 5	Number of weight-bits $(n_w + \text{sign})$	6	4	1	1	1
Number domptehin B 4 7 1 5 Relation between number of explicit is , , , , , , , , , , , , , , , , , ,	Number of input-bits $(n_x + \text{sign})$	6	4	6	1	1
Relation between number of weight sites n _n	Number of output-bits	8	4	7	1	5
and lettry area linear cepsential humy only	Relation between number of weight-bits n_w					
and latery linear linear <thlinear< th=""> <thl< td=""><td> and (cell) area</td><td>linear</td><td>exponential¹</td><td>binary only</td><td>binary only</td><td>binary only</td></thl<></thlinear<>	and (cell) area	linear	exponential ¹	binary only	binary only	binary only
	and latency	linear	constant	binary only	binary only	binary only
Relation between number of inputs bin ny. ad latersy to outstart Initiant constant cespenential constant staary coly linear binary coly binary coly binary coly And Tongleyet (TOPs) 2.43 [0.52 0.57] 0.047 0.068 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.57 0.58 0.56 0.58 0.57 0.58 0.56 0.58 0.56	and power	linear	linear	binary only	binary only	binary only
ad latery linear linear epsential epsential hinary only hinary only Peak Tougher (FOPs) 2.41 (8.27 0.372 (0.04* 0.08 18.79 16.18 - with precision scaling 3.53 (18.28* 0.583 (6.04* 0.08 18.79 16.38 - with precision scaling 3.53 (18.28* 0.583 (6.04* 0.04 18.79 16.38 - more precision scaling 0.73 (18.2* 0.53 (16.44* 0.23 36.6 67.15 - with precision scaling 0.73 (18.2* 0.56 (6.045* 2.04 86.6 67.15 - with precision scaling 0.52 (3.04** 16.64 (12.5* 0.052 1.5 0.32.2 - with precision scaling 0.42 (3.04** 16.20 (20.5** 0.55 1.5 0.32.2	Relation between number of input-bits n _x					
	and latency	linear	exponential ¹	exponential ¹	binary only	binary only
Path Thoughput (TOPs) 2.41 [0.52" 0.372 [0.04" 0.008 18.79 16.58	and power	constant	constant	linear	binary only	binary only
with precision scaling #7.38 [18.27] 5.588 [0.64] 0.048 [18.79 1.638] margor [Baticary (TOPWW)] [0.44] 1.542 5.588 [0.64] 0.043 [0.66] 6.113 Anse Efficiency (TOPNume ²) 5.99 [0.66] 1.542 [0.547] 0.062 [0.55] 1.5 20.22 with precision scaling [0.422] 0.064 [0.164] [12.537] 0.0653 [1.5 20.22]	Peak Throughput (TOP/s)	2.43 0.52*	0.372 0.04*	0.008	18.79	1.638
Bareys Efficiency (TOPPu/W) 16.94 3.65 3.51 37.8° 40.3 866 67.15 with precision scalar (9097, 1131, 55 5616 604.8° 241.8 866 67.15 Areas Efficiency (TOP/v/Wn ²) 3.98 18.64 12.53* 0.092 1.5 20.22 with precision scalar 143.2 30.45* 186.2 0.05* 1.5 20.22	with precision scaling	87.38 18.82*	5.958 0.64*	0.048	18.79	1.638
with precision scaling 609.7 131.3* 561.6 604.8* 241.8 866 671.5 Area Efficiency (TOPI/s/mm ²) 398 0.86* 116.4 12.53* 0.092 1.5 20.22 with precision scaling 143.2 30.84* 1862 200.5* 0.553 1.5 20.22	Energy Efficiency (TOP/s/W)	16.94 3.65*	351 37.8*	40.3	866	671.5
Area Efficiency (TOP//mm ²) 3.98 0.86* 116.4 12.53* 0.092 1.5 20.22 with precision scaling 143.2 30.84* 1862 200.5* 0.553 1.5 20.22	with precision scaling	609.7 131.3*	5616 604.8*	241.8	866	671.5
with precision scaling 143.2 30.84* 1862 200.5* 0.553 1.5 20.22	Area Efficiency (TOP/s/mm2)	3.98 0.86*	116.4 12.53*	0.092	1.5	20.22
	with precision scaling	143.2 30.84*	1862 200.5*	0.553	1.5	20.22

1 scales with power of 2, * Normalized to 65 nm

Precision scaling indicates efficiency while taking into account the accuracy

⁶R. Khaddam-Aljameh, et al., doi: 10.1109/TVLSI.2020.3037871.

DIANA: An End-to-End Energy Efficient Digital and Analog Hybrid Neural Network SoC ⁷

- SRAM-based analog core used for low-accuracy, but computationally intensive tasks (convolutional problems, etc)
- Digital core used for simpler, medium-accuracy, tasks

⁷K. Ueyoshi et al., doi: 10.1109/ISSCC42614.2022.9731716

DIANA: An End-to-End Energy Efficient Digital and Analog Hybrid Neural Network SoC ⁷

	ISSCC21 Digital [2]	ISSCC21 In-memory [3]	ISSCC21 In-memory [4]	DIANA Our work			
Technology	28nm	65nm	16nm	22nm	22nm		
Architecture	Digital	AMC	AIMC	CRISC-V+digital+AiMC	CRISC-V+digital+AiMC		
Precision(A)	8	2/4/5/8	1-8	7(analog), 2/4/8 (digital)	,		
Precision(W)	8	1-8	1-8	temary (analog) 2/4/8 (digital)			
Clock freq. (MHz)	100-470	25-100	200	50-320			
Peak performance (TOPs)	0.14 @ 470MHz	3.16 @100MHz	11.8 @ 200MHz	29.5 (analog) @250MHz 0.14 (digital) @250MHz			
Area efficiency (Tops/mm2)	0.745	0.380	2.67	12.88 (AIMC macro) 3.33 (analog + digital)			
Peak efficiency (TOPsW)	12.1 @0.9V, 470MHz	370 (macro) 75.9 (system*)	121 (macro)	Digital Core: 4.1 (0.55V, 50MHz) (measured)	Analog Core: 600 (Logic&mem:0.55V, 70MHz AIMC: 0.56V) (measured)		
CIFAR10 TOP6W		24.14(macro) 9.01(system*) (4b-4b)	78.3 (macro)	14.4 (Logio&mern: 0.55V, 75MHz, AMC: 0.55V) (system, end-to-end all digital and analog) (measured)			
CIFAR10 Latency		7.95 ms	0.13ms	1.24 ms (same condition	1.24 ms (same condition as above row)		
ImgNet TOPs/W	12.62**	7.32 (macro*) 2.75 (system*)	11.67 (macro)	67.8 (system on analog-executed layers) 19.0 (system, end-to-end all digital and analog) (Logio&mem: 0.8V, 250MHz, AMC: 0.8V, simulated)			
ImgNet Latency	24.8 ms (end-to-end)	112 ms (estimated from typical layer result)	1.72 ms (excluding CONV1, FC)*	6.15ms (end-to-end, sin	rulated)		
End-to-End	Yes	No	No	Yes			

* Not including subsampling layers (batch normalization, pooling).

** Skips computation by predicting zero output

⁷K. Ueyoshi et al., doi: 10.1109/ISSCC42614.2022.9731716

ELEC-L352001 20.04.2022 25/35

DRAM-based approach⁸

Memory, DAC and ADC all based on DRAM cells

⁸S. Xie, et al. doi: 10.1109/ISSCC42613.2021.9365932.

DRAM-based approach⁸

	This work	ISSCC'20 [3]	ISSCC'20 [4]	ISSCC'20 [5]	ISSCC'18 [6]
Technology	65nm	28nm	28nm	22nm	65nm
Memory Cell Structure	ture 1T1C eDRAM		6T + Local Computing SRAM	1T1R SLC ReRAM	6T SRAM
Array Size	16Kb	64Kb	64Kb	2Mb	128Kb
Input Precision (bit)	8	8	8	4	8
Weight Precision (bit)	8	8	8	4	8
Supply Voltage (V)	1~1.2	0.85~1.0	0.7~0.9	0.8	1
Dataset	CIFAR-10		CIFA	R-10	
Model	CNN: 4 CONV + 2 Pooling + 2 FC	CNN: ResNet-20	CNN: ResNet-20	N/A	SVM
Measured Accuracy	80.1% (Top-1), 98.1 % (Top-5)	⁵ 91.91%	⁵ 92.02%	N/A	583.27%
Throughput (GOPS)	1.34.71	N/A	N/A	N/A	4
Average Energy Efficiency (TOPS/W)	¹ 4.76	7.3 ² (1.35)	14.08 2(2.61)	28.93 ² (3.31)	3.125
GOPS/mm ²	8.26	N/A	N/A	N/A	2.78
⁴ FoM	304.6	86.4	167	53	201.6

Imeasured at 1.1V

²Scaled to 65nm, assume energy << (Tech.)² [8]

³Limited by clocking infrastructure, chip size, technology and bit cell area

4FoM = input precision x weight precision x energy efficiency (scaled to 65nm)

⁵Top-1 or Top-5 is not mentioned

⁸S. Xie, et al. doi: 10.1109/ISSCC42613.2021.9365932.

ELEC-L352001 20.04.2022 27/35

DIMC: Digital In-Memory Computing Macro Based on Approximate Arithmetic Hardware ⁹

⁹D. Wang, et al. doi: 10.1109/ISSCC42614.2022.9731659.

DIMC: Digital In-Memory Computing Macro Based on Approximate Arithmetic Hardware ⁹

⁹D. Wang, et al. doi: 10.1109/ISSCC42614.2022.9731659.

ELEC-L352001 20.04.2022 29/35

DIMC: Digital In-Memory Computing Macro Based on Approximate Arithmetic Hardware ⁹

	This work		1000004/01				
	DIMC-D	DIMC-S	1550021[2]	JSSC20[3]	1550021[5]	ESSCIRCIA[/]	
Technology[nm]	28	28	16	65	22	65	
MAC operation	Digital	Digital	AMS	AMS	Digital	Digital	
Array size	16Kb	16Kb	4.5Mb	16Kb	64Kb	16Kb	
Macro size (mm ²)	0.033	0.049	11	0.081	0.202	0.227	
Area efficiency [F ² /b]	2,569	3,814	9,179	1,170	6,368	3,279	
Supply voltage [V]	0.45-1.10	0.45-1.10	0.8	0.8	0.72	0.6-0.8	
Activation precision (bit)	1	1-4	1-8	1	1-8	1-16	
Weight precision [bit]	1	1	1-8	1	4/8/12/16	4/8/12/16	
Operating frequency [MHz]	280	250	201	50	500	138	
Input toggle rate	25%	25%	NA	NA	18%	NA	
Energy efficiency [TOPS/W]	1,108 @ 0.9V	154 @ 0.9V (4b1b)	101 0 0 00 (41-41-)	674 @ 0.014	89 @ 0.72V (4b4b)	117 @ 0.6V (1b1b)	
	2,219 @ 0.5V	248 @ 0.5V (4b1b)	121 (20.00 (4040)	0/1@0.04			
Throughput [GOPS] ²	9,175@0.9V	2,035 @ 0.9V (4b1b)	41 @ 0.91/(4545)	1000 0 0 001	005 0 0 70 (1) (1)		
	20,032 @ 1.1V	4,804 @ 1.1V (4b1b)	41 (@ 0.09 (4040)	1,030 @ 0.04	025 (20.72 (4040)	307 @ 0.89 (1010)	
CIFAR-10 accuracy	86.96%	90.41%	91.51%	85.50%	NA	NA	

1 Computed from throughput and array size; 2 Normalized array size to 16kb.

⁹D. Wang, et al. doi: 10.1109/ISSCC42614.2022.9731659.

Outline

Background and motivation

Charge-based in-memory computing

State-of-the-Art

Conclusion

Homework assignment

ELEC-L352001 20.04.2022 31/35

Conclusion

- Traditional von-Neumann architectures suffer from CPU-RAM bottleneck ("memory wall")
 - Throughput (speed)
 - Energy penalty
- Bottleneck becomes significant especially computationally intensive applications, such as ML
- In-memory computing (IMC) is one possible approach of alleviating the "memory wall" problem
- IMC utilizes memory macros
 - SRAM (predominant)
 - DRAM
 - Flash

ELEC-L352001 20.04.2022 32/35

Conclusion

- Possiblity of using AMS, fully digital approach (or combination of both)
 - AMS-based approaches
 - Massive parallelism \Rightarrow improved bandwidth.
 - Loss of generality, flexibility
 - Suffer from PVT variations and reduction in SNR
 - Suitable for low-accuracy applications
 - Digital approaches
 - Parallelism requires huge area footprint, limited bandwidth.
 - Robust with respect to PVT and noise
 - More flexible than AMS approaches
- Surveyed state-of-the-art approaches almost exclusively use AMS-based approaches and compensate for PVT

Outline

Background and motivation

Charge-based in-memory computing

State-of-the-Art

Conclusion

Homework assignment

ELEC-L352001 20.04.2022 34/35

Homework assignment

Figure: Example of a DRAM macro

Assumptions: $C_A = C_B = C_{SEL} = C$, $C_{par,BL}$ is negligible, SA input is high-impedance, $V_{ref} = \frac{V_{DD}}{2}$

- Derive output voltages for each input combination assuming $V_{SEL} = 0$
- ② Derive output voltages for each input combination assuming $V_{SEL} = V_{DD}$
- Which Boolean operation (AND, OR) is realized in case 1? What about case 2?

