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1 Burke’s theorem

Consider an M/M/1 queue with arrival rate λ > 0 and mean service time

E[S] = 1/µ. Let ρ := λ/µ denote the load of the system. In addition, let

X(t) and B(t) denote the queue length process and the departure process,

respectively, at time t.

From the theory of single server queues we know that the average departure

rate, i.e., the throughput θ equals the arrival rate λ whenever the system

is stable (ρ < 1). Burke’s theorem below gives even a much stronger result

that characterizes the departure process from an M/M/1 queue.

Theorem 1

Consider a stationary M/M/1 queue with ρ < 1.

(i) The departure process B(t) is a Poisson process with intensity λ.

(ii) For any t, the queue length X(t) at time t is independent of the departure

process (B(s); s < t) prior to time t.
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Proof This can be proved by a reversibility argument, see [6]. 2

Consider now a tandem system of two queues where the departure process

B1(t) of queue 1 is the arrival process A2(t) of queue 2. In addition, assume

that the arrival process to queue 1 is a Poisson process with rate λ and service

times in queue i are independent and exponentially distributed with mean

E[Si] = 1/µi. As an immediate consequence of the first result in Burke’s

theorem, we obtain that both queues are M/M/1 queues. Moreover, from

the second result, we can deduce that the queue lengths N1(t) and N2(t) in

the two queues at time t are independent The same must be valid for the

corresponding steady-state variables N1 and N2 assuming that both queues

are stable. Thus, we have

P{N1 = n1, N2 = n2} = P{N1 = n1}P{N2 = n2} = (1− ρ1)ρn1
1 (1− ρ2)ρn2

2

where ρi := λ/µi. This can easily be generalized to a tandem system with

any number of queues.

2 Open queueing networks

Consider a network of single server queues, each with an infinite number of

customer places. Let M denote the total number of such queues. Service

times in queue i ∈ {1, . . . ,M} are assumed to be independent and expo-

nentially distributed with mean E[Si] = 1/µi. New customers arrive from

outside according to a Poisson process with rate λ. An arriving customer is

routed to server i with probability p0,i, where

M∑
i=1

p0,i = 1.

Customers are served according to the FIFO service discipline. When the

service in queue i ∈ {1, . . . ,M} is completed, the served customer is either
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routed to queue j ∈ {1, . . . ,M}, which happens with probability pi,j, or it

leaves the whole network, which happens with with probability pi,0, where

M∑
j=0

pi,j = 1,
M∑
i=0

pi,0 > 0.

All routing decisions are assumed to be independent. In addition, the routing

probabilities are assumed to be such that each customer finally leaves the

network. This kind of a queueing network is called a Jackson network.

Note that the network is open in the sense that there are new arrivals from

outside and each customer leaves the system with probability 1. Thus, the

total number of customers in the whole network is varying randomly.

The state of the whole network is described by vector

N(t) = (N1(t), . . . , NM(t)),

where Ni(t) refers to the number of customers in queue i at time t. The state

space is clearly

S = {n = (n1, . . . , nM);ni ∈ {0, 1, . . .}}.

In addition, let ei denote the unit vector to direction i in this space, ei =

(n1, . . . , nM) with ni = 1 and nj = 0 for j 6= i.

Due to the exponential assumptions made above, N(t) is an irreducible

Markov process with the following (positive) state transition rates for any

n ∈ S and i, j ∈ {1, . . . ,M}:

q(n, n+ ei) = λp0,i,

q(n+ ei, n+ ej) = µipi,j

q(n+ ei, n) = µipi,0.
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2.1 Flow conservation equations

Let θi denote the average rate at which customers leave queue i, i.e., its

throughput. From the analysis of a single server queue, we know that queue

i is stable if and only if θi < µi. Thus, the whole system will be stable if this

is the case for all i. Equivalently, we can say that the system is stable if, for

all i ∈ {1, . . . ,M},
ρi < 1, (1)

where we have defined

ρi :=
θi
µi
.

For a stable system, the throughputs θj clearly satisfy the following flow

conservation equations (FCE) for any j ∈ {1, . . . ,M}:

θj = λp0,j +
M∑
i=1

θipi,j. (2)

Equations (2) constitute a linear system of equations, which have a unique

solution (θ1, . . . , θM).

Proposition 1

Consider a Jackson network. The system is stable if and only if the θi

uniquely determined from (2) satisfy (1) for all i ∈ {1, . . . ,M}.

Note that the flow conservation equations (2) depend on the number of

stations and their topology (via the routing probabilities pi,j) but not at all

on the service rates µi. It follows that the throughputs θi are independent

of service rates µi in a stable system.

Note also that, by summing up all equations (2), we get

M∑
j=1

θj = λ+
M∑
i=1

θi(1− pi,0),
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which results in the following additional flow conservation equation:

λ =
M∑
i=1

θipi,0. (3)

So we see that in a stable system the arrival rate into the network equals the

departure rate out of there, as it should be.

2.2 Jackson’s theorem

Below we show that in the steady state the system behaves as M independent

M/M/1 queues, which is known as Jackson’s theorem.

Theorem 2

Consider a stable Jackson network. The steady-state distribution of process

N(t) is given by

P{N = n} =
M∏
i=1

(1− ρi)ρni
i , n ∈ S.

Proof Let n ∈ S and denote

π(n) :=
M∏
i=1

(1− ρi)ρni
i .

For any i ∈ {1, . . . ,M}, we have recursion

π(n+ ei) = π(n)ρi. (4)

Since π(n) is a product of M geometric probabilities, the normalization con-

dition (N) is clearly satisfied. It remains to prove that the global balance

equations (GBE) are also satisfied for any n ∈ S:

∑
n′ 6=n

π(n)q(n, n′) =
∑
n′ 6=n

π(n′)q(n′, n). (5)
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Let n ∈ S and j ∈ {1, . . . ,M}. Since θi = ρiµi for all i, it follows from the

flow conservation equation (2) that

ρjµj(1− pj,j) = λp0,j +
∑
i6=j

ρiµipi,j.

By multiplying both sides by π(n) and applying recursion (4), we get

π(n+ ej)µj(1− pj,j) = π(n)λp0,j +
∑
i6=j

π(n+ ei)µipi,j,

which is equivalent with

π(n+ ej)

q(n+ ej, n) +
∑
i 6=j

q(n+ ej, n+ ei)

 =

π(n)q(n, n+ ej) +
∑
i6=j

π(n+ ei)q(n+ ei, n+ ej). (6)

On the other hand, it follows from the flow conservation equation (3) that

λ =
M∑
i=1

ρiµipi,0.

By again multiplying both sides by π(n) and applying recursion (4), we get

π(n)λ =
M∑
i=1

π(n+ ei)µipi,0,

which is equivalent with

π(n)
M∑
i=1

q(n, n+ ei) =
M∑
i=1

π(n+ ei)q(n+ ei, n). (7)

Equations (6) and (7), which together are called station balance equations

(SBE), are thus true for any n ∈ S. Note that equation (6) corresponds to

transitions out of state n+ej and into that state generated by a customer that

leaves or enters queue j, respectively. Similarly, equation (7) corresponds

to transitions out of state n and into that state generated by a customer

that enters or leaves the whole network, respectively. The global balance

equations (5) follow from these station balance equations in a straightforward

way by summing up the related SBE’s. 2
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Corollary 1

Consider a stable Jackson network. For any i ∈ {1, . . . ,M},

P{Ni = ni} = (1− ρi)ρni
i , ni ∈ {0, 1, . . .},

E[Ni] =
ρi

1− ρi
.

Let X(t) = N1(t)+ . . .+NM(t) and X denote the total number of customers

in the whole network at time t and the corresponding steady-state variable,

respectively. In addition, let T denote the steady-state variable for the total

time that a customer spends in the whole network.

Corollary 2

For a stable Jackson network,

E[X] =
M∑
i=1

ρi
1− ρi

, E[T ] =
M∑
i=1

θi
λ

1

µi − θi
.

Note that θi/λ can be interpreted as the mean number of visits to queue i

(during the time that a customer spends in the whole network).

2.3 Arrival theorem

Let N ∗ denote the steady-state variable describing the state of the system

“seen” by a customer entering any queue (with the entering customer ex-

cluded). Below we show that the entering customer sees the system in equi-

librium. Note that, for external arrivals, this can be justified by PASTA but

not for internal movements from one queue to another. The result is known

as the arrival theorem for Jackson networks.
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Theorem 3

Consider a stable Jackson network. The steady-state distribution seen by a

customer entering any queue is the same as the steady-state distribution of

process N(t), i.e.,

P{N ∗ = n} = P{N = n}, n ∈ S.

Proof Let n ∈ S. Consider first a customer entering from outside to some

fixed queue j with p0,j > 0. Now

P{N ∗ = n | arrival from outside to queue j}

=
P{N = n}q(n, n+ ej)∑

n′∈S P{N = n′}q(n′, n′ + ej)

=
P{N = n}λp0,j∑

n′∈S P{N = n′}λp0,j

=
P{N = n}∑

n′∈S P{N = n′}
= P{N = n}.

If a customer moves from some fixed queue i to queue j with pi,j > 0, we

have

P{N ∗ = n | move from queue i to queue j}

=
P{N = n+ ei}q(n+ ei, n+ ej)∑

n′∈S P{N = n′ + ei}q(n′ + ei, n′ + ej)

=
P{N = n+ ei}µipi,j∑

n′∈S P{N = n′ + ei}µipi,j

=
P{N = n+ ei}∑

n′∈S P{N = n′ + ei}

=
P{N = n}ρi∑

n′∈S P{N = n′}ρi
= P{N = n},

where the second last equality follows from (4). Thus, for any j, we have

P{N ∗ = n | customer enters queue j} = P{N = n},
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which proves the claim. 2

Another method to prove the arrival theorem is to (i) insert an additional

single-server queue, say 0, with service rate µ0, (ii) route all customers whose

destination is queue j via this additional queue 0, and (iii) finally let µ0 →∞.

3 Closed queueing networks

From this on, we exclude the external arrivals and departures, which re-

sults in a system where K customers move in a closed network of M single-

server queues, each with an infinite number of customer places. As for the

Jackson networks, we assume that service times in each queue i are inde-

pendent and exponentially distributed with mean E[Si] = 1/µi. Customers

are served according to the FIFO service discipline. When the service in

queue i ∈ {1, . . . ,M} is completed, the served customer is routed to queue

j ∈ {1, . . . ,M} with probability pi,j, where

M∑
j=1

pi,j = 1.

All routing decisions are assumed to be independent. In addition, the routing

probabilities are assumed to be such that each customer finally visits each

queue. This kind of a queueing network is called a Gordon-Newell network.

The state of the whole network is described by vector

N(t) = (N1(t), . . . , NM(t)),

where Ni(t) refers to the number of customers in queue i at time t. The state

space is clearly

SK = {n = (n1, . . . , nM);n1 + . . .+ nM = K,ni ∈ {0, 1, . . .}}.
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In addition, let ei denote the unit vector to direction i in this space, ei =

(n1, . . . , nM) with ni = 1 and nj = 0 for j 6= i.

Note that any state n ∈ SK can be represented as

n = ñ+ ei,

where ñ ∈ SK−1 and i ∈ {1, . . . ,M}, and vice versa.

Due to the exponential assumptions made above, N(t) is an irreducible

Markov process with the following (positive) state transition rates for any

ñ ∈ SK−1 and i, j ∈ {1, . . . ,M}:

q(ñ+ ei, ñ+ ej) = µipi,j

3.1 Flow conservation equations

Let θi denote the average rate at which customers leave queue i, i.e., its

throughput. Since the network is closed, the system is always stable. Thus, in

any case, the throughputs θi satisfy the following flow conservation equations

(FCE) for any j ∈ {1, . . . ,M}:

θj =
M∑
i=1

θipi,j. (8)

Equations (8) constitute again a linear system of equations, but now they

do not determine the θi uniquely. In addition to the real throughputs

(θ1, . . . , θM), equations (8) are solved by any vector (cθ1, . . . , cθM).

Note also that the flow conservation equations (8) depend on the number of

stations and their topology (via the routing probabilities pi,j) but not at all

on the service rates µi. It follows that the throughputs θi are independent

of service rates µi.
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3.2 Gordon-Newell theorem

Below we show that the steady-state distribution of the whole network is of

product-form. The result is known as the Gordon-Newell theorem.

Theorem 4

Consider a Gordon-Newell network. Let (θ̂1, . . . , θ̂M) be any non-zero solu-

tion of equations (8), and define, for any i ∈ {1, . . . ,M},

ρ̂i :=
θ̂i
µi
.

The steady-state distribution of process N(t) is given by

P{N = n} =
1

ĜK

M∏
i=1

ρ̂ni
i , n ∈ SK ,

where

ĜK :=
∑

n′∈SK

M∏
i=1

ρ̂
n′i
i .

Proof Let n ∈ SK and denote

π(n) :=
1

ĜK

M∏
i=1

ρ̂ni
i .

Note that for any ñ ∈ SK−1 and i, j ∈ {1, . . . ,M}, we have

π(ñ+ ei)

ρ̂i
=
π(ñ+ ej)

ρ̂j
. (9)

Probabilities π(n) clearly sum up to 1 so that the normalization condition

(N) is satisfied. It remains to prove that the global balance equations (GBE)

are also satisfied for any n ∈ SK :

∑
n′ 6=n

π(n)q(n, n′) =
∑
n′ 6=n

π(n′)q(n′, n). (10)
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Let ñ ∈ SK−1 and j ∈ {1, . . . ,M}. Since θ̂i = ρ̂iµi for all i, it follows from

the flow conservation equation (8) that

ρ̂jµj(1− pj,j) =
∑
i6=j

ρ̂iµipi,j.

By multiplying both sides by π(ñ+ ej)/ρ̂j and applying formula (9), we get

π(ñ+ ej)µj(1− pj,j) =
∑
i6=j

π(ñ+ ei)µipi,j,

which is equivalent with

π(ñ+ ej)
∑
i6=j

q(ñ+ ej, ñ+ ei) =
∑
i6=j

π(ñ+ ei)q(ñ+ ei, ñ+ ej). (11)

Equations (11) are called station balance equations (SBE). For fixed ñ and j,

it corresponds to transitions out of state ñ+ej and into that state generated

by a customer that leaves or enters queue j, respectively. The global balance

equations (10) follow from these station balance equations in a straightfor-

ward way by summing up the related SBE’s. 2

3.3 Arrival theorem

Let N ∗ denote the steady-state variable describing the state of the system

“seen” by a customer entering any queue (with the entering customer ex-

cluded). Note that N ∗ ∈ SK−1. In addition, let Ñ denote the steady-state

number of customers in the corresponding Gordon-Newell network where

there are K−1 customers (instead of K). It follows from the Gordon-Newell

theorem that

P{Ñ = ñ} =
1

ĜK−1

M∏
i=1

ρ̂ñi
i , ñ ∈ SK−1,

where

ĜK−1 :=
∑

ñ′∈SK−1

M∏
i=1

ρ̂
ñ′i
i .

12



Thus, for any i ∈ {1, . . . ,M},

P{N = ñ+ ei} = P{Ñ = ñ}ρ̂i
ĜK−1

ĜK

. (12)

Below we show that the entering customer sees the corresponding system,

where there are K− 1 customers, in equilibrium. The result is known as the

arrival theorem for Gordon-Newell networks.

Theorem 5

Consider a Gordon-Newell network. The steady-state distribution seen by a

customer entering any queue is the same as the steady-state distribution of

process Ñ(t), i.e.,

P{N ∗ = ñ} = P{Ñ = ñ}, ñ ∈ SK−1.

Proof Let ñ ∈ SK−1. Consider a customer moving from some fixed queue

i to another fixed queue j with pi,j > 0. Now

P{N ∗ = ñ | move from queue i to queue j}

=
P{N = ñ+ ei}q(ñ+ ei, ñ+ ej)∑

ñ′∈SK−1 P{N = ñ′ + ei}q(ñ′ + ei, ñ′ + ej)

=
P{N = ñ+ ei}µipi,j∑

ñ′∈SK−1 P{N = ñ′ + ei}µipi,j

=
P{N = ñ+ ei}∑

ñ′∈SK−1 P{N = ñ′ + ei}

=
P{Ñ = ñ}ρ̂i ĜK−1

ĜK∑
ñ′∈SK−1 P{Ñ = ñ′}ρ̂i ĜK−1

ĜK

= P{Ñ = ñ},

where the second last equality follows from (12). Thus, for any j, we have

P{N ∗ = ñ | customer enters queue j} = P{Ñ = ñ},

which proves the claim. 2
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As in the case of Jackson networks, another method to prove the arrival the-

orem is to (i) insert an additional single-server queue, say 0, with service rate

µ0, (ii) route all customers whose destination is queue j via this additional

queue 0, and (iii) finally let µ0 →∞.

3.4 Mean value analysis

The arrival theorem gives us a tool to develop a recursive method to calculate

the steady-state mean values for the number of customers in each queue as

well as the time spent in each queue separately. This method is know as

Mean Value Analysis (MVA) of Gordon-Newell networks.

Let N̄i(k) and T̄i(k) denote the steady-state mean value of the number of

customers in queue i and the time that a customer spends in queue i dur-

ing one visit, respectively, in a corresponding Gordon-Newell network where

there are k customers. In addition, let θi(k) denote the throughput of queue i

in such a network.

Theorem 6

Consider a Gordon-Newell network. The steady-state mean values satisfy the

following recursion: N̄i(0) = 0 and, for any k ∈ {1, 2, . . .},

T̄i(k) = (1 + N̄i(k − 1))
1

µi
, (13)

N̄i(k) =
kθ̂iT̄i(k)∑M
j=1 θ̂jT̄j(k)

, (14)

θi(k) =
N̄i(k)

T̄i(k)
, (15)

where (θ̂1, . . . , θ̂M) is any solution of equations (8).
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Proof Clearly N̄i(0) = 0. Let k ∈ {1, 2, . . .}. Let N̄ ∗i (k) denote the steady-

state mean value of the number of customers in queue i seen by a customer

entering that queue in a corresponding Gordon-Newell network where there

are k customers. It follows from the FIFO service discipline and exponential

service times that

T̄i(k) = (1 + N̄ ∗i (k))
1

µi
.

By the arrival theorem (Theorem 5), we have N̄ ∗i (k) = N̄i(k − 1), which

results in formula (13). Formula (15) follows directly from Little’s formula

applied to queue i,

N̄i(k) = θi(k)T̄i(k).

Finally, since
∑M

j=1 N̄j(k) = k, we have

N̄i(k) =
kN̄i(k)∑M
j=1 N̄j(k)

.

By further applying Little’s formula, we get

N̄i(k) =
kθi(k)T̄i(k)∑M
j=1 θj(k)T̄j(k)

.

Formula (14) follows now from the observation that for any solution (θ̂1, . . . , θ̂M)

of equations (8) there is ĉ(k) such that, for any j,

θ̂j = ĉ(k)θj(k),

which completes the proof. 2
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