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1 M/G/1 with a work-conserving service discipline

Consider an M/G/1 queue with arrival rate λ > 0 and mean service time

E[S] = 1/µ <∞. Define ρ := λ/µ as the load of the system.

Customers arrive according to a Poisson process. Let αi denote the arrival

time of customer i, and A(t) the number of arrivals until time t, with A(0) =

0. Thus, A(t) is the counter process corresponding to the point process αi.

Service times are assumed to be IID with a continuous distribution,

P{S ≤ x} = F (x) =
∫ x

0
f(y) dy.

Let Si denote the service time of customer i.

We assume that the customers are served according to a work-conserving

service discipline π. Let Bπ(t) denote the number of departures until time t

and Xπ(t) the queue length (i.e., the number of customers in the system) at

time t,

Xπ(t) := A(t)−Bπ(t).
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1.1 Throughput

In the long run, the mean arrival rate converges to λ (by the Elementary

Renewal Theorem),

lim
t→∞

E[A(t)]/t = λ.

Let Bπ(t) denote the number of departures until time t. In addition, let θ

denote the long-run average departure rate,

θ := lim
t→∞

E[Bπ(t)]/t,

which is called the throughput of service discipline π.

Proposition 1

For any work-conserving service discipline π, the throughput is

θ = min{λ, µ}.

Proof The throughput (of any discipline) is clearly upper-bounded by

θ ≤ min{λ, µ}.

On the other hand, if θ < min{λ, µ}, then θ < λ for sure. Thus, in the

long run, customers accumulate in the system, and any work-conserving

discipline urges the system to operate without breaks so that θ = µ, which

is a contradiction. 2

Corollary 1

(i) If ρ ≤ 1, then θ = λ for all work-conserving disciplines.

(ii) If ρ ≥ 1, then θ = µ for all work-conserving disciplines.

Note that the throughput is not only insensitive to the service discipline (as

long as it is work-conserving) but also to the service time distribution (as

long as the mean service time remains the same).

2



1.2 Stability

Service discipline π is unstable if, for all n ≥ 0,

lim
t→∞

P{Xπ(t) ≥ n} = 1.

Service discipline π is stable if it is not unstable.

Proposition 2

All service disciplines are unstable if ρ ≥ 1.

Proof Assume first that ρ > 1 so that λ > µ. The throughput (of any

discipline) is clearly upper-bounded by

θ ≤ min{λ, µ} < λ.

Thus, in the long run, customers accumulate in the system for sure so that

the system is unstable.

For the case ρ = 1, the proof is much more delicate (and is therefore omitted

in this course). 2

Proposition 3

All work-conserving service disciplines are stable if ρ < 1.

Proof Consider what happens if the system is unstable. Then the number

of users grows without limits (as a function of time t), implying that the

probability that there is at least one customer approaches 1. Consequently,

in the long run, the system with a work-conserving service discipline operates

without breaks, i.e., θ = µ. Thus, λ ≥ µ by Proposition 1, implying that

ρ ≥ 1. 2

3



1.3 Unfinished work process

Let U(t) ≥ 0 denote the unfinished work (or, workload) at time t,

U(t) =
A(t)∑
i=1

Si −
∫ t

0
1{U(s)>0} ds. (1)

Thus, process U(t) jumps up by Si when customer i arrives, and decreases

at rate 1 when there is work (or, as well, customers) in the system. It follows

that U(t) is a continuous-state and continuous-time Markov process with

state space [0,∞).

Note that U(t) is, by definition, independent of the service discipline π (unlike

Xπ(t)). For work-conserving disciplines, the workload is equal to the time

needed to empty the system unless there are no new arrivals. In particular,

if the system is empty, the workload is naturally 0.

Proposition 4

The unfinished work process U(t) is the same for all work-conserving service

disciplines π. In addition,

{Xπ(t) = 0} = {U(t) = 0}.

When the system is stable (i.e., ρ < 1), U(t) has a negative trend whenever

U(t) > 0. In other words, for any x > 0,

lim
h→0+

1

h
E[U(t+ h)− U(t) | U(t) = x] < 0.

The proof starts from the observation that the probability for an arrival in

the interval (t, t+ h] is λh+ o(h), where limh→0+ o(h)/h = 0.
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1.4 Busy and idle periods

Consider a work-conserving service discipline. The server is busy whenever

the system is non-empty, and idle otherwise. A busy [idle] period is an

unbroken interval during which the server is busy [idle].

Assume that the system is empty in the beginning, i.e., U(0) = 0. The first

idle period starts at time 0 lasting until the first arrival at time α1,

I1 := inf{t > 0 : U(t) > 0} = α1.

The first busy period B1 starts at time I1 = α1, and it lasts until the system

is empty again,

B1 := inf{t > I1 : U(t) = 0} − I1.

Let C1 denote the first busy cycle defined by

C1 := I1 +B1.

In addition, let N1 denote the number of customers served in the first busy

period,

N1 := A(C1).

Finally, let γ1 = 0 denote the starting time of the first busy cycle.

The other idle periods In, busy periods Bn, and busy cycles Cn together with

the number of customers Nn served in busy period n are defined recursively:

γn := γn−1 + Cn−1,

In := inf{t > γn : U(t) > 0} − γn,

Bn := inf{t > γn + In : U(t) = 0} − γn − In,

Cn := In +Bn,

Nn := A(γn + Cn)− A(γn).
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Note that a new busy cycle starts whenever the system becomes empty. In

addition, we have

Bn =
A(γn)+Nn∑
i=A(γn)+1

Si, (2)

and

Bn + In+1 =
A(γn)+Nn∑
i=A(γn)+1

Ai, (3)

where Ai = αi+1−αi refers to the interarrival time between customers i and

i+ 1.

Since all these random variables are determined from the arrival process

A(t) and the unfinished work process U(t), they must be the same for all

work-conserving disciplines.

Proposition 5

Idle periods In, busy periods Bn, busy cycles Cn, and the number of customers

Nn served in a busy period are the same for all work-conserving service dis-

ciplines π.

Due to Poisson arrivals and IID service times, it is clear that what happens

within a busy cycle is totally independent of the events of the other cycles.

Proposition 6

The busy cycles Cn constitute a renewal sequence (γn). In addition, Xπ(t)

and U(t) are regenerative processes with respect to the renewal sequence (γn)

for all work-conserving service disciplines π.

Besides the busy cycles Cn, the idle periods In, the busy periods Bn, and the

number of customers Nn served in a busy period are IID. Furthermore, for

a stable system with ρ < 1, all the mean values are finite as shown below.
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Proposition 7

Assume that ρ < 1. Then for all work-conserving service disciplines:

(i) Idle periods In are IID with mean E[I] = 1/λ.

(ii) Busy periods Bn are IID with mean E[B] = E[S]
1−ρ .

(iii) Busy cycles Cn are IID with mean E[C] = 1/λ
1−ρ.

(iv) The number of customers Nn served in a busy period are IID with mean

E[N ] = 1
1−ρ.

Proof (i) is clear due to the memoryless property of the exponential dis-

tribution. So we have to prove (ii), (iii), and (iv).

It follows from (2) that

B1 =
N1∑
i=1

Si.

On the other hand, it is easy to see that N1 is a stopping time of sequence

(An, Sn). Thus, by Wald’s equation, we conclude that

E[B] = E[B1] = E[N1]E[S] = E[N ]E[S]. (4)

In addition, by definition,

E[C] = E[C1] = E[I1] + E[B1] = E[I] + E[B]. (5)

Finally, it follows from (3) that

B1 + I2 =
N1∑
i=1

Ai.

Thus, again by Wald’s equation, we have

E[C] = E[B] + E[I] = E[B1] + E[I2] = E[N1]E[A] = E[N ]E[I]. (6)
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The result follows now by solving the three unknowns, E[B], E[C], and E[N ],

from the three equations (4), (5), and (6). 2

Note that the mean values E[I], E[B], E[C], and E[N ] are not only insen-

sitive to the service discipline (as long as it is work-conserving) but also to

the service time distribution (as long as the mean service time remains the

same).

By Propositions 6 and 7, the steady-state variables Xπ and U ,

P{Xπ ≤ x} := lim
t→∞

P{Xπ(t) ≤ x} =
E[

∫C
0 1{Xπ(t)≤x} dt]

E[C]
,

P{U ≤ x} := lim
t→∞

P{U(t) ≤ x} =
E[

∫C
0 1{U(t)≤x} dt]

E[C]
,

are well defined whenever the system is stable, i.e., ρ < 1.

Proposition 8

Assume that ρ < 1. Then for all work-conserving service disciplines:

P{Xπ = 0} = P{U = 0} = 1− ρ,

P{Xπ > 0} = P{U > 0} = ρ.

Proof By Proposition 7 (iii), we have

P{Xπ ≤ x} =
E[

∫C
0 1{Xπ(t)≤x} dt]

E[C]
= λ(1− ρ)E[

∫ C

0
1{Xπ(t)≤x} dt],

P{U ≤ x} =
E[

∫C
0 1{U(t)≤x} dt]

E[C]
= λ(1− ρ)E[

∫ C

0
1{U(t)≤x} dt].

In particular, for x = 0, we thus have

P{Xπ = 0} = P{U = 0} = λ(1− ρ)E[I] = 1− ρ,

which completes the proof. 2
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Note that the probabilities P{Xπ = 0} and P{Xπ > 0} (and, as well as,

P{U = 0} and P{U > 0}) are not only insensitive to the service discipline

(as long as it is work-conserving) but also to the service time distribution

(as long as the mean service time remains the same).

In the long run, the system with a work-conserving service discipline is non-

empty with probability ρ. Therefore, load ρ is also often called the utilization

(factor) of the system.

2 M/G/1-FIFO

In this section, we assume that the service discipline is FIFO. So we focus on

the performance analysis of an M/G/1-FIFO queue. By utilizing the theory

of regenerative processes, we derive the so called Pollaczek-Khinchin mean

value formulas for the steady-state variables (queue length, waiting time,

and delay).

The main conclusion is that, for a fixed mean service time E[S], the mean

steady-state waiting time, sojourn time, and queue length are all increasing

functions of the coefficient of variation of the service time distribution. In

other words, FIFO gives the best performance for deterministic service times,

while the performance is getting worse and worse as the variability in the

service time distribution increases (as long as the arrival rate λ and the mean

service time E[S] remain the same).

2.1 Waiting times Wi

Since the customers are served in their arrival order, the sojourn time Ti

of customer i consists of two phases, the waiting time Wi and the service
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time Si,

Ti = Wi + Si. (7)

However, if the system is empty when customer i arrives, the waiting time

is zero (Wi = 0) and the sojourn time equals the service time (Ti = Si).

Let Y w
i denote the number of waiting customers that the arriving customer

i sees,

Y w
i = max{X(αi−)− 1, 0}, (8)

where X(t−) := limh→0X(t−h) is the left limit of the queue length process.

In addition, let R(t) denote the remaining service time of the customer in

service at time t (if any). If the system is empty (i.e., X(t) = 0), we define

R(t) = 0. Because of the FIFO discipline, the waiting time of customer i

satisfies clearly

Wi =
Y wi∑
j=1

Si−j +R(αi−) = U(αi−), (9)

which is just the left limit of the unfinished work process at the arrival time.

Recall that the busy cycles Cn constitute a renewal sequence (γn), and all

the queueing related processes (including R(t)) are regenerative with respect

to the renewal sequence (γn). In addition, the mean cycle E[C] is finite for

ρ < 1. Thus, the steady-state variable R,

P{R ≤ x} := lim
t→∞

P{R(t) ≤ x} =
E[

∫C
0 1{R(t)≤x} dt]

E[C]
,

is well defined whenever ρ < 1.

Proposition 9 Consider the M/G/1-FIFO queue with ρ < 1. The mean

steady-state remaining service time is

E[R] =
λ

2
E[S2].
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Proof Since R(t) is regenerative in each busy cycle, we have

E[R] =
E[

∫C
0 R(t) dt]

E[C]
.

Let N denote the number of customers served in a busy cycle, which is a

stopping time of sequence (An, Sn). Recall from Proposition 7 that

E[N ] =
1

1− ρ
.

Now the key observation is

∫ C

0
R(t) dt =

N∑
i=1

1

2
S2
i ,

implying, by Wald’s equation, that

E[
∫ C

0
R(t) dt] =

1

2
E[N ]E[S2] =

E[S2]

2(1− ρ)
.

Recall further from Proposition 7 that

E[C] =
1/λ

1− ρ
.

Thus,

E[R] =
E[

∫C
0 R(t) dt]

E[C]
=
λ

2
E[S2],

which completes the proof. 2

2.2 Pollaczek-Khinchin mean value formulas

Let us now first derive the mean steady-state waiting time E[W ],

E[W ] = lim
i→∞

E[Wi],

and then utilize the result when determining the mean steady-state unfin-

ished work E[U ], sojourn time E[T ], and queue length E[X].
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Proposition 10

Consider the M/G/1-FIFO queue with ρ < 1. The mean steady-state waiting

time is

E[W ] =
λE[S2]

2(1− ρ)
. (10)

Proof From (9) we deduce that

E[Wi] = E[E[
Y wi∑
j=1

Si−j|Y w
i ]] + E[R(αi−)]

= E[Y w
i E[S]] + E[R(αi−)]

= E[Y w
i ]E[S] + E[R(αi−)],

where Y w
i refers to the number of waiting customers and R(αi−) to the

remaining service time seen by arriving customer i. Note that equation

E[
Y wi∑
j=1

Si−j|Y w
i ] = Y w

i E[S]

is justified by the fact that Y w
i is independent of service times Si−1, . . . , Si−Y wi .

Due to PASTA, the steady-state variables limi→∞ Y
w
i and limi→∞R(αi−) are

distributed as steady-state variables Xw := limt→∞max{X(t) − 1, 0} and

R := limt→∞R(t). Thus,

E[W ] = E[Xw]E[S] + E[R].

By further taking into account Little’s formula E[Xw] = λE[W ], we get

E[W ] = λE[W ]E[S] + E[R],

implying, by Proposition 9, that

E[W ] =
E[R]

1− ρ
=

λE[S2]

2(1− ρ)
,

which completes the proof. 2
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Equation (10) is known as the Pollaczek-Khinchin mean value formula for

the steady-state waiting time.

The mean steady state waiting time E[W ] equals the mean steady-state un-

finished work E[U ]. This is explained by the PASTA property of the Poisson

arrival process as follows: For the FIFO discipline, V (t) := U(t−) can be

interpreted as the virtual waiting time process, i.e., V (t) is the time that

the arriving customer has to wait if it happens to arrive at time t. Due

to PASTA, arriving customers see the system in equilibrium, implying that

E[W ] = E[V ] = E[U ], where the last equation follows from a continuity ar-

gument. Thus, we have the following Pollaczek-Khinchin mean value formula

for the steady-state unfinished work:

E[U ] = E[W ] =
λE[S2]

2(1− ρ)
. (11)

The corresponding Pollaczek-Khinchin mean value formula for the steady-

state sojourn time is clearly

E[T ] = E[S] + E[W ] = E[S] +
λE[S2]

2(1− ρ)
. (12)

By applying Little’s formula E[X] = λE[T ], we also get the Pollaczek-

Khinchin mean value formula for the steady-state queue length:

E[X] = λE[T ] = ρ+
λ2E[S2]

2(1− ρ)
. (13)

Note that, when the mean service time E[S] is kept fixed, the mean steady-

state waiting time, sojourn time, and queue length are increasing functions

of the coefficient of variation of the service time distribution,

C[S] :=

√√√√√E[S2]

E[S]2
− 1.
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Therefore, any Erlang service time distribution (C[S] < 1) performs better

than the exponential distribution (C[S] = 1), while hyperexponential and

Pareto distributions (C[S] > 1) result in a worse mean performance in the

M/G/1-FIFO queue.

In addition, we notice that the optimal mean performance for the FIFO

discipline is clearly achieved with deterministic service times (with C[S] = 0).

On the other hand, a service time distribution for which E[S2] = ∞ (such

as Pareto(b, β) with β ≤ 2) results in an infinite mean sojourn time, waiting

time, and queue length for any load ρ > 0.

3 M/G/1-PS

In this section, we assume that the service discipline is PS. So we focus

on the performance analysis of an M/G/1-PS queue. By applying the so

called phase method, we derive the steady-state queue length distribution,

from which we also get the mean values for the steady-state variables (queue

length, sojourn time).

The main conclusion is that, for a fixed mean service time E[S], the queue

length distribution is insensitive to the shape of the service time distribution.

Thus, PS gives the same performance for any service time distribution (as

long as the arrival rate λ and the mean service time E[S] remain the same).

Thus, the results are the same as in an M/M/1-PS queue.

3.1 Exponential service times

We start with the M/M/1-PS queue, i.e., we assume first that the service

times Si are independent and follow the Exp(µ) distribution with mean 1/µ.
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Consequently, the queue length process X(t) is an irreducible Markov birth-

death process with state space S = {0, 1, . . .} and the following (positive)

state transition rates for any n ∈ S:

q(n, n+ 1) = λ,

q(n+ 1, n) = (n+ 1)
µ

n+ 1
= µ.

Proposition 11

Consider the M/M/1-PS queue with ρ < 1. The steady-state queue length

distribution is

P{X = n} = (1− ρ)ρn, n = 0, 1, . . .

Proof Denote πn := (1 − ρ)ρn. Since ρ < 1, the normalization condition

(N) is clearly satisfied:

∞∑
n=0

πn = (1− ρ)
∞∑
n=0

ρn =
1− ρ
1− ρ

= 1.

It remains to prove that the detailed balance equations (DBE) are also satis-

fied for all n:

πnλ = πn+1µ.

Now

πnλ = (1− ρ)ρnλ = (1− ρ)ρnρµ = (1− ρ)ρn+1µ = πn+1µ,

which completes the proof. 2

In addition to the PS discipline, the result is, in fact, valid for any work-

conserving queueing discipline of an M/M/1 queue.

3.2 Erlangian service times

Next we consider the M/EK/1-PS queue. So we assume here that the service

times Si are independent and follow the Erl(K,Kµ) distribution with mean
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1/µ. We further assume that K ≥ 2 so that the service time consists of

multiple sequential phases k = 1, . . . , K.

In this case, the queue length process X(t) is not a Markov process. To get

a Markovian description of the system, we have to additionally keep track

of the current phases of the customers. Let N(t) = (Nk(t); k = 1, . . . , K),

where Nk(t) refers to the total number of customers in phase k at time t.

The state space of process N(t) is clearly

S = {n = (n1, . . . , nK);nk ∈ {0, 1, . . .}}.

In addition, let ek denote the unit vector to direction k in this space, ek =

(n1, . . . , nK) with nk = 1 and nj = 0 for j 6= k.

Due to the PS service discipline, N(t) is an irreducible Markov process

with the following (positive) state transition rates for any n ∈ S and k ∈
{1, . . . , K − 1}:

q(n, n+ e1) = λ,

q(n+ ek, n+ ek+1) = Kµ
nk + 1

n1 + . . .+ nK + 1
,

q(n+ eK , n) = Kµ
nK + 1

n1 + . . .+ nK + 1
.

Proposition 12

Consider the M/EK/1-PS queue with ρ < 1. The steady-state distribution

of the Markov process N(t) is

P{N = n} = (1− ρ)(ρ/K)n1+...+nK
(n1 + . . .+ nK)!

n1! . . . nK !
, n ∈ S.

Proof Denote

π(n) := (1− ρ)(ρ/K)n1+...+nK
(n1 + . . .+ nK)!

n1! . . . nK !
.
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In addition, let

Sm = {n ∈ S : n1 + . . .+ nK = m}.

Note that, for all n ∈ Sm and k = 1, . . . , K,

π(n+ ek) = π(n)(ρ/K)
m+ 1

nk + 1
. (14)

Since ρ < 1 and

∑
n∈Sm

(n1 + . . .+ nK)!

n1! . . . nK !
(1/K)m = ((1/K) + . . .+ (1/K))m = 1,

the normalization condition (N) is satisfied:

∑
n∈S

π(n) = (1− ρ)
∞∑
m=0

∑
n∈Sm

(n1 + . . .+ nK)!

n1! . . . nK !
(ρ/K)m

= (1− ρ)
∞∑
m=0

ρm

=
1− ρ
1− ρ

= 1.

It remains to prove that the global balance equations (GBE) are also satisfied

for all n: ∑
n′ 6=n

π(n)q(n, n′) =
∑
n′ 6=n

π(n′)q(n′, n). (15)

Let n ∈ S, and denote m = n1 + . . .+ nK . Note first that

π(n+ e1)q(n+ e1, n+ e2)
(14)
= π(n)(ρ/K)

m+ 1

n1 + 1
·Kµ n1 + 1

m+ 1
= π(n) · λ

= π(n)q(n, n+ e1). (16)

Consider then any k = 2, . . . , K − 1. Now

π(n+ ek)q(n+ ek, n+ ek+1)
(14)
= π(n)(ρ/K)

m+ 1

nk + 1
·Kµ nk + 1

m+ 1

= π(n)(ρ/K)
m+ 1

nk−1 + 1
·Kµ nk−1 + 1

m+ 1
(14)
= π(n+ ek−1)q(n+ ek−1, n+ ek). (17)
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For k = K, we have

π(n+ eK)q(n+ eK , n)
(14)
= π(n)(ρ/K)

m+ 1

nK + 1
·Kµ nK + 1

m+ 1

= π(n)(ρ/K)
m+ 1

nK−1 + 1
·Kµ nK−1 + 1

m+ 1
(14)
= π(n+ eK−1)q(n+ eK−1, n+ eK). (18)

Finally, we have

π(n)q(n, n+ e1)
(14)
= π(n+ eK)(K/ρ)

nK + 1

m+ 1
· λ

= π(n+ eK)Kµ
nK + 1

m+ 1
= π(n+ eK)q(n+ eK , n). (19)

Thus, equations (16), (17), (18), and (19), which together are called station

balance equations (SBE), are true for any n ∈ S. Note that each of these

equations (except (19)) correspond to transitions into a state and out of

that state generated by a customer entering a phase and leaving that phase,

respectively! Equation (19) corresponds to one customer entering the whole

system and another leaving it. The global balance equations (15) follow from

these station balance equations in a straightforward way by summing up the

related SBE’s. 2

Note that the queue length process X(t) satisfies

X(t) = N1(t) + . . .+NK(t).

As an immediate consequence of the previous result, we get the steady-state

queue length distribution, which (surprisingly) appears to be the same as for

the M/M/1-PS queue:

P{X = m} =
∑
n∈Sm

P{N = n}
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= (1− ρ)
∑
n∈Sm

(n1 + . . .+ nK)!

n1! . . . nK !
(ρ/K)m

= (1− ρ)ρm.

Corollary 2

Consider the M/EK/1-PS queue with ρ < 1. The steady-state queue length

distribution is

P{X = n} = (1− ρ)ρn, n = 0, 1, . . .

3.3 General service times

Here we finally consider the general M/G/1-PS queue. So we assume that

the service times Si are IID with mean 1/µ. As in the previous section, the

queue length process X(t) is neither a Markov process in this case. Below

we describe the phase method that can be used to derive the steady-state

queue length distribution.

Any service time distribution can be approximated (with an arbitrary pre-

cision) by a phase-type distribution, represented by the absorption time in

an absorbing Markov process with a finite state space 1, . . . , K. To get a

Markovian description of the approximating system, we have to keep track

of the current phases of the customers. Let N(t) = (Nk(t); k = 1, . . . , K),

where Nk(t) refers to the total number of customers in phase k at time t.

The state space of process N(t) is clearly

S = {n = (n1, . . . , nK);nk ∈ {0, 1, . . .}}.

It is possible to find the steady-state distribution of the Markov process N(t)

by verifying the station balance equations, which are generated by jumps of

single customers from one phase to another (including the arrivals and the
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departures) in a similar manner as in the case of M/EK/1-PS queues. Since

the queue length process X(t) satisfies

X(t) = N1(t) + . . .+NK(t),

one is able to derive the steady-state queue length distribution, which (sur-

prisingly) appears to be the same as for the M/M/1-PS queue.

Proposition 13

Consider the M/G/1-PS queue with ρ < 1. The steady-state queue length is

geometrically distributed with point probabilities

P{X = n} = (1− ρ)ρn, n = 0, 1, . . . , (20)

and mean value

E[X] =
ρ

1− ρ
. (21)

Proof This can be proved by the phase method utilizing the station balance

equations, see, e.g., [1, Sect. 3.3]. 2

Since the queue length distribution remains the same for any service time

distribution with the same mean 1/µ, the steady-state queue length distri-

bution of the M/G/1-PS queue is said to be insensitive to the service time

distribution.

Little’s formula, E[X] = λE[T ], gives the following corollary.

Corollary 3

Consider the M/G/1-PS queue with ρ < 1. The mean steady-state sojourn

time is

E[T ] =
E[S]

1− ρ
. (22)
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Interestingly, the mean sojourn time E[T ] in the M/G/1-PS queue equals

the mean busy period E[B]. We note also that it is only the mean delay

which is insensitive to the service time distribution, but not the whole delay

distribution.

4 Performance comparison between FIFO and PS

Below we summarize the performance comparison between FIFO and PS

disciplines.

Corollary 4

Consider an M/G/1 queue with ρ < 1. Then

E[XFIFO] ≤ E[XPS] ⇐⇒ E[T FIFO] ≤ E[T PS] ⇐⇒ C[S] ≤ 1,

where C[S] := D[S]/E[S] refers to the coefficient of variation of the service

time distribution.
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