

1

- Processor sharing networks
- Fairness concepts
- Whittle networks
- Balanced fairness
- Performance

Processor sharing network

- Processor sharing network is a flow-level model of a data network loaded with elastic traffic.
- Elastic traffic consists of flows, such as file transfers using TCP.
- Elasticity refers to the property that the transmission rate of a flow is not fixed but it is adjusted according to the congestion state of the system.
- The network consists of J links with capacities C_i (in bits/sec)
- There are *K* traffic classes
- All flows in class k follow the same route:

 $a_{k,j} = \begin{cases} 1, & \text{if link } j \text{ belongs to the route of class } k; \\ 0, & \text{otherwise.} \end{cases}$

Necessary stability condition

- New flows of class k arrive according to a Poisson process at rate λ_k (in 1/sec)
- Flow sizes B_k in class k (in bits) are exponentially distributed with mean $E[B_k] = 1/\beta_k$
- Load of class k (in bits/sec) is defined by

 $\sigma_k \coloneqq \lambda_k E[B_k]$

- Link capacity C_j is shared by the flows of classes k for which $a_{k,j} = 1$
- Necessary stability conditions are thus as follows: for each link *j*, we have constraint

$$\sum_{k=1}^{K} \sigma_k a_{k,j} < C_j$$

State description

The network state is described by vector

 $N(t) = (N_1(t), \dots, N_K(t))$

where $N_k(t)$ refers to the total number of flows in class k at time t

Process N(t) is an irreducible Markov process with state space

 $S = \{ n = (n_1, \dots, n_K) \mid n_k \in \{0, 1, 2, \dots\} \}$

• The transition rates depend on the arrival rates λ_k , mean flow sizes $1/\beta_k$, and interclass allocations $\phi_k(n)$ (defined in the following slide) as follows:

$$q(n, n + e_k) = \lambda_k$$
$$q(n + e_k, n) = \beta_k \phi_k (n + e_k)$$

Resource allocation

- Inter-class allocations $\phi_k(n)$ may depend on the network state *n*, and they specify how the link capacities are shared among the flow classes
- These inter-class allocations $\phi_k(n)$ are feasible if, for all links j,

 $\sum_{k=1}^{K} \phi_k(n) a_{k,j} \le C_j$

• The family of feasible allocations is called the capacity set *C*,

$$C = \{c = (c_1, \dots, c_K) : \sum_{k=1}^K c_k a_{k,j} \le C_j \quad \forall j\}$$

• Intra-class flow allocations $\psi_k(n)$ are assumed to be fair so that each flow in class k gets an equal share denoted by

 $\psi_k(n) \coloneqq \phi_k(n) / n_k$

Example: Linear network K = 3, J = 2 C_2 $\phi_3(n)$ C_1 $\phi_1(n)$ $\phi_2(n)$ $\phi_1(n) + \phi_3(n) \leq C_1$ $\phi_{\mathcal{T}}(n) + \phi_{\mathcal{T}}(n) \le C_{\mathcal{T}}$ **Note**: If *n* is such that $n_k = 0$,

we assume that $\phi_k(n) = 0$

- Processor sharing networks
- Fairness concepts
- Whittle networks
- Balanced fairness
- Performance

Max-min fairness

- Aims at maximizing the minimum intraclass flow allocation
- Max-min fair intra-class flow allocations $\psi_k(n)$ satisfy, for any $c \in C$,

$$\frac{c_k}{n_k} > \psi_k(n) \Rightarrow \exists l: \frac{c_l}{n_l} < \psi_l(n) \le \psi_k(n)$$

Waterfilling algorithm:

- 1. Set all intra-class flow allocations to zero
- 2. Increase the allocations for all non-freezed flows evenly until the capacity of some link is fully used
- 3. Freeze the allocations for the classes that use this link
- 4. If there are still non-freezed classes, go back to 2
- 5. Stop

Proportional fairness

Utility based fairness concept ٠ **Example**: Linear network Utility of bit rate b_k for a class-k flow: ٠ K = 3, J = 2 $U(b_k) = \log b_k$ CC n_3 **Optimization:** ٠ $\psi(n) = \arg \max \sum_{k=1}^{K} n_k U(b_k)$ n_2 n_1 $b:(n_1b_1, \dots, n_Kb_K) \in C$ $\phi_{\rm l}(n) = \frac{n_1 + n_2}{n_1 + n_2 + n_3}C$ Inter-class allocations ٠ $\phi_2(n) = \frac{n_1 + n_2}{n_1 + n_2 + n_3}C$ $\phi_k(n) = n_k \psi_k(n)$ $\phi_3(n) = \frac{n_3}{n_1 + n_2 + n_3}C$

Alpha fairness

- Utility based fairness concept with parameter $\alpha \ge 0$
- Utility of bit rate b_k for a class-k flow:

 $U(b_k) = \frac{1}{1-\alpha} b_k^{1-\alpha}$

• Optimization:

$$\psi(n) = \underset{b:(n_1b_1,\dots,n_Kb_K)\in C}{\operatorname{arg\,max}} \sum_{k=1}^K n_k U(b_k)$$

Inter-class allocations

 $\phi_k(n) = n_k \psi_k(n)$

- Special cases:
 - $\alpha = 0$: Maximum total bit rate
 - $\alpha = 1$: Proportional fairness
 - $\alpha \rightarrow \infty$: Max-min fairness

- Processor sharing networks
- Fairness concepts
- Whittle networks
- Balanced fairness
- Performance

Whittle network

- A processor sharing network is a Whittle
 network if
 - (i) the inter-class allocations $\phi_k(n)$ are feasible for any state *n*, and
 - (ii) there is a positive function $\Phi(n)$ such that $\Phi(0) = 1$ and

 $\phi_k(n+e_k) = \frac{\Phi(n)}{\Phi(n+e_k)}$

- Function $\Phi(n)$ is called the corresponding balance function.
- Proposition: For a Whittle network the inter-class allocations are balanced as follows:

$$\frac{\phi_k(n + e_k + e_{k'})}{\phi_{k'}(n + e_k + e_{k'})} = \frac{\phi_k(n + e_k)}{\phi_{k'}(n + e_{k'})}$$

Example: Linear network K = 3, J = 2 C_2 $\phi_3(n)$ C_1 $\phi_1(n)$ $\phi_2(n)$ $\phi_1(n) + \phi_3(n) \le C_1$ $\phi_2(n) + \phi_3(n) \le C_2$

Steady-state distribution

• Theorem:

Consider a stable Whittle network. The steady-state distribution of process N(t) is

$$P\{N=n\} = \frac{\Phi(n)}{G} \prod_{k=1}^{K} \sigma_k^{n_k}$$

where

$$G \coloneqq \sum_{n' \in S} \Phi(n') \prod_{k=1}^{K} \sigma_k^{n_k}$$

Note: As in a single-server M/G/1-PS queue, it can be shown that the steady-state distribution of a stable Whittle network is insensitive to the flow size distributions (as long as the mean flow sizes 1/β_k remain the same for all classes k).

- Processor sharing networks
- Fairness concepts
- Whittle networks
- Balanced fairness
- Performance

Balanced fairness (1)

• Consider a Whittle network. If $n - e_k \in S$, then

 $\phi_k(n) = \frac{\Phi(n - e_k)}{\Phi(n)}$

• Thus, to get feasible balanced allocations, we have to require that

 $\left(\frac{\Phi(n-e_1)}{\Phi(n)}, \dots, \frac{\Phi(n-e_K)}{\Phi(n)}\right) \in C$

 Balanced fairness (BF) refers to the case where these feasible balanced allocations are maximized:

$$\Phi(n) = \min\left\{\alpha > 0: \left(\frac{\Phi(n-e_1)}{\alpha}, \dots, \frac{\Phi(n-e_K)}{\alpha}\right) \in C\right\}$$

Example: Linear network K = 3, J = 2CC n_3 n_2 n_1 $\Phi(n) = \binom{n_1 + n_2 + n_3}{n_3} \left(\frac{1}{C}\right)^{n_1 + n_2 + n_3}$

Balanced fairness (2)

 Proposition: Consider a Whittle network with balanced fair allocations. The system is stable if and only if the necessary stability conditions

 $\sum_{k=1}^{K} \sigma_k a_{k,j} < C_j$

are satisfied that for all links *j*.

Proposition:

Consider a Whittle network with balanced fair allocations. Its balance function $\Phi(n)$ satisfies the following recursion:

$$\Phi(n) = \max_{j} \frac{1}{C_j} \sum_{k=1}^{K} \Phi(n - e_k) a_{k,j}$$

Example: Linear network K = 3, J = 2CC $\phi_3(n)$ $\phi_1(n)$ $\phi_2(n)$ $\phi_{\rm l}(n) = \frac{n_1 + n_2}{n_1 + n_2 + n_3} C$ $\phi_2(n) = \frac{n_1 + n_2}{n_1 + n_2 + n_3}C$ $\phi_3(n) = \frac{n_3}{n_1 + n_2 + n_3}C$

- Processor sharing networks
- Fairness concepts
- Whittle networks
- Balanced fairness
- Performance

Performance (1)

- Consider a stable Whittle network with balanced fair allocations.
- Let N_k denote the steady-state variable for the number of flows in class k, and T_k the steady-state flow-level delay, i.e., the total time needed for transferring all the bits of a class-k flow.
- Define the normalization constant *G* as a function

$$G(\sigma) \coloneqq \sum_{n \in S} \Phi(n) \prod_{k=1}^{K} \sigma_k^{n_k}$$

where σ is the load vector defined by

$$\sigma = (\sigma_1, \dots, \sigma_K)$$

Example: Linear network K = 3, J = 2CC σ_3 σ_1 σ_2 $G(\sigma) = \frac{C(C - \sigma_3)}{(C - \sigma_1 - \sigma_3)(C - \sigma_2 - \sigma_3)}$

Performance (2)

Performance (3)

• The average bit rate γ_k of a class-k flow (in bits/sec) is

$$\gamma_k \coloneqq \frac{E[B_k]}{E[T_k]} = \frac{G(\sigma)}{\frac{\partial G(\sigma)}{\partial \sigma_k}}$$

- Let *X* denote the steady-state variable for the total number of flows, and *T* the steady-state flow-level delay for an arbitrary flow.
- The mean steady-state number of flows is

$$E[X] = \sum_{k=1}^{K} \frac{\sigma_k}{\gamma_k}$$

and the mean flow level delay (by Little's formula)

$$E[T] = \frac{1}{\lambda} \sum_{k=1}^{K} \frac{\sigma_k}{\gamma_k}$$

Example: Linear network

$$K = 3, J = 2$$

$$\sigma_{3} \qquad C \qquad C$$

$$\sigma_{1} \qquad \sigma_{2} \qquad C$$

$$\gamma_{1} = C - \sigma_{1} - \sigma_{3}$$

$$\gamma_{2} = C - \sigma_{2} - \sigma_{3}$$

$$\gamma_{3} = \frac{(C - \sigma_{1} - \sigma_{3})(C - \sigma_{2} - \sigma_{3})(C - \sigma_{3})}{(C - \sigma_{3})^{2} - \sigma_{1}\sigma_{2}}$$

Summary

Processor sharing networks

- flow-level model, elastic traffic, necessary stability conditions, inter-class allocations, feasible allocations, intra-class allocations
- Fairness concepts
 - max-min fairness, waterfilling algorithm, proportional fairness, logarithmic utility, alpha-fairness, utility function
- Whittle networks
 - balance function, balanced allocations, product-form steady-state distribution, DBE
- Balanced fairness
 - maximal feasible balanced allocations, BF recursion
- Performance
 - flow-level delay, average bit rate