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M/G/1

• Customers arrive according to a Poisson process at rate l
– IID inter-arrival times

– exponential inter-arrival time distribution with mean 1/l

• Customers are served by 1 server

– IID service times Si

– general service time distribution with mean E[S] = 1/m

• There are  customer places in the system

m
l 
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Service discipline

• Definition: 

Service discipline p determines the way the customers are served

– It specifies whether the customers are served one-by-one or simultaneously

– If the customers are served one-by-one, it specifies 

the order in which they are taken to service

– If the customers are served simultaneously, it specifies 

how the service capacity is shared among them

• Service discipline is also called as 

queueing discipline, or scheduling discipline

• Definition:

A service discipline is work-conserving

if customers are served whenever the system is non-empty
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Work-conserving service disciplines

• First In First Out (FIFO)

– customers are served one-by-one until completion

– service in the arrival order (“ordinary queue”)

– the customer that arrived first is served with rate m

– also known as First Come First Served (FCFS)

• Processor Sharing (PS)

– customers are served simultaneously

– the service capacity is shared evenly among all customers (“fair queue”)

– when i customers are in the system, each of them is served with rate m/i

– ideal version of the Round Robin (RR) service discipline
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Delay

• ai = arrival time of customer i

• bi
p = departure time of customer i

• Ti
p = delay (sojourn time) of customer i

iiiT abpp −=:

a1

a2

b1

b2

a1

a2 b2

b1



Single server queue M/G/1

7

Queue length

• A(t) = number of arrivals until time t
= arrival process

• Bp(t) = number of departures until time t
= departure process

• Xp(t) = number of customers at time t
= queue length process
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Traffic load in M/G/1

• Definition: 

Traffic load r is defined by

• Applying Little’s formula to the subsystem consisting of just the server:

m
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Throughput

• Definition: 

Throughput q of service discipline p
refers to the long-run average 

departure rate given by 

• Proposition: 

For any work-conserving service 

discipline p, the throughput is 
• Corollary: 

(i)  If r  1, then q = l

(ii) If r  1, then q = m
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Stability

• Definition: 

Service discipline p is unstable if

Otherwise it is stable.

• Proposition: 

All service disciplines p are unstable 

if r  1

• Proposition: 

All work-conserving service

disciplines p are stable if r < 1
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Unfinished work

• U(t) = sum of remaining service times 

of all customers in system at time t

= total workload at time t
= unfinished work process

• Proposition: 

The unfinished work process U(t) is the same for 

all work-conserving disciplines p. In addition, 
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Busy and idle periods (1)

• Definition: 

The server is busy whenever the system is 

non-empty, and idle otherwise. 

A busy [idle] period is an unbroken interval 

during which the server is busy [idle].

• In = length of nth idle period

• Bn = length of nth busy period

• Cn = length of nth busy cycle

• Nn = number of customers served 

in the nth busy period
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Busy and idle periods (2)

• Assume that U(0) = 0. 
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• Proposition: Assume that r < 1.

(i) Idle periods In are IID with mean 

(ii) Busy periods Bn are IID with mean 

(iii) Busy cycles Cn are IID with mean 

(iv) Number of customers Nn served 

in a busy period are IID with mean

Busy and idle periods (3)

• Proposition: 

Idle periods In, busy periods Bn, 

busy cycles Cn, and the number of 

customers Nn served in a busy 

period are the same for all work-

conserving service disciplines p.

• Proposition: 

The busy cycles Cn constitute a 

renewal sequence (n). In addition, 

Xp(t) and U(t) are regenerative 

processes with respect to the 

renewal sequence (n) for all work-

conserving service disciplines p.
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Busy and idle periods (4)

• By previous propositions, the 

steady-state variables Xp and U, 

are well-defined whenever the 

system is stable, r < 1.

• Proposition: 

Assume that r < 1. For all work-

conserving service disciplines p, 

we have 
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M/G/1-FIFO

• Customers arrive according to a Poisson process at rate l
– IID inter-arrival times

– exponential inter-arrival time distribution with mean 1/l

• Customers are served by 1 server 

according to the FIFO service discipline

– IID service times Si

– a general service time distribution with mean E[S] = 1/m

• There are  customer places in the system

m
l 



Single server queue M/G/1

18

FIFO service discipline

• First In First Out (FIFO)

– customers are served one-by-one until completion

– service in the arrival order (“ordinary queue”)

– the customer that arrived first is served with rate m

– also known as First Come First Served (FCFS)
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Waiting time

• In a FIFO system, the delay Ti of customer i

consists of its waiting time Wi and service time Si

• Let Yi
w denote the number of waiting customers

that customer i sees upon its arrival, 

• Now 

where R(t) denotes the remaining service time of 

the customer in service at time t (if any).
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Remaining service time

• Proposition: 

Process R(t) is regenerative with respect to the 

renewal sequence (n).

• Thus, the steady-state variable R, 

is well-defined whenever r < 1.

• Proposition:

Assume r < 1. Then 
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Pollaczek-Khinchin mean value formulas

• Theorem: 

Assume r < 1. For the M/G/1-FIFO 

queue, we have  

• These are called the 

Pollaczek-Khinchin mean value 

formulas for M/G/1-FIFO

• Note that, if the mean service time 

E[S] is kept fixed, then E[W], E[T], 

and E[X] are increasing functions of 

the coefficient of variation C[S] of 

the service time distribution,

• Examples:

– Erlang distribution: C[S] < 1

– Exponential distribution: C[S] = 1

– Hyperexponential distrib.: C[S]  1

– Pareto distribution: C[S]  1
21
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M/G/1-PS

• Customers arrive according to a Poisson process at rate l
– IID inter-arrival times

– exponential inter-arrival time distribution with mean 1/l

• Customers are served by 1 server 

according to the PS service discipline

– IID service times Si

– a general service time distribution with mean E[S] = 1/m

• There are  customer places in the system

m
l 
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PS service discipline

• Processor Sharing (PS)

– customers are served simultaneously

– the service capacity is shared evenly among all customers (“fair queue”)

– when i customers are in the system, each of them is served with rate m/i

– ideal version of the Round Robin (RR) service discipline
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Exponential distribution
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M/M/1-PS

• Let us first consider the M/M/1-PS

queue

• So we assume that the service

times obey the Exp(m) distribution

• In this case, the queue length

process X(t) is an irreducible

(Markov) birth-death process with

state space

and transition rates

• Proposition: 

Assume r < 1. For the M/M/1-PS 

queue, the steady-state queue 

length distribution is
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Erlang distribution

• IID exponential phases in a series
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M/EK/1-PS (1)

• Next we consider the M/EK/1-PS

queue

• Here we assume that

the service times obey the

Erl(K,Km) distribution with

K  2 exponential phases

• In this case, the queue length

process X(t) is no longer a Markov 

process, but we have to supplement

the state description.

• To get a Markovian description of 

the system, we have to additionally 

keep track of the current phases of 

the customers.

• Let

where Nk(t) refers to the total number 

of customers in phase k at time t

• Process N(t) is an irreducible Markov 

process with state space 

and transition rates 

28

))(,),(()( 1 tNtNtN K=

}},2,1,0{|),,({ 1  == kK nnnnS

1

)1(

1

)1(
1

1

1

1

),(

  ,),(

),(

+++

+

+++

+
+

=+

<=++

=+

K

K

K

k

nn

Kn
K

nn

Kn
kk

nenq

Kkenenq

ennq





m

m

l













Single server queue M/G/1

• Proposition: 

Assume r < 1. The steady-state 

distribution of process N(t) is

• Note that



M/EK/1-PS (2)

• Corollary: 

Assume r < 1. For the M/EK/1-PS 

queue, the steady-state queue 

length distribution is 
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Phase-type distribution

• Definition: 

A phase-type (PH) distribution

refers to the distribution of the 

absorption time in an absorbing 

finite-state Markov process

• Examples: 

– Exponential distribution 

– Erlang distribution

– Hyperexponential distribution

– Exponential distributions 

in series and/or parallel
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M/PH/1-PS (1)

• Next we consider the M/PH/1-PS

queue

• Here we assume (for simplicity) that

the service times obey

the phase-type distribution

depicted in the previous slide

with JK  2 exponential phases

• In this case, the queue length

process X(t) is neither a Markov 

process, but we have to supplement

the state description as before.

• Again, to get a Markovian 

description of the system, we have 

to additionally keep track of the 

current phases of the customers.

• Let

where Nj,k(t) refers to the total 

number of customers in phase (j,k)

at time t

• Process N(t) is an irreducible Markov 

process with state space 

and transition rates determined from 

the underlying absorbing Markov 

process

• Exercise: 

Determine the transition rates
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M/PH/1-PS (2)

• Proposition: 

Assume r < 1. The steady-state 

distribution of process N(t) is

where

• Note that

• Corollary: 

Assume r < 1. For the M/PH/1-PS 

queue, the steady-state queue 

length distribution is
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Insensitive queue length distribution in M/G/1-PS

• The generalization of the previous 

result is based on the known fact 

that any service time distribution 

can be approximated (with an 

arbitrary precision) by a phase-type 

distribution.

• Since the queue length distribution 

remains the same for any service 

time distribution with the same 

mean E[S], the steady-state queue 

length distribution of the PS service 

discipline is said to be insensitive to 

the service time distribution.

• Interestingly, the mean sojourn time 

E[T] in the M/G/1-PS queue equals 

the mean busy period E[B].

• Theorem: 

Assume r < 1. For the M/G/1-PS 

queue, the steady-state queue 

length distribution is 

with

• Corollary: 

Assume r < 1. For the M/G/1-PS 

queue, the mean steady-state 

sojourn time is
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Performance comparison between FIFO and PS

• Proposition: 

Assume r < 1. For the M/G/1 queue, we have 

where C[S] refers to the coefficient of variation of the service time distribution
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Summary

• M/G/1 with a work-conserving service discipline

– traffic load, throughput, stability, unfinished work, busy period, busy cycle

• M/G/1-FIFO

– FIFO, remaining service time, Pollaczek-Khinchin mean value formulas

• M/G/1-PS

– PS, phase method, insensitivity

• Performance comparison between FIFO and PS

– FIFO better than PS if the service time distribution less variable than exp


