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1 Processor sharing networks

A processor sharing network [4, 9] is a flow-level model of a data network

loaded with elastic traffic [5, 6] consisting of flows (such as file transfers using

TCP). Elasticity refers to the property that the transmission rate of a flow is

not fixed but it is adjusted according to the congestion state of the system.

A processor sharing network consists of a set of links j ∈ {1, . . . , J} with

capacities Cj (in bits/sec). These link capacities are shared by all flows in

the network. Each flow is associated with a class k ∈ {1, . . . , K}. New class-

k flows arrive according to a Poisson process with intensity λk (in 1/sec).

Let Bk denote the size of a class-k flow (in bits). We assume that it is

exponentially distributed with mean E[Bk] = 1/βk. Let

σk := λk/βk (1)

denote the load of class k (in bits/sec). We assume that all flows in class k

follow the same route. Let A = (ak,j) denote the route matrix, i.e.,

ak,j =

 1, if link j belongs to the route of class k;

0, otherwise.
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The state of the whole network is described by vector

N(t) = (N1(t), . . . , NK(t)),

where Nk(t) refers to the number of customers in class k at time t. The state

space is clearly

S = {n = (n1, . . . , nK);nk ∈ {0, 1, . . .}}.

In addition, let ek denote the unit vector to direction k in this space, ek =

(n1, . . . , nK) with nk = 1 and nk′ = 0 for k′ 6= k.

In the dynamic setting with a variable number of flows, the first question is

whether the whole system is stable or not. Necessary stability conditions are

that for all j ∈ {1, . . . , J},
K∑
k=1

σkak,j < Cj. (2)

Whether these necessary conditions are also sufficient depends on how the

link capacities are allocated to the flows. There have been many proposals

how to allocate the resources to the flows in a fair way. The classical fairness

concept is max-min fairness [1]. Proportional fairness was introduced in [2, 3]

and potential delay minimization in [8]. All these allocation schemes belong

to the family of α-fair allocations [7]. It has been shown that these conditions

are also sufficient for α-fair allocations [5]. In the following sections we

introduce still another fairness concept, called balanced fairness [9, 10, 11,

12, 13], for which the necessary stability conditions are sufficient, as well.

Let φk(n) denote the inter-class allocations (in bits/sec), i.e., how the link

capacities are shared among the flow classes, which may depend on the state

n ∈ S of the system. If n ∈ S is such that nk = 0, we assume that φk(nk) = 0.

The inter-class allocations are feasible if, for all links j,

K∑
k=1

φk(n)ak,j ≤ Cj. (3)
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The family of all feasible allocations is called the capacity set, and it is

denoted by C,

C := {c = (c1, . . . , cK) ≥ 0 :
K∑
k=1

ckak,j ≤ Cj ∀j ∈ {1, . . . , J}}. (4)

The intra-class allocations determine how the inter-class allocations φk(n)

are shared among the flows within the same class. In a processor sharing

network, the intra-class allocations are assumed to be fair in the sense that

each flow in class k gets an equal share denoted by

ψk(n) :=
φk(n)

nk
, n ∈ S, k ∈ {1, . . . , K}. (5)

Due to the exponential assumptions made above, N(t) is an irreducible

Markov process with the following (positive) state transition rates for any

n ∈ S and k ∈ {1, . . . , K}:

q(n, n+ ek) = λk,

q(n+ ek, n) = βkφk(n+ ek).

2 Whittle networks

A processor sharing network is a Whittle network if

(i) the inter-class allocations φk(n) are feasible for any state n ∈ S and

(ii) there is a positive function Φ(n) defined on S such that Φ(0) = 1 and

the inter-class allocations satisfy

φk(n+ ek) =
Φ(n)

Φ(n+ ek)
, n ∈ S, k ∈ {1, . . . , K}. (6)

Function Φ(n) is called the corresponding balance function.
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Proposition 1

For a Whittle network the inter-class allocations are balanced in the following

sense: for any n ∈ S and k, k′ ∈ {1, . . . , K}
φk(n+ ek + ek′)

φk′(n+ ek + ek′)
=

φk(n+ ek)

φk′(n+ ek′)
. (7)

Below we show that the steady-state distribution of a stable Whittle network

is of product-form [4, 9].

Theorem 1

Consider a stable Whittle network, and let Φ(n) denote the corresponding

balance function. The steady-state distribution of process N(t) is given by

P{N = n} =
Φ(n)

G

K∏
k=1

σnkk , n ∈ S,

where the normalization constant G is defined by

G :=
∑
n′∈S

Φ(n′)
K∏
k=1

σ
n′k
k .

Proof Let n ∈ S and denote

π(n) :=
Φ(n)

G

K∏
k=1

σnkk ,

where G is the normalization constant defined above. Since the system is

stable, we know that π(n) is a proper distribution with G < ∞. In other

words, the normalization condition (N) is satisfied. It remains to prove that

the global balance equations (GBE) are also satisfied for any n ∈ S:

∑
n′ 6=n

π(n)q(n, n′) =
∑
n′ 6=n

π(n′)q(n′, n). (8)

Let n ∈ S. For any k ∈ {1, . . . , K}, we have recursion

π(n+ ek) = π(n)
Φ(n+ ek)

Φ(n)
σk = π(n)

λk
βkφk(n+ ek)

, (9)
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where the last equality follows from (1) and (6). Thus, by (9),

π(n)λk = π(n+ ek)βkφk(n+ ek),

which is equivalent with

π(n)q(n, n+ ek) = π(n+ ek)q(n+ ek, n). (10)

From this we observe that the detailed balance equations (DBE) are satisfied

for any n ∈ S and k ∈ {1, . . . , K}. The global balance equations (8) follow

from these detailed balance equations in a straightforward way by summing

up the related DBE’s. 2

As in a single-server M/G/1-PS queue, it can be shown that the steady-

state distribution of a stable Whittle network is insensitive to the flow size

distributions (as long as the mean flow sizes 1/βk remain the same for all

classes k) [9, 10].

3 Balanced fairness

Consider a Whittle network. Let n ∈ S. It follows from (6) that for any k

such that n− ek ∈ S we have

φk(n) =
Φ(n− ek)

Φ(n)
,

where Φ(n) refers to the corresponding balance function. Thus, to get feasible

balanced allocations, we have to require thatΦ(n− e1)
Φ(n)

, . . . ,
Φ(n− eK)

Φ(n)

 ∈ C.
Balanced fairness refers to the case where these feasible balanced allocations

are maximized.
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Balanced allocations are balanced fair (BF) if the corresponding balance func-

tion Φ(n) is constructed recursively as follows: let Φ(n) = 0 for any n /∈ S,

Φ(0) = 1, and for any n ∈ S \ {0}

Φ(n) = min

α > 0 :

Φ(n− e1)
α

, . . . ,
Φ(n− eK)

α

 ∈ C
 . (11)

It is easy to see that these balanced fair allocations are unique for the con-

sidered Whittle network. In addition, the necessary stability conditions are

also sufficient for balanced fair allocations as shown in [10].

Proposition 2

Consider a Whittle network with balanced fair allocations. The system is

stable if and only if the stability conditions given in (2) are satisfied that for

all links j ∈ {1, . . . , J}.

For a stable Whittle network with balanced fair allocations, the steady-state

distribution is of product-form, see Theorem 1. As the final result, we give an

alternative recursion formula for the balance function Φ(n) of the balanced

fair allocations.

Proposition 3

Consider a Whittle network with balanced fair allocations. The balance func-

tion Φ(n) satisfies the following recursion for any n ∈ S \ {0}:

Φ(n) = max
j∈{1,...,J}

1

Cj

K∑
k=1

Φ(n− ek)ak,j. (12)

Proof Let n ∈ S \ {0} and j ∈ {1, . . . , J}. Since, we have, for any k ∈
{1, . . . , K},

φk(n) =
Φ(n− ek)

Φ(n)
,
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it follows from the capacity constraints (3) that

K∑
k=1

Φ(n− ek)
Φ(n)

ak,j ≤ Cj.

Thus,

Φ(n) ≥ 1

Cj

K∑
k=1

Φ(n− ek)ak,j,

which shows that

Φ(n) ≥ max
j∈{1,...,J}

1

Cj

K∑
k=1

Φ(n− ek)ak,j.

On the other hand, by (11), we are looking for the smallest possible value

satisfying this inequality, which justifies our claim (12). 2

4 Performance

Consider a stable Whittle network with balanced fair allocations. The traffic

consists of elastic flows, such as file transfers using TCP, with each flow

characterized by its size, i.e., the total amount of bits to be transferred.

An important performance measure for such elastic flows is the total time

needed for transferring all the bits, which is called flow-level delay, or just

briefly, delay. Below we show how to calculate the mean steady-state delay.

In addition, we consider the average bit rate of a flow, which is defined to be

the mean flow size divided by the mean delay.

Let Tk denote the steady-state delay for class k. It follows from Little’s

formula that

E[Tk] =
E[Nk]

λk
,

where Nk refers to the steady-state number of flows in class k. Let us define

vector

σ := (σ1, . . . , σK).
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In addition, we consider the normalization constant G as a function of this

vector σ,

G(σ) :=
∑
n∈S

Φ(n)
K∏
k=1

σnkk .

From Theorem 1, we get

E[Nk] =
σk
G(σ)

∑
n∈S

(nk + 1)Φ(n+ ek)
K∏
i=1

σnii .

It follows that

E[Nk] =
σk
G(σ)

∂G(σ)

∂σk
, (13)

and, by Little’s formula,

E[Tk] =
E[Bk]

G(σ)

∂G(σ)

∂σk
, (14)

In addition, the average bit rate of a class-k flow (in bits/sec) is given by

γk :=
E[Bk]

E[Tk]
=
G(σ)
∂G(σ)
∂σk

. (15)

Finally, let X := N1 + . . . + NK denote the steady-state total number of

flows and T the steady-state flow-level delay for an arbitrary flow. Clearly,

we have

E[X] =
K∑
k=1

σk
γk
, E[T ] =

1

λ

K∑
k=1

σk
γk
, (16)

where λ := λ1 + . . .+ λK .
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