Logistics

Referee report assignments to be posted on MyCourses
 Complete the poll if you haven't yet.

- Presentation topics yet to be assigned
 - Complete the poll if you haven't yet.
- Student presentation date moved from May 26 to ...

Lecture 2 Spatial equilibrium: canonical urban models

Pablo E. Warnes and Prottoy A. Akbar

ECON-L6000 - Urban and Regional Economics Aalto University School of Business

Spring 2022

Today's agenda

1. Spatial equilibrium within cities

- ► The Alonso-Muth-Mills model
- a.k.a the monocentric city model
- following Alonso (1964), Mills (1967) and Muth (1969).

2. Spatial equilibrium across cities

- The Rosen-Roback model
- following Rosen (1974) and Roback (1982).

Higher population density near city centers

Taller structures near city centers

More expensive land near city centers

Land prices in Berlin from Ahlfeldt et. al (2015)

Higher employment density near city centers

Employment density in Manhattan

from Liu et. al (2020)

Shorter commutes near city centers

Land Use in Paris

Duranton, G. & D. Puga. 2015. Urban Land Use. In G. Duranton, J.V. Henderson, W.C. Strange (ed.), *Handbook of Regional and Urban Economics*, Vol 5, 467-560

Monocentric city model: Residents

Homogeneous urban residents:

- with income y
- commute to a job in the city center
- **choose** distance x from city center to reside in
- ► face commuting costs T(x) that are increasing with distance: T'(x) > 0
 - Iocations are identical in all directions
- **choose** consumption of:
 - housing space: q
 - a composite good: c
- face prices p(x) of housing space that varies with location
- face a constant price=1 of composite good

Monocentric city model: Utility

Urban residents:

- maximize a quasi-concave utility function v(c,q)
- s.t. income constraint y = T(x) + p(x)q + c (i.e., no saving)

Monocentric city model: Utility

Urban residents:

- maximize a quasi-concave utility function v(c, q)
- s.t. income constraint y = T(x) + p(x)q + c (i.e., no saving)
- In a spatial equilibrium, utility
 - must be same for everyone
 - regardless of consumption and location choices
 - given homogeneity
 - \blacktriangleright equals some constant u
 - (recall from micro theory: Hicksian approach)

Monocentric city model: Residential choices

Optimal housing consumption satisfies the f.o.c.:

Monocentric city model: Residential choices

1. Housing price p(x) decreases with distance

- and commuting cost
- 2. Housing consumption q increases with distance

$$\blacktriangleright \ \frac{\partial q}{\partial x} > 0$$

and commuting cost

- 3. Higher utility $u \iff$ higher housing consumption q and lower prices p
 - assuming housing is normal good

•
$$\frac{\partial p}{\partial u} < 0$$
 and $\frac{\partial q}{\partial u} > 0$

note: holding income fixed

Housing production

- uses land / and capital N
- according to concave constant returns function H(N, I)
- faces rental prices r of land and i of capital
- **•** maximizes profit: pH(N, I) iN rI

$$= I(ph(S) - iS - r)$$

where $S \equiv N/I$ is capital-land ratio and $h(S) \equiv H(S, 1)$ is floor space per unit of land

• first-order condition: i = ph'(S)

is perfectly competitive

> zero profit condition: r = ph(S) - iS

1. Land rent r is decreasing with distance x

•
$$\frac{\partial r}{\partial x} < 0$$

Iand is cheaper farther from the center

1. Land rent r is decreasing with distance x

•
$$\frac{\partial r}{\partial x} < 0$$

Iand is cheaper farther from the center

- 2. Capital-land ratio S is decreasing with distance x
 - ► $\frac{\partial S}{\partial x} < 0$
 - buildings are shorter farther from the center

1. Land rent r is decreasing with distance x

▶
$$\frac{\partial r}{\partial x} < 0$$

Iand is cheaper farther from the center

- 2. Capital-land ratio S is decreasing with distance x
 - $\frac{\partial S}{\partial x} < 0$
 - buildings are shorter farther from the center
- 3. Population density h(S)/q is decreasing with distance x
 ▶ since ∂q/∂x > 0 and ∂S/∂x < 0.

Monocentric city model: city size and utility

We require two further equilibrium conditions to determine city population and area:

- 1. Housing producers outbid agricultural users for all the land used for urban housing.
 - land rents r(x) in the city should exceed land rent r(x̄) at the distance x̄ to the city boundary
- 2. Total city population L should fit inside \bar{x} .

Monocentric city model: Land rent at boundary

Open vs. closed city

- Open-city model: people move from elsewhere and there is a spatial equilibrium across cities.
 - fixed (reservation) utility, endogenous population
- Closed-city model: no mobility across cities
 - fixed population, endogenous utility

Monocentric city model: Extensions

- Heterogeneous incomes (Wheaton, 1976; Glaeser, Kahn and Rapapport 2008)
- Travel mode choice (LeRoy and Sonstelie, 1983)
- Decentralized employment (Fujita and Ogawa, 1982)
- Many other variants!

Monocentric city model: Bid-rent functions

Residents may face different bid-rent gradients (over distance):

Spatial equilibrium across cities

Income and climate

Rosen-Roback model

- 1. Discrete location choices
- 2. Spatial equilibrium for mobile workers/consumers
- 3. Zero profit condition and spatial equilibrium for mobile firms
- 4. Zero profit condition for suppliers of housing and non-tradable goods

Rosen-Roback model: Intuition

Individual utility over wages (Y_c) , prices (P_c) and amenities (A_c) in place c:

$$V(Y_c, P_c, A_c)$$

must be constant across locations and equal reservation utility $\bar{U}. \label{eq:update}$

Rosen-Roback model: Intuition

Individual utility over wages (Y_c) , prices (P_c) and amenities (A_c) in place c:

$$V(Y_c, P_c, A_c)$$

must be constant across locations and equal reservation utility $\bar{U}.$

If
$$V(Y_c, P_c, A_c) = V(Y_c - P_c, 0, A_c)$$
,
 $\frac{d(Y_c - P_c)}{dA_c} = -\frac{V_A(Y_c - P_c, 0, A_c)}{V_Y(Y_c - P_c, 0, A_c)}$

Higher amenities correspond to lower real incomes.

Rosen-Roback model: Intuition

$$V(Y_c, P_c, A_c) = \bar{U}$$

Holding amenities constant:

- any increase in prices must be offset by an equivalent increase in incomes
- any increase in incomes must be offset by an equivalent increase in prices
- Compensating differential!

House prices and income

Rosen-Roback model: Key take-aways

- Population rises with productivity, amenities and land supply
- Incomes rise with productivity, and decrease with amenities and land supply
- Land prices rise with productivity and amenities, and decrease with land supply
- Changes in population, incomes and land prices can be used to study changes in amenities, productivity and land supply.

References

Ahlfeldt, G. M., Redding, S.J., Sturm, D.M. and Wolf, N., (2015). "The economics of density: Evidence from the Berlin Wall." *Econometrica*, 83(6), 2127-2189.

Alonso, W. (1964). *Location and Land Use: Toward a General Theory of Land Rent*, Cambridge, MA: Harvard University Press.

Brueckner, J. (1987). "The structure of urban equilibria: A unified treatment of the Muth-Mills model." In Edwin S. Mills (ed.) *Handbook of Regional and Urban Economics*, 2(20), 821–845.

Duranton, G. & Puga, D. (2015). "Urban Land Use" In G. Duranton, Henderson, J. V., Strange, W. C. (ed.), *Handbook of Regional and Urban Economics*, 5, 467-560.

Fujita, M. and Ogawa, H. (1982). "Multiple equilibria and structural transition of non-monocentric urban configurations." *Regional science and urban economics*, 12(2), 161-196.

Glaeser, E. L., Kahn, M. E., & Rappaport, J. (2008). "Why do the Poor Live in Cities? The Role of Public Transportation", *Journal of Urban Economics*, 63(1), 1-24.

References

LeRoy, S. F., & Sonstelie, J. (1983). "Paradise Lost and Regained: Transportation Innovation, Income, and Residential Location", *Journal of Urban Economics*, 13(1), 67-89.

Liu, C. H., Rosenthal, S. S., and Strange, W. C. (2020). "Employment density and agglomeration economies in tall buildings." *Regional Science and Urban Economics*, 84.

Mills, E. (1967) "An Aggregate Model of Resource Allocation in a Metropolitan Area", *American Economic Review*, 57(2), 197-210.

Muth, R. (1969). Cities and Housing. Chicago: University of Chicago Press.

Roback, J. (1982). "Wages, Rents, and the Quality of Life", *Journal of Political Economy*, 90(6), 1257-1278.

Rosen, S. (1974). "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition", *Journal of Political Economy*, 82(1), 34-55.

Wheaton, W. C. (1976) "On the optimal distribution of income among cities", *Journal of Urban Economics*, 3:323-343.