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Unsupervised learning with explicit generative models

• In this lecture, we continue looking at unsupervised learning, that is learning from unlabeled data:

x(1), . . . , x(n)

• In this lecture, we will mainly consider explicit generative models:

• The density model pθ(x) = p(x | θ) has an explicit parametric form.

• The trained model can be used to generate new examples from pθ(x).

• We will consider two way of parameterizing pθ(x):

• Autoregressive models: p(x) =
n∏

i=1

p(xi |x1, ..., xi−1)

• Flow-based models: log pθ(x) = log pθ(z) + log | det(dz/dx)|
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Autoregression in sequence-to-sequence models

• We have seen autoregressive models before. Recall the decoders in sequence-to-sequence models

for neural machine translation.

• Our decoders were autoregressive models with the

context provided by the encoder

p(yi | yi−1, ..., y1, z1, ..., zn)

• We have considered three types of decoders: RNN,

CNN, transformer. SOS y1 y2 y3

Decoder

y1 y2 y3 y4

context

• For unsupervised learning, we can use models which are similar to autoregressive decoders. The

difference is that we not need to use the context:

p(y1, y2, ..., ym) = p(y1)
m∏
i=2

p(yi | yi−1, ..., y1)
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I. Convolutional autoregressive models



Autoregressive modeling of sequential data

• First we consider modeling of data with one-dimensional structure such as text or audio.

• We can build an autoregressive model

p(x1, x2, ..., xm) = p(x1)
m∏
i=2

p(xi | xi−1, ..., x1)

by modeling conditional probabilities p(xi | xi−1, ..., x1) with a

convolutional neural network. x1 x2 x3 x4

CNN

x2 x3 x4 x5

• We use 1d causal (shifted) convolutional layers to guarantee the autoregressive structure.

• Inputs and targets are shifted versions of the same sequence.
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Recap of causal 1d convolutions

• By shifting the outputs, we make sure that the receptive field of xi does not contain subsequent

elements xj , j ≥ i .

standard convolution
x1 x2 x3 x4 x5

x2 x3 x4 x5 x6

shifted convolution

• If we stack multiple convolutional layers built in the same way, the desired property is preserved.
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WaveNet (van den Oord et al., 2016)

• WaveNet is an autoregressive model of speech.

• For fast growth of the receptive field, WaveNet uses a stack of dilated causal convolutional layers.
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PixelCNN

(van den Oord et al., 2016a)

(van den Oord et al., 2016b)

https://arxiv.org/pdf/1601.06759.pdf
https://arxiv.org/pdf/1606.05328.pdf


Autoregressive models of images

• We can treat n × n images as one-dimensional sequences x1, ..., xn2

where pixels are taken from the image row by row.

• We can build an autoregressive model similarly to text:

p(x) =
n2∏
i=1

p(xi |x1, ..., xi−1)

p(xi |x1, ..., xi−1) is the probability distribution over pixel intensities

xi for pixel i given the intensities x1, ..., xi−1 of the previous pixels.

• This is an old idea (Larochelle and Murray, 2011, Germain et al., 2015).

• We will look at the model called PixelCNN (van den Oord et al., 2016a and van den Oord et al.,

2016b).

8

http://proceedings.mlr.press/v15/larochelle11a/larochelle11a.pdf
https://arxiv.org/pdf/1502.03509.pdf
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Autoregressive models of images

• We need a model that computes the probability

distribution over pixel intensities given the previous

pixels:

p(x) =
n2∏
i=1

p(xi |x1, ..., xi−1)

• We want to compute those probabilities for all

pixels in parallel, just like we did for sequences

(inputs with one-dimensional structure).

x1 x2 x3 x4

CNN

x2 x3 x4 x5

9



PixelCNN (van den Oord et al., 2016a; van den Oord et al., 2016b)

• PixelCNN (van den Oord et al., 2016a) use a stack of masked 2d convolutional layers

• We compute the conditional probabilities in parallel.

• We preserve the autoregressive structure.

• If we convolve an image with such a kernel, the value of the central pixel is affected only by the

previous pixels, which is what we need.

kernel mask

0 2 4 6 8 10

0

2

4

6

8

10
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Receptive fields of a masked convolutional networks

• Let us see what happens if we stack two layers with

masked kernels. The second layer has a non-zero value of

the kernel in the center.

masked 2d convolution

masked 2d convolution
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8

10

Construction of the receptive field of the

green pixel in the second layer of masked 2d

convolutions.
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PixelCNN: A stack of masked 2d convolutional layers

• If we stack more masked 2d convolutional layers, the desired

autoregressive structure is preserved.

• A simple PixelCNN model:

• Use the same kernel size and (almost) the same mask in each layer

(weights are not shared).

• Use padding to keep the output of the same shape.

• This is the model you need to implement in the home assignment. masked convolution

masked convolution

masked convolution

masked convolution

stack of masked 2d

convolutions in PixelCNN
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PixelCNN: Loss function

• Every conditional distribution p(xi |x1, ..., xi−1) is modeled as a

multinomial distribution over 256 possible values (8-bit

representation of a pixel value).

• Each pixel is classified to one of the 256 classes. The output layer has

softmax nonlinearity and the loss is the “cross entropy” loss.

• The discrete representation of the targets is simple and has the advantage of being arbitrarily

multimodal without using any assumption on the shape of the output distribution.

• For modeling images with three (red, green and blue) channels, each of the colors is conditioned

on the other channels as well as on all the previously generated pixels.
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PixelCNN: Generated samples

Tiger

EntleBucher

Class-Conditional samples from the Conditional Pixel CNN
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VQ-VAE

(van den Oord et al., 2018)

(Razavi et al., 2019)

https://arxiv.org/pdf/1711.00937.pdf
https://arxiv.org/pdf/1906.00446.pdf


Combining autoencoders and autoregressive models

• Autoregressive models do not encode data samples into a code, which can be useful in some

applications.

• Can we somehow combine the idea of autoregressive modeling with autoencoders?

• The simplest way to do this is to use an autoregressive (e.g.,

PixelCNN) decoder in a VAE.

• Unfortunately, this does not work in practice because of the

“posterior collapse” problem:

• The decoder model is so powerful that it can model the data

without using the latent code produced by the encoder.

• This issue motivated the model called VQ-VAE (van den Oord

et al., 2018).

µ,σ

Encoder

x

z

PixelCNN

x̂

sample

Variational autoencoder
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Vector Quantized Variational AutoEncoder (VQ-VAE) (van den Oord et al., 2018)

• VQ-VAE is an autoencoder with a discretized latent space and

an autoregressive model for the discrete codes in the latent

space.

• Training consists of two stages:

1. Training an autoencoder with discrete latent codes.

2. Training a PixelCNN model on the discrete latent codes.

CNN
encoder

x

z

CNN
decoder

x̂

zk

PixelCNN

Stage 2: PixelCNN

quantize

Stage 1: Autoencoder
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Stage 1: Autoencoder with discrete latent codes

• There is a finite set of possible latent codes zk that can be

used to encode the input. Vectors zk form a codebook.

• The output of the encoder f (x) is quantized to prototype

vectors zk :

quantize(f (x)) = zk where k = arg min
j
‖f (x)− zj‖

• The decoder tries to reconstruct the original input x from the

quantized representation zk by minimizing the loss

L(g) = ‖x− g(zk)‖2
2

CNN
encoder

x

z

f CNN
decoder

x̂

zk

g

quantize

Stage 1: Autoencoder
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Stage 1: Learning the encoder

• The loss optimized by the encoder is

L(f ) = ‖x− g(zk)‖2
2 + β ‖f (x)− sg[zk ]‖2

• the last term makes sure the encoder commits to embeddings

zk and its output does not grow

• sg is the stop-gradient operation.

• The encoder parameters affect the first term but the

quantization operation is not differentiable.

• Solution: to copy gradients from decoder input to encoder

output (straight-through gradient estimation): ∂L
∂z = ∂L

∂zk
.

CNN
encoder

x

z

f CNN
decoder

x̂

zk

g

quantize

Stage 1: Autoencoder
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Stage 1: Learning the codebook vectors

• The codebook vectors zk are updated to minimize the loss

Nk∑
i

‖sg[f (xi )]− zk‖2

where k = arg minj ‖f (xi )− zj‖.

• In practice, the codes are updated using exponential moving

average:

Nk ← γNk + (1− γ)nk

mk ← γmk + (1− γ)

nk∑
i

f (xi )

zk ←
mk

Nk

CNN
encoder

x

z

f CNN
decoder

x̂

zk

g

quantize

Phase 1: Autoencoder
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VQ-VAE-2 (Razavi et al., 2019)

• VQ-VAE-2: A second version of the model

with two levels of hierarchy.

• Motivation: to model local information, such

as texture, separately from global information

such as shape and geometry of objects.
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VQ-VAE-2 (Razavi et al., 2019)

• In the second phase of training, we build a

generative model for the latent codes:

• a PixelCNN model for the top-level codes

• a conditional PixelCNN model for the bottom-level

codes

• Generation process:

• generate top-level codes with PixelCNN

• bottom-level codes with conditional PixelCNN

• convert the latent codes to a sample using the

decoder trained in the first stage
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VQ-VAE-2: Generated samples

Class-Conditional samples from VQ-VAE-2
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II. Transformer-based autoregressive models



Language models by OpenAI:

Generative Pre-trained Transformer

GPT-2 (Radford et al., 2019)

GPT-3 (Brown et al., 2020)

https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165


Autoregressive language models

• GPT-2 and GPT-3 are autoregressive models of text:

p(xi | xi−1, ..., x1)

• The models operate on the byte level.

• The models are essentially a transformer decoder with only

masked self-attention (we need to preserve the

autoregressive structure and there is no context).

• The models are trained on a large collection of texts.

x1 x2 x3 x4

Transformer decoder

x2 x3 x4 x5
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Example from the OpenAI blog post

In response to the input written by a human

In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more

surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2 generates continuation

The scientist named the population, after their distinctive horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were previously unknown to

science. Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved. Dr. Jorge Pérez, an evolutionary

biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other

animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Pérez and the others then ventured further into the valley. “By the time we reached the top of one peak, the water looked blue, with some crystals

on top,” said Pérez. Pérez and his friends were astonished to see the unicorn herd. These creatures could be seen from the air without having to

move too much to see them – they were so close they could touch their horns. While examining these bizarre creatures the scientists discovered that

the creatures also spoke some fairly regular English. Pérez stated, “We can see, for example, that they have a common ’language,’ something like a

dialect or dialectic.” Dr. Pérez believes that the unicorns may have originated in Argentina, where the animals were believed to be descendants of a

lost race of people who lived there before the arrival of humans in those parts of South America. While their origins are still unclear, some believe

that perhaps the creatures were created when a human and a unicorn met each other in a time before human civilization. According to Pérez, “In

South America, such incidents seem to be quite common.” However, Pérez also pointed out that it is likely that the only way of knowing for sure if

unicorns are indeed the descendants of a lost alien race is through DNA. “But they seem to be able to communicate in English quite well, which I

believe is a sign of evolution, or at least a change in social organization,” said the scientist.
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GPT-3

• GPT-3 is even more impressive. You can

find numerous blog posts testing

generative capabilities of GPT-3.

• The model can write poetry, carry on

conversation and even write code.

• OpenAI has created Codex, an extension

of GPT-3 which is trained on code.

The following is a conversation with an AI assistant. The assistant is helpful,

creative, clever and very friendly.

Human: Hello, who are you?

AI: I am an AI created by OpenAI. How can I help you today?

Human: are we living within a simulation?

AI: Yes, absolutely.

Human: Who designed the simulation?

AI: You did.

Human: But how can I did it, if I am living within it?

AI: Are you trying to ask who designed you?

Human: Yes.

AI: Okay, I will answer you with a joke. Do you know who created this

earth?

Huan: Time?

AI: No.

Human: Who?

AI: Aliens?

Human: No.

AI: God?

Human: Who or what is God?

AI: An intelligence that has created the earth.

Human: Does God exist?

AI: Yes.

Human: Have you seen God?

AI: No.
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Traditional fine-tuning of language models

• Traditionally, a pre-trained language model

is fine-tuned to a specific task using a

custom data set.
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GPT-3 as a few-shot learner

• GPT-3 shows few-shot learning capabilities

without finetuning.

30



Sparse transformers

(Child et al., 2019)

https://arxiv.org/pdf/1904.10509.pdf


Transformer-based autoregressive models of images

• The transformer model has also been used to learn an

autoregressive model of images.

• As in PixelCNN, we can view an image as a sequence of n

pixels and build an autoregressive model

p(x) =
n∏

i=1

p(xi | x1, ..., xi−1)

• There are several problems that one needs to address:

• Transformers are used for modeling discrete data (tokens).

What should be used as tokens in images?

• For transformers, time and memory requirements grow

quadratically with the sequence length. In images, n ∼ 105.

• How to take take into account the pixel positions.

Attention masks of standard transformer.

Above: for one pixel. Below: for all pixels in

a flattened image.
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Sparse Transformers (Child et al., 2019)

• Model built from raw bytes (256 tokens).

• Sparse factorizations of the attention matrix:

• One attention head attends to the previous l locations.

• The other head attends to every l-th location.

• l is chosen to be close to
√
n.

• Positions are taken into account by adding positional

embeddings (for rows and columns). The positional

embeddings are learned.
Attention masks for two heads of sparse

transformer. Above: for one pixel. Below:

for all pixels in a flattened image.
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Sparse Transformers: Generated samples
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DALL·E: Creating Images from Text

(Ramesh et al., 2021)

https://arxiv.org/pdf/2102.12092.pdf


DALL·E (Ramesh et al., 2021)

• The considered task is text-to-image generation: Generate an

image from a textual description.

• Similarly to VQ-VAE, training consists of two stages.

• Stage 1: Train a discrete variational autoencoder (dVAE) to

compress each 256× 256 RGB image into a 32× 32 grid of

image tokens (8192 possible values).

• Stage 2: Concatenate up to 256 BPE-encoded text tokens

with the 32× 32 = 1024 image tokens, and train an

autoregressive transformer to model the joint distribution over

the text and image tokens.

• The model is trained on 250 million text-images pairs from

the internet.

CNN
encoder

x

z

CNN
decoder

x̂

zk

AR
transformer

Stage 2: Autoregressive
transformer

quantize

Stage 1: Discrete VAE
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DALL·E: Generated samples

an illustration of a baby

hedgehog in a christmas

sweater walking a dog

a neon sign that reads

“backprop”.

the exact same cat on the top

as a sketch on the bottom.
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III. Flow-based generative models



Invertible generative process

• In flow-based generative models, the

generative process is usually defined as

z ∼ pθ(z)

x = gθ(z)

where z is the latent variable and pθ(z) has

a simple tractable density, such as a

spherical multivariate Gaussian distribution:

pθ(z) = N (z; 0, I).

• The function gθ is invertible (bijective).

• Inference is done by z = fθ(x) = g−1
θ (x).

• Compare to the generative model that we

considered with variational autoencoders:

z ∼ pθ(z)

x = gθ(z) + ε

• gθ(z) was not generally invertible

• one could add extra noise ε.

• Because of this, it was not possible to

recover z from x easily. We had to design

an inference procedure that involved

approximations q(z) ≈ p(z | x,θ).
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Normalizing flows

• Flow-based generative models use invertible gθ:

z ∼ pθ(z)

x = gθ(z)

• To implement this idea, we need to construct an invertible

transformation x = gθ(z), z = fθ(x) = g−1
θ (x).

• We can do so by constructing a sequence of invertible transformations:

x
f1←→
g1

h1
f2←→
g2

h2 · · ·
fK←→
gK

z

• Such a sequence of invertible transformations is called a (normalizing)

flow (Rezende and Mohamed, 2015).

z

h2

h1

x

fK

f2

f1

gK = f−1
K

g2 = f−1
2

g1 = f−1
1
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Learning flow-based generative models

• We can tune the parameters of the model by maximizing the log-likelihood

F(θ) =
1

N

N∑
i=1

log pθ(xi )

• Since mapping x→ z is invertible, we can use the change-of-variables rule:

pθ(x) = pθ(z)

∣∣∣∣det
∂z

∂x

∣∣∣∣
• This yields the log-likelihood for a single datapoint x:

log pθ(x) = log pθ(z) + log

∣∣∣∣det
∂z

∂x

∣∣∣∣ = log pθ(z) +
K∑

k=1

log

∣∣∣∣det
∂hk

∂hk−1

∣∣∣∣
where dhk/dhk−1 is derived using the parametric form of hk = fk(hk−1).

z

h2

h1

x

fK

f2

f1

gK = f−1
K

g2 = f−1
2

g1 = f−1
1

• We need to use transformations hk = fk(hk−1) for which we can easily compute log-determinant

of the Jacobian matrix log | det(∂hk/∂hk−1)|.
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Real NVP

(Dinh et al., 2016)

https://arxiv.org/abs/1605.08803


Coupling layer

• Suppose we have two variables x1, x2 and a function that maps x = (x1, x2) to y = (y1, y2):

y1 = x1

y2 = g(x2,m(x1))

where g is an invertible map with respect to its first argument given the second one, for example:

g(a, b) = a + b

g(a, b) = ab, b 6= 0

• This mapping is bijective and we can invert the mapping using:

x1 = y1

x2 = g−1(y2;m(y1))
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Affine coupling layer

• An invertible transformation with two inputs and outputs:

y1 = x1

y2 = g(x2,m(x1)) , g is invertible wrt x2

• We can generalize this idea to vectors x. We can split a vector x

into two halves (x1:d , xd+1:D) and apply the following

transformation:

y1:d = x1:d

yd+1:D = g(xd+1:D , x1:d) = xd+1:D � exp(s(x1:d)) + t(x1:d)

• s and t are functions Rd 7→ RD−d

• � is the Hadamard product or element-wise product

x1:d xd+1:D

y1:d yd+1:D

�

Forward propagation
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Inverting the affine coupling layer

• Forward propagation

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

• In order to generate samples from the model, we need to invert the

transformation. We do this with inverse propagation through the

layer:

x1:d = y1:d

xd+1:D = (yd+1:D − t(y1:d))� exp(−s(y1:d))

x1:d xd+1:D

y1:d yd+1:D

�

Inverse propagation
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Affine coupling layer: Computation of the Jacobian determinant

• The Jacobian of this transformation is

∂y

∂x

>
=

[
Id 0

∂yd+1:D

∂xT
1:d

diag(exp[s(x1:d)])

]

• Because the Jacobian is triangular, we can efficiently compute its determinant as

det
∂y

∂x
= exp

∑
j

s(x1:d)j

• Since computing the Jacobian determinant does not involve computing the Jacobian of s or t,

those functions can be arbitrarily complex. Dinh et al. (2016) model s and t as deep convolutional

neural networks, whose hidden layers can have more features than their input and output layers.
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Affine coupling layer: Partitioning

• To apply invertible transformation

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

we need to partition input x into two parts x1:d and xd+1:D .

• Real NVP uses two ways of partitioning: checkerboard pattern and

channel-wise partitioning (in the figure: either black or white elements

remain unchanged).

• Partitioning is implemented using a binary mask b:

y = b� x + (1− b)� (x� exp(s(b� x)) + t(b� x))

checkerboard pattern

channel-wise partitioning
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Combining coupling layers

• Problem with partitioning: the forward transformation leaves

components x1:d unchanged:

y1:d = x1:d

yd+1:D = xd+1:D � exp(s(x1:d)) + t(x1:d)

• This difficulty can be overcome by composing coupling layers

in an alternating pattern, such that the components that are

left unchanged in one coupling layer are updated in the next.

affine coupling layer

affine coupling layer

affine coupling layer

RealNVP: alternating partitioning

patterns in a stack of affine coupling

layers
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Squeeze operation

• We often want to reduce the image resolution (e.g., by using strides in convolutional layers).

• In Real NVP, we use the squeeze operation for that.

• We keep the total number of variables same (we need to preserve invertibility).

• We reduce the spatial size but increase the number of channels.

• The squeeze operation transforms an s × s × c tensor

into an s
2
× s

2
× 4c. For each channel, it divides the

image into subsquares of shape 2× 2× c, then

reshapes them into subsquares of shape 1× 1× 4c. squeeze

• For better mixing of the variables:

• The checkerboard pattern is used right before the squeeze operation.

• Channel-wise partitioning is used right after the squeeze operation.
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Multi-scale architecture

• At each scale, we combine several operations into a sequence:

• three coupling layers with alternating checkerboard masks

• a squeezing operation

• three more coupling layers with alternating channel-wise masking.

affine coupling layer

affine coupling layer

affine coupling layer

squeeze

affine coupling layer

affine coupling layer

affine coupling layer

One block of Real NVP
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Split operation: Factoring out variables

• For a n × n image with c channels, the number of dimensions in

the input is n2 × c.

• If we propagate all the n2 × c dimensions through all the layers:

• high computational and memory cost

• large number of parameters

• The workaround is to apply the split operation:

• Half of the dimensions are directly passed to the output of the

network and modeled as Gaussian.

• The rest of the dimensions are fed to the next layer.

• The purpose is somewhat similar to using pooling layers in

standard convolutional networks.

At each step, half the variables are

directly modeled as Gaussians,

while the other half undergo

further transformation.
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Real NVP summary: Three types of blocks

squeeze

Affine coupling layer:

• Keeps the same dimensions.

• Uses either checkerboard or

channel-wise mixing patterns.

Squeeze operation:

• Reduces the spatial resolution by 2 in

each dimension.

• Increases the number of channels by 4.

Split operation:

• Removes half of the

variables from further

computations.
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Real NVP: Training

• Forward computation:

• Compute z = f(x)

• Compute the Jacobian determinant and the loss

log pθ(x) = log pθ(z) +
K∑
i=1

log

∣∣∣∣det
∂hi

∂hi−1

∣∣∣∣
Recall that the determinant was trivial to compute for the affine coupling layer:

det
∂y

∂x
= exp

∑
j

s(x1:d )j

• Backward pass: compute the gradient of the loss wrt parameters θ of the layers.
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Generating samples

• Generating samples is trivial:

• Generate z from Gaussian distribution:

z ∼ N (z; 0, I)

• Propagate z through the inverse of f:

x = gθ(z) = f−1(z)

• We simply need to invert each layer starting from the topmost one:

f−1 = f−1
1 ◦ f−1

2 ◦ ... ◦ f−1
K

z

h2

h1

x

fK

f2

f1

gK = f−1
K

g2 = f−1
2

g1 = f−1
1

54



Samples generated with Real NVP

Training data Generated samples
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Glow

(Kingma and Dhariwal, 2018)

https://arxiv.org/pdf/1807.03039.pdf


Glow (Kingma and Dhariwal, 2018)

• Glow is further development of flow-based generative

models.

• To a great extent, Glow follows the multi-scale

architecture introduced in Real NVP.

• They introduce a novel “step of flow” block which is

a stack of three layers:

• Actnorm layer (new layer)

• Invertible 1× 1 convolution (new layer)

• Affine coupling layer (same as in Real NVP)

Multi-scale architecture of Glow
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Actnorm layer

• Real NVP: Batch normalization was used to ease training deep models.

• For large images, due to memory constraints, mini-batch size can be 1. Using small mini-batches

introduces a lot of noise in batch normalization.

• Actnorm layer is proposed to replace batch normalization:

yi,j = s� xi,j + b

It performs an affine transformation of the activations using a separate scale and bias parameter

for each channel. (i , j) denote spatial indices into tensors x and y.
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Invertible 1× 1 convolution

• A 1× 1 convolution layer with a learnable matrix W:

yi,j = Wxi,j log | det(dy/dx)| = h · w · log | det(W)|

where x is h × w × c input tensor and matrix W is c × c.

• W is initialized as a random rotation matrix, having a log-determinant of 0.

• The cost of computing or differentiating det(W) is O(c3), which is often comparable to the cost

of computing the output y of the layer, which is O(h · w · c2).

• The cost of computing det(W) is O(c) if W is parameterized as its LU decomposition

W = PL(U + diag(s))

where P is a permutation matrix, L is a lower triangular matrix with ones on the diagonal, U is an

upper triangular matrix with zeros on the diagonal and s is a vector.
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Samples generated with Glow
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Home assignment



Assignment 09 ar

• In the home assignment, you need to implement a simplified

version of the PixelCNN model (van den Oord et al., 2016a).

masked kernel masked convolution

masked convolution

masked convolution

masked convolution

stack of masked 2d

convolutions in PixelCNN
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Recommended reading

• Papers cited in the lecture slides.
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