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M/M/1

• Customers arrive according to a Poisson process at rate l
– IID inter-arrival times

– exponential inter-arrival time distribution with mean 1/l

• Customers are served by 1 server

– IID service times

– exponential service time distribution with mean E[S] = 1/m

• There are  customer places in the system
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Departure process

• A(t) = number of arrivals until time t
= arrival process

• B(t) = number of departures until time t
= departure process

• X(t) = number of customers at time t
= queue length process
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Burke’s theorem

• Theorem: 

Consider a stationary M/M/1 queue (r < 1).

– (i) The departure process B(t) is a Poisson process at rate l.

– (ii) For any t, the queue length X(t) at time t is independent 

of the departure process (B(s); s < t) prior to time t.

• The result can be proved by a reversibility argument, see Kelly (1979)
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Tandem queue

• Customers arrive according to a Poisson process at rate l

• There are M single-server queues in tandem

– departure process Bi(t) of queue i is the arrival process Ai+1(t) of queue i+1

– independent and exponentially distributed service times Si in each queue i

with mean E[Si] = 1/mi

• Let ri denote the load in queue i defined by
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Steady-state queue length distribution

• Let Ni(t) denote the number of customers in queue i at time t

• Corollary: 

Consider a tandem queue. If ri < 1 for all i, then the system is stable

and the steady-state queue length distribution is 

• Note: Both queues behave as independent M/M/1 queues
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Jackson network

• Open network of M single-server queues

• Arrivals from outside to queue i:

– independent Poisson process at rate lp0,i

• Service times in queue i:

– IID exponentially distributed

with mean E[Si] = 1/mi

• Moving from queue i to queue j: 

– after service completion with probability pi,j

• Departures to outside from queue i: 

– after service completion with probability pi,0
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Queue length process

• Denote

where Ni(t) refers to the total number of 

customers in queue i at time t

• Process N(t) is an irreducible Markov 

process with state space 

and transition rates 
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Flow conservation equations

• Let qi denote the average rate at which 

customers leave queue i, (i.e., throughput)

• Single-server queue i is stable if and only if 

• For a stable system, the qj clearly satisfy 

the following flow conservation equations

(FCE) for any j: 

• This is a linear system of equations with a 

unique solution

• By summing up all (FCE) equations, we get 
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Note that (FCE) equations do not

depend on the service rates mi.
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Stability

• Proposition: 

Consider a Jackson network. The system 

is stable if and only if the qi uniquely 

determined from the flow conservation 

equations  (FCE) satisfy
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It follows that, in a stable system,

the throughputs qi do not depend

on the service rates mi.
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Jackson’s theorem (1)

• Theorem: 

Consider a stable Jackson network. The 

steady-state distribution of process N(t) is 

• This result is known as Jackson’s theorem

• Note: 

In steady state, all queues behave as 

independent M/M/1 queues

• Note also that for any i, we have the 

following recursive equation: 
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Jackson’s theorem (2)

• Corollary: 

Consider a stable Jackson network. 

The steady-state queue length Ni of 

queue i satisfies

• Let X(t) denote the total number of 

customers in the whole network at 

time t, 

• Let X and T denote the steady-state

variables for the total number of 

customers in the whole network and 

the time that a customer spends in 

the whole system, respectively.

• Corollary: 

For a stable Jackson network, 

• Note that qi/l can be interpreted as 

the mean number of visits to queue i
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Arrival theorem

• Let N* denote the steady-state variable 

describing the state of the system seen by 

a customer entering any queue (with the 

entering customer excluded).

• Theorem: 

Consider a stable Jackson network. The 

steady-state distribution seen by a 

customer entering any queue is the same 

as the steady-state distribution of the 

Markov process N(t),

• This result is known as the arrival theorem

for Jackson networks
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Gordon-Newell network

• Closed network of M single-server queues

• No arrivals from outside but a fixed 

number of customers denoted by K

• Service times in queue i:

– IID exponentially distributed

with mean E[Si] = 1/mi

• Moving from queue i to queue j: 

– after service completion with probability pi,j

• No departures to outside
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Queue length process

• Denote

where Ni(t) refers to the total number of 

customers in queue i at time t

• Process N(t) is an irreducible Markov 

process with a finite state space 

and transition rates 

• Note: 

The system is always stable and process 

N(t) has a unique equilibrium distribution 18
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Flow conservation equations (1)

• Let qi denote the average rate at which 

customers leave queue i, (i.e., throughput)

• The qj clearly satisfy the following flow 

conservation equations (FCE) for any j: 

• This is a linear system of equations with  

multiple solutions: for any constant c, these 

equations are solved by the vector 
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Note that (FCE) equations do not

depend on the service rates mi.
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Flow conservation equations (2)

• Let 

be any non-zero solution of the flow 

conservation equations (FCE), and denote

• Note that there is ĉ such that 
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It follows that the values do not

depend on the service rates mi.
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Gordon-Newell theorem

• Theorem: 

Consider a Gordon-Newell network. The 

steady-state distribution of process N(t) is 

where

• This result is known as the Gordon-Newell 

theorem

• Note: 

In steady state, the queues are not 

independent but the steady-state 

probability is still of product-form. 21
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Queueing networks

Arrival theorem (1)

• Let N* denote the steady-state variable 

describing the state of the system seen by 

a customer entering any queue (with the 

entering customer excluded).

• Note that 

• In addition, let N denote the steady-state 

number of customers in the corresponding 

Gordon-Newell network where there are 

K − 1 customers (instead of K), 

• Note that, for any i, we have 
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Arrival theorem (2)

• Theorem: 

Consider a Gordon-Newell network. The 

steady-state distribution seen by a 

customer entering any queue is the same 

as the steady-state distribution of the 

Markov process N(t),

• This result is known as the arrival theorem

for Gordon-Newell networks
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Mean value analysis (MVA)

• Let Ni(k) denote the steady-state 

mean number of customers in 

queue i in a corresponding Gordon-

Newell network where there are k
customers. 

• In addition, let Ti(k) denote the 

steady-state mean value of the time 

that a customer spends in queue i
during one visit in such a network.

• Finally, let qi(k) denote the 

throughput of queue i in such a 

network.

• The following result gives a 

recursive method, known as Mean 

Value Analysis (MVA), to calculate 

these steady-state mean values

• Theorem: 

For a Gordon-Newell network, we 

have the following recursive formulas 

for the steady-state mean values:

with initial value 
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Summary

• Burke’s theorem

– M/M/1, Poisson departure process, reversibility, tandem queue, 

independent M/M/1 queues, product-form steady-state distribution

• Open queueing networks

– Jackson network, FCE, stability, Jackson’s theorem, independent M/M/1 

queues, product-form steady-state distribution, SBE, arrival theorem

• Closed queueing networks

– Gordon-Newell network, FCE, Gordon-Newell theorem, product-form

steady-state distribution, SBE, arrival theorem, MVA


