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1 Renewal sequences

Let (Tn) be a sequence of independent and identically distributed (IID) pos-

itive random variables. A sequence (τn) of random variables defined by

τ0 := 0, τn := T1 + . . .+ Tn, (1)

is a renewal sequence. The counter process N(t) defined by

N(0) := 0, N(t) :=
∞∑
n=1

1{τn≤t} (2)

is called the corresponding renewal process.

Note that

{N(t) ≥ n} = {τn ≤ t}. (3)

Proposition 1

Let (Tn) be an IID sequence with E[T ] < ∞ and N(t) the corresponding

renewal process. Then

lim
t→∞

1

t
N(t) a.s.= lim

t→∞

1

t
E[N(t)] =

1

E[T ]
. (4)
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Proof We prove the first part by the Strong Law of Large Numbers (SLLN).

Since

τN(t) ≤ t < τN(t)+1,

we have
τN(t)

N(t)
≤ t

N(t)
<
τN(t)+1

N(t)
=

τN(t)+1

N(t) + 1

N(t) + 1

N(t)
.

Letting t→∞, we get

E[T ]
a.s.
≤ lim

t→∞

t

N(t)

a.s.
≤ E[T ],

since, τn/n
a.s.→ E[T ] (as n→∞) and N(t)

a.s.→ ∞ (as t→∞) by SLLN.

The proof of the latter part can be found, e.g., in [1, Sect. 3.5]. 2

The latter part is known as the Elementary Renewal Theorem, see, e.g., [1,

Sect. 3.5].

Proposition 2

Let (Tn) be an IID sequence with a continuous distribution for which E[T ] <

∞ and N(t) the corresponding renewal process. Then, for any ∆ > 0,

lim
t→∞

(E[N(t+ ∆)]− E[N(t)]) =
∆

E[T ]
. (5)

The result is known as Blackwell’s Theorem, see, e.g., [1, Sect. 3.5].

Let (Tn) be an IID sequence. Random variable N is a stopping time with

respect to sequence (Tn) if event {N = n} depends on T1, . . . , Tn but not on

Tn+1, Tn+2, . . ., for any n.

Note that N(t) + 1 is a stopping time of an IID sequence (Tn) while N(t) is

not, since

{N(t) = n} = {τn ≤ t, τn+1 > t}

{N(t) + 1 = n} = {τn−1 ≤ t, τn > t}.
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Proposition 3

Let (Tn) be an IID sequence with E[T ] < ∞ and N a stopping time with

respect to (Tn). Then

E[
N∑
n=1

Tn] = E[N ]E[T ]. (6)

Proof By the Monotone Convergence Theorem, we have

E[
N∑
n=1

Tn] = E[
∞∑
n=1

Tn1{N≥n}] =
∞∑
n=1

E[Tn1{N≥n}].

Since

1{N≥n} =
n−1∏
i=1

(1− 1{N=i}),

and N is a stopping time with respect to sequence (Tn), variable 1{N≥n}

depends on T1, . . . , Tn−1 but not on Tn. Thus,

E[
N∑
n=1

Tn] =
∞∑
n=1

E[Tn]E[1{N≥n}] = E[T ]
∞∑
n=1

P{N ≥ n} = E[T ]E[N ],

which completes the proof. 2

The result above is known as Wald’s equation, see, e.g., [1, Sect. 3.4]. We note

that Wald’s equation is also valid when random variable N is independent

of sequence (Tn).

2 Renewal reward sequences

Let (Tn, Yn) be an IID sequence of pairs of positive random variables. A

sequence (τn, Yn) of pairs of random variables, where

τ0 := 0, τn := T1 + . . .+ Tn, (7)

is a renewal reward sequence. The cumulative process C(t), defined by

C(0) := 0, C(t) :=
∞∑
n=1

Yn1{τn≤t}, (8)
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is called the corresponding renewal reward process.

Random variables Tn and Yn may be dependent on each other. Note also

that sequence (τn) alone is a renewal sequence and

C(t) =
N(t)∑
n=1

Yn, (9)

where N(t) is the renewal process corresponding to sequence (τn).

Proposition 4

Let (τn, Yn) be a renewal reward sequence with intervals Tn for which E[T ] <

∞ and C(t) the corresponding renewal reward process. Then

lim
t→∞

1

t
C(t) a.s.= lim

t→∞

1

t
E[C(t)] =

E[Y ]

E[T ]
. (10)

Proof We prove the first part by the Strong Law of Large Numbers (SLLN)

and Proposition 1. Now

1

t
C(t) =

1

t

N(t)∑
n=1

Yn =
N(t)

t

1

N(t)

N(t)∑
n=1

Yn

Letting t→∞, we get

lim
t→∞

1

t
C(t) a.s.=

E[Y ]

E[T ]
,

since, (1/n)
∑n
m=1 Ym

a.s.→ E[Y ] (as n → ∞) and N(t)
a.s.→ ∞ (as t → ∞) by

SLLN, and N(t)/t
a.s.→ 1/E[T ] (as t→∞) by Proposition 1.

The proof of the latter part can be found, e.g., in [1, Sect. 3.9]. 2

3 Regenerative processes

Consider a stochastic process X(t), where X(t) ≥ 0. Let (τn) be a renewal

sequence with intervals Tn. The process Yn(t), defined by

Yn(t) = X(τn−1 + t)1{τn−1+t<τn}, (11)

4



is called the nth cycle of processX(t) and intervals Tn the corresponding cycle

lengths. Process X(t) is regenerative with respect to the renewal sequence

(τn) if cycles Yn(t) are IID.

Proposition 5

Consider a regenerative process X(t) with cycle lengths Tn for which E[T ] <

∞. Let g(x) be a non-negative function defined on [0,∞). Then

lim
t→∞

1

t

∫ t

0
g(X(s)) ds a.s.= lim

t→∞

1

t
E[

∫ t

0
g(X(s)) ds] =

E[
∫ T
0 g(X(t)) dt]

E[T ]
. (12)

In addition, if cycle lengths Tn have a continuous distribution, then

lim
t→∞

E[g(X(t))] =
E[

∫ T
0 g(X(t)) dt]

E[T ]
. (13)

It follows that, under all assumptions of the previous proposition, the corre-

sponding limiting distribution is well defined,

P{X ≤ x} := lim
t→∞

P{X(t) ≤ x} =
E[

∫ T
0 1{X(t)≤x} dt]

E[T ]
. (14)

However, even for non-continuous distributions (e.g., the deterministic dis-

tribution) of Tn, for which the limit (13) does not necessarily exist, the

steady-state distribution is well defined,

P{X ≤ x} :=
E[

∫ T
0 1{X(t)≤x} dt]

E[T ]
, (15)

referring to the proportion of time that the process spends below level x in

the long run. Variable X is called, in any case, the corresponding steady-state

variable. Its mean value is clearly

E[X] =
E[

∫ T
0 X(t) dt]

E[T ]
. (16)
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