A”

Aalto University

ELEC-E7450
Performance Analysis

Queueing networks

Samuli Aalto
Department of Communications and Networking




Contents

Burke's theorem
Open queueing networks
Closed queueing networks




Queueing networks

M/M/1

« Customers arrive according to a Poisson process at rate 4

— 1ID inter-arrival times

— exponential inter-arrival time distribution with mean 1/4

« Customers are served by 1 server

— 1ID service times

— exponential service time distribution with mean E[S] = 1/u

« There are co customer places in the system
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Queueing networks

Departure process

 A(t) =number of arrivals until time t
= arrival process

 B(t) =number of departures until time t
= departure process

A(t) :=max{l: aj <t}
B(t)=|{i: 5 <t}

FF I e W

 X(t) =number of customers at time t 4
= gqueue length process

X (t) = A(t) - B(t)

X(t)
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Queueing networks

Burke’s theorem

« Theorem:
Consider a stationary M/M/1 queue (o < 1).

— (i) The departure process B(t) is a Poisson process at rate /.

— (ii) For any t, the queue length X(t) at time t is independent
of the departure process (B(S); s < t) prior to time t.

« The result can be proved by a reversibility argument, see Kelly (1979)
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Tandem queue

« Customers arrive according to a Poisson process at rate 4

« There are M single-server queues in tandem
— departure process B;(t) of queue I is the arrival process A;, (1) of queue i+1

— independent and exponentially distributed service times S; in each queue |
with mean E[S;] = 1/44

* Let p, denote the load in queue I defined by
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Steady-state queue length distribution

Let N;(t) denote the number of customers in queue I at time t

Corollary:
Consider a tandem queue. If p; < 1 for all I, then the system is stable
and the steady-state queue length distribution is

N
P{Ny=ny,...,Nm =nm}=TTM, @ pi) o)

Note: Both queues behave as independent M/M/1 queues
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Jackson network

Open network of M single-server queues
Arrivals from outside to queue I:
— independent Poisson process at rate AP ;

Service times in queue I:

— 1ID exponentially distributed
with mean E[S;] = 1/44

Moving from queue I to queue |:
— after service completion with probability Pij

Departures to outside from queue I:

— after service completion with probability p;

Zil\i1 Poi =1
>opij=1

Zil\i1 Pio>0

Hi
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Po.2 @ Pr3

@ P3.0

Assumption: Routing probabilities
are such that each customer
eventually leaves the network.




Queue length process

Denote
N(t) = (N1(t)...., N (1)) o1

where N;(t) refers to the total number of
customers in queue | at time t APo o

Process N(t) is an irreducible Markov
process with state space

S={n=(n,....n\ ) Inj {012,  }}
and transition rates

Q(n’n+ei) =/1p0,i
g(n+ej,n+ej) = 4P|

@ P3.0

q(n+ej,n) = 1 Pjo

10




Flow conservation equations

Let ¢ denote the average rate at which
customers leave queue I, (i.e., throughput)

Single-server queue I is stable if and only if
6 < ni

For a stable system, the «91 clearly satisfy
the following flow conservation equations

(FCE) for any |:
M
0 = Apg, j +2.i210i Pi, j

This is a linear system of equations with a
unigue solution

By summing up all (FCE) equations, we get

A=Y Gipio

H
A a
Po.2 @ Pr 3

@ P3.0

Note that (FCE) equations do not
depend on the service rates /.
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Stability

Proposition:
Consider a Jackson network. The system AP 1 H Pi3
is stable if and only if the & uniquely —> @
determined from the flow conservation
equations (FCE) satisfy APoo éi P23
—_—
=% <1 foralli
pi =<1 foralli
Hi 3

@ P3.0

It follows that, in a stable system,
the throughputs & do not depend
on the service rates y;. 12




Jackson’s theorem (1)

Theorem:
Consider a stable Jackson network. The AP 1 AU

steady-state distribution of process N(t)is || ——> @

N
P{N =n}=TTM, @ ) o" AP 4

This result is known as Jackson’s theorem 3

@ P3.0

Note:
In steady state, all queues behave as
independent M/M/1 queues

Note also that for any I, we have the

following recursive equation:
P{N =n+¢j}=P{N =n}p;
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Jackson’s theorem (2)

Corollary:
Consider a stable Jackson network.

The steady-state queue length N; of
queue | satisfies

P{N; =ni}=({-pi)p;"

Let X and T denote the steady-state
variables for the total number of
customers in the whole network and
the time that a customer spends in
the whole system, respectively.

Let X(t) denote the total number of
customers in the whole network at
time t,

X (t) = Ny(t)+...+ Ny (t)

Corollary:
For a stable Jackson network,

E[X]= 257

E[T] Z|_1 Yl

ﬂ|9

Note that ¢}/A can be interpreted as
the mean number of visits to queue |
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Arrival theorem

Let N* denote the steady-state variable
describing the state of the system seen by
a customer entering any queue (with the
entering customer excluded).

Theorem:

Consider a stable Jackson network. The
steady-state distribution seen by a
customer entering any queue is the same
as the steady-state distribution of the

Markov process N(t),
P{N*=n}=P{N =n}

This result is known as the arrival theorem
for Jackson networks

@ P3.0
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Gordon-Newell network

Closed network of M single-server queues
No arrivals from outside but a fixed C

number of customers denoted by K

Service times in queue I:

— |ID exponentially distributed
with mean E[S;] = 1/44

Moving from queue I to queue |:

— after service completion with probability Pij
No departures to outside

> pij=1

Assumption: Routing probabilities
are such that each customer finally

Vvisits each queue. 17




Queue length process

« Denote

N (t) = (Nq(t),...,Np (1)) C

where N;(t) refers to the total number of
customers in queue | at time t

« Process N(t) is an irreducible Markov
process with a finite state space

Sk ={n=(n,....nm) [+ . +ny =K;
nj €{012,...}}

and transition rates

q(+ej,M+ej)=xipjj, NeSka

* Note:

The system is always stable and process
N(t) has a unique equilibrium distribution 18




Flow conservation equations (1)

Let ¢ denote the average rate at which

customers leave queue I, (i.e., throughput) C
The 6’] clearly satisfy the following flow
conservation equations (FCE) for any J:

M
0j=2iZ16iPi, |

This is a linear system of equations with
multiple solutions: for any constant C, these
equations are solved by the vector

(cay,....coMm)

Note that (FCE) equations do not
depend on the service rates /.
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Flow conservation equations (2)

Let

&,....0m) C

be any non-zero solution of the flow
conservation equations (FCE), and denote

A

» = foralli
P

Note that there is ¢ such that

6 =¢6 foralli

It follows that the values 8, do not
depend on the service rates /.
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Gordon-Newell theorem

Theorem:
Consider a Gordon-Newell network. The
steady-state distribution of process N(t) is

P{N = n}— B Hl—l Alnl

where

ZHI—l Alnl

neSK

This result is known as the Gordon-Newell
theorem

-

Note:

In steady state, the queues are not
independent but the steady-state
probability is still of product-form.
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Arrival theorem (1)

Let N* denote the steady-state variable
describing the state of the system seen by C
a customer entering any queue (with the

entering customer excluded).

Note that

N*eSk_1

In addition, let N denote the steady-state
number of customers in the corresponding
Gordon-Newell network where there are

K — 1 customers (instead of K),

NESK_l

Note that, for any I, we have

P{N =11 +e}Gk = P{N =}piGk 1
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Arrival theorem (2)

Theorem:

Consider a Gordon-Newell network. The
steady-state distribution seen by a
customer entering any queue is the same
as the steady-state distribution of the

Markov process NN(t),

P{N*=i}=P{N =}

This result is known as the arrival theorem
for Gordon-Newell networks

-
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Mean value analysis (MVA)

Let N;(k) denote the steady-state
mean number of customers in

queue | in a corresponding Gordon-

Newell network where there are k
customers.

In addition, let T;(k) denote the
steady-state mean value of the time
that a customer spends in queue |
during one visit in such a network.

Finally, let &(k) denote the

throughput of queue I in such a
network.

The following result gives a
recursive method, known as Mean
Value Analysis (MVA), to calculate
these steady-state mean values

Theorem:

For a Gordon-Newell network, we
have the following recursive formulas
for the steady-state mean values:

Ti00 =@+ Nik-1) L

kAT (k)
N: (k) = 130
0= omorm 0
N; (k
‘9i (k) — ‘rll((k))

with initial value

N;(0)=0
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Summary

 Burke’s theorem

— M/M/1, Poisson departure process, reversibility, tandem queue,
independent M/M/1 queues, product-form steady-state distribution

« Open queueing networks

— Jackson network, FCE, stability, Jackson’s theorem, independent M/M/1
gueues, product-form steady-state distribution, SBE, arrival theorem

* Closed queueing networks

— Gordon-Newell network, FCE, Gordon-Newell theorem, product-form
steady-state distribution, SBE, arrival theorem, MVA
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