

1

Contents

- Renewal sequences
- Renewal reward sequences
- Regenerative processes

Renewal sequence

• Definition:

Let (T_n) be a sequence of independent and identically distributed (IID) positive random variables. Sequence (τ_n) of random variables defined by

$$\tau_0 \coloneqq 0, \quad \tau_n \coloneqq T_1 + \dots + T_n$$

is a renewal sequence. Variables T_n are called renewal intervals.

• Example:

Poisson (point) process (τ_n) is a renewal sequence with exponentially distributed intervals T_n .

Renewal process

• Definition:

Let (τ_n) be a renewal sequence. Counter process N(t) defined by

$$N(0) \coloneqq 0, \quad N(t) \coloneqq \sum_{n=1}^{\infty} \mathbb{1}\{\tau_n \le t\}$$

is called the corresponding renewal process.

• Example:

Poisson (counter) process N(t) is a renewal process with exponentially distributed intervals T_n .

• Note that

$$\{N(t) \ge n\} = \{\tau_n \le t\}$$

Elementary renewal theorem

• The latter part is called the elementary renewal theorem.

Blackwell's theorem

• This is called **Blackwell's theorem**.

Stopping times and Wald's equation

• **Definition:** Let (T_n) be an IID sequence.

Random variable *N* is a stopping time with respect to sequence (T_n) if event $\{N = n\}$ depends on variables $T_1, ..., T_n$ but not on $T_{n+1}, T_{n+2}, ...$

• Note that N(t) + 1 is a stopping time of the IID sequence (T_n) , while N(t)is not, since

 $\begin{aligned} \{N(t) = n\} &= \{\tau_n \leq t, \tau_{n+1} > t\} \\ \{N(t) + 1 = n\} &= \{\tau_{n-1} \leq t, \tau_n > t\} \end{aligned}$

- Proposition: Let (T_n) be an IID sequence with $E[T] < \infty$ and *N* a stopping time of it. Then $E[\sum_{n=1}^{N} T_n] = E[N]E[T]$
- The result is called Wald's equation.

Contents

- Renewal sequences
- Renewal reward sequences
- Regenerative processes

Renewal reward sequence

• Definition:

Let (T_n, Y_n) be an IID sequence of pairs of positive random variables. Sequence (τ_n, Y_n) of pairs of random variables, where

$$\tau_0 \coloneqq 0, \quad \tau_n \coloneqq T_1 + \dots + T_n$$

is a renewal reward sequence.

- Random variables T_n and Y_n may depend on each other
- Sequence (τ_n) alone is clearly a renewal sequence

Renewal reward process

• Definition:

Let (τ_n, Y_n) be a renewal reward sequence. The cumulative reward process C(t) defined by

$$C(0) := 0, \quad C(t) := \sum_{n=1}^{\infty} Y_n \mathbb{1}\{\tau_n \le t\}$$

is called the corresponding renewal reward process.

• Note that

 $C(t) = \sum_{n=1}^{N(t)} Y_n$

where N(t) is the corresponding renewal process.

Elementary renewal reward theorem

• The latter part is called the elementary renewal reward theorem.

Contents

- Renewal sequences
- Renewal reward sequences
- Regenerative processes

Regenerative process

- Consider a stochastic process X(t), where $X(t) \ge 0$. Let (τ_n) be a renewal sequence with intervals T_n .
- Process $Y_n(t)$ defined by

$$Y_n(t) \coloneqq X(\tau_{n-1}+t)\mathbf{1}_{\{\tau_{n-1}+t < \tau_n\}}$$

is called the *n*th cycle of process X(t)and intervals T_n the corresponding cycle lengths.

• Definition:

Process X(t) is regenerative with respect to renewal sequence (τ_n) if cycles $Y_n(t)$ are IID.

• Example:

Let (τ_n) be a renewal sequence. Residual lifetime process $T^*(t)$ with cycles Y_n defined by

$$Y_n(t) := (T_n - t) \mathbf{1}_{\{\tau_{n-1} + t < \tau_n\}}$$

is a regenerative process.

Elementary theorem for regenerative processes

Steady-state mean value

Corollary: • Consider a regenerative process $T^{*}(t)$ X(t) with continuously distributed Y_1 $Y_2 \quad Y_3$ cycle lengths T_n for which $E[T] < \infty$ τ_1 τ_2 τ_3 τ_4 Then $\lim E[X(t)] = \frac{E[\int_0^T X(t)dt]}{E[T]}$ **Example:** • $t \rightarrow \infty$ The steady-state mean value of the

• Define the steady-state mean value of regenerative process X(t) by

$$E[X] := \frac{E[\int_0^T X(t)dt}{E[T]}$$

residual lifetime process $T^{*}(t)$ is

 $E[T^*] = \frac{E[T^2]}{2E[T]}$

Steady-state distribution

• Define the steady-state distribution of regenerative process X(t) by

$$P\{X \le x\} \coloneqq \frac{E[\int_0^T \mathbf{1}\{X(t) \le x\}dt]}{E[T]}$$

16

 $P\{T^* \le x\} = \frac{E[\min\{T, x\}]}{E[T]} = \frac{\int_0^x P\{T > t\}dt}{E[T]}$

Summary

- Renewal sequences
 - renewal sequence, renewal process, elementary renewal theorem, stopping times, Wald's equation
- Renewal reward sequences
 - renewal reward sequence, renewal reward process, elementary renewal reward theorem
- Regenerative processes
 - regenerative process, elementary theorem, steady-state mean value, steady-state distribution