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Learning

goals

After this
lecture, you will
be able to...

Describe what are genome-
scale metabolic models

Describe how are metabolic
phenotype prediction and
strain design performed

Describe the steps of
synthetic metabolic pathway
design



Reading material

Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat
Biotechnol. 28:245-8. doi: 10.1038/nbt.1614.

Box 2 outdated, check instead for COBRA toolbox, COBRApy, COBRA.jl:
http://opencobra.github.io/




Metabolic modelling
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Why is metabolism relevant for synthetic biology?

Metabolism = (bio)chemical reactions involved in sustaining a living state of cells
and an organism

* Metabolism generates precursors for product compounds but also for circuit
components

* Metabolism generates energy and redox power

* Metabolism is involved in cellular regulation

Wikipedia



Metabolism is involved in cellular regulation

Nutrients

/N

. Signaling  Sensing of
Metabolism | «—— nutritional state

N/

Gene expression and
protein function

!

Phenotype

Adopted from Jaakko Mattila



Modelling is needed for elucidating metabolic states

Genome-scale metabolic
network of Baker’s yeast

Metabolic state = metabolic phe_nbt_:yp'e:, -Idc:)s;fé-f\é_ defined, fluxes and metabolite
concentrations or just the state of some specific feature



Phenotype prediction using genome-scale
metabolic models

a Genome-scale
metabolic reconstruction

|

b Mathematically represant
metabolic reactions

and constramts

-V, + .. =

€ Mass balance defines a = Vad..=
system of inear equations =27 4+__=0
V,+..=0

efc.

T
d Define objective function To predict growth, Z= v ..

a- C|.V| +C]. % - )

l

e Calculate fluxes
that maximize Z

Model simulation algorithm:
Flux balance analysis (FBA)

8
— Orth et al. (2010) Nat Biotechnol. 28:245-8. doi: 10.1038/nbt.1614.



Genome-scale metabolic model reconstruction

a Genome-scale
metabolic reconstruction

|

SrEieen Hesdns Which reactions can take place in the
- cells of a species?
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Orth et al. (2010) Nat Biotechnol. 28:245-8. doi: 10.1038/nbt.1614.



Genome-scale metabolic model reconstruction
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reaction [ ]
database ‘ I
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manual curation

database . '
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draft model model

manual curation annotated @ @ @ @
annotated draft el o
organism @ @ @ @
specific models

genome model model

microbial
community (optional)
models
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Machado et al. (2018) Nucleic Acids Res. 46:7542-7553. doi: 10.1093/nar/gky537.




Conversion into mathematical representation

Stoichiometric matrix

v /) Metabolite mass balances are
o Uﬂ* .
R a— A : — zeros only as a metabolic steady
metabolic reactions % té ‘ - tat . d
and constraints i D| state IS assume
5 B
l Swochioraric mart, §
-V, + =0
C Mass balance defines a W= Vi+..=0
system of inear equations T —

V,+..=0
eicC.
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Orth et al. (2010) Nat Biotechnol. 28:245-8. doi: 10.1038/nbt.1614.



Toy model example

Stoichiometric matrix

A 1 -1 -1
B 1 -1
(%)
Lg C 1 1
2
. oo (=2 1
o s e
R3/ R6 / \RS E
E 1 -1
o o o R1 R2 R3 R4 R5 R6 R7 R8 R9
R41 R7 1 1 R9 Reactions

Obeying the law of conservation of mass,
metabolite mass balances constrain metabolic phenotypes

dX

—=S-v=S5-f(e(t)s(t),p)

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015
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Steady state assumption linearizes the mass balances

dX

—=S5-v=5-f(e(®),st),p) =0

v2
Constraints: :
1) Sv=0 ¥ Allowable
2)vlb<v<vub “solution space

Figure modified by
> Tuula Tenkanen from
O’Brien et al. 2015

vl

The linear system is lighter to solve and free of kinetic equations and parameters
Additional constraints introduced to obey the second law of thermodynamics
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Defining an objective function for forming
an optimization problem

Choice of the objective function depends
d Eif:ec?bye‘c‘:-f.’:?:tl}? To predict gf':‘h'fh. 2= ¥oiomass On the question

|

e Calculate fluxes
that maximize 2

After the optimization problem is defined
it can be solved using any linear
optimization solver

14
Orth et al. (2010) Nat Biotechnol. 28:245-8. doi: 10.1038/nbt.1614.



Linear optimization can be used to identify different optimal

metabolic states

Objective:
Maximize v1

Optimal
solution

}

v2

Allowable

solution space

vl

v2

Objective:
Maximize v2

Allowable

solution space

Optimal
solution

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015

FlUX Balance AnalySiS (FBA) Varma and Palsson, 1993; Varma and Palsson, 1994

maximize (or minimize) c¢'-v

subject to S-v=0
v,lb<v<vub

vl
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Linear optimization can be used to identify optimal
metabolic states

Objective: Objective:
Maximize v1 Maximize v2
Optimal c-v>a

Optimal
solution

solution

l v2

v2

Allowable Allowable

solution space solution space

Figure modified by
Tuula Tenkanen from
O’Brien et al. 2015

vl vl
Flux Variability Analysis (FVA) Mahadevan et al. 2003

maximize and minimize v, = While the objective has the optimal

subject to S -v=0 o is the optimal value value other fluxes may vary
cv>a of the inital objective = The ones that are non-zero are
UIb < v_< v ub essential for the optimal value of the
’ ’ objective 16



Artificial reactions forming biomass allow growth

simulations

=»  DNA =

\Oﬂl—b Ribosome =

S
PJ—» Enzyme
/

Y 4 —» Membrane
¢ O

7 7

o 2 5
« Biomass

precursors
in model

*\\Biomass foprning reactioi(s)

N = Actual biomass

Artificial reactions

New cell
biomass

O'Brien EJ, Monk JM, Palsson BO. (2015) Cell. 161:971-987. doi: 10.1016/j.cell.2015.05.019.



Metabolic states depend on environment

Exchange reactions define
extracellular environment

Extracellular [e]
e.g., flask with medium

Intracellular [c]

Transport reactions
[c] <-> [e]

Including biomass

O'Brien EJ, Monk JM, Palsson BO. (2015) Cell. 161:971-987. doi: 10.1016/j.cell.2015.05.019.



Specific fluxes

* Flux units depend on how the artificial biomass producing reaction is defined
e |fitis defined as mmol of precursors for generating 1 g cell dry weight (CDW),
then flux units are mmol/(g CDW * h)

Production of the desired compound

& = / =
O, uptake —
Nutrient a uptake =———— 1_‘ Growth
Nutrient b uptake = \.

Production of compound c



Prediction vs estimation of metabolic state?

Production of the desired compound

- =5 / 5
0, uptake m———
Nutrient a uptake =———— 1_‘ Growth
Nutrient b uptake = \-

Production of compound c

When arbitrary constraints are used, yields can be predicted
When empirical rates are used as constraints, other rates can be estimated
or predicted



FBA simulations optimizing growth predict well
experimental phenotypes

it
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Design of strain engineering strategies
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In silico design of engineering strategies using
genome-scale metabolic models

* Growth-product coupling: the cells can only grow if they produce
* Push-pull strategies: expression levels are modified to push and pull more

resources to production

Growth-product coupling
Algorithms use genome-scale metabolic models for identifying

knock-out targets

a Metabolic intermediate

m

Anchor reaction

1 B

Essential Product precursor
precursor that cannot be
for growth incorporated into cell
biomass
a®

Jouhten P. et al. Metab Eng. (2017)

Push-pull strategies
Algorithms use genome-scale metabolic models for identifying
deletion and re-regulation targets

/—\ e
"L\

growth
* production pathway * productiongathway |
21
o
Current Optimized
phenotype phenotype

Jouhten P. et al. unpublished work with Kiran Patil, EMBL Heidelberg
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Growth-product coupling aligns biological and engineering objectives

Bi-level optimization

-

Find k deletions such that maximum product
yield is achieved:

Design Objective
such that,

e.g. flux is distributed for

Biological Objective  maximum growth

Evolution driven objective

OptKnock: Burgard et al. (2003)
OptGene: Patil et al. (2005)

Slide modified from Kiran Patil



Growth-product coupling allows using adaptive
laboratory evolution for improving production

Proof of concept: succinate production in S. cerevisiae .

Glucose
Glycerol biosynthesis l A L E 09 -

w
N
N

. G-6.p ---» PentosePhosphate To recover from Gly 0.8
DHAP ) Pathway h
v auxotrophy 0.7
I F-1,6-P L-aspartate ----- > L-homoserine NYW\ 0.6
G-3-P
. THR1 T T T : : : 0.5
v
3-P-hydroxy 3-P- O-P-L-homoserine 0.4
3—P-GIYcerate 7—) pyruvate —_— serine \ ¢
| ser3, ser33 Serine L-threonine 0.3
v 0.2
Pyruvate —> Acetaldehyde —> Ethanol 5fo GLY1
ol 0.1
I Acetate MetTHF Acetaldehyde

A 0
matem AC_C(:\ Glycine Spe;iiic((:il;z\;vth Maxil;nl;[r)\ Titer
ate g

A 4! AGX1 \$
Mal:te.v. """"" Citrate,, < Citrate Glyoxylate 7) Malate ‘ M REF 0.33 0.03
Fumaratey, i ¢ Ac-CoA Gly auxotrophic  m gp 0.22 0.40
Isocitrate,, —{—> Isocitrate Gly prototrophic ' m 8D Evolved 0.13 0.60
sdh3

ICL1
Succinate,, / / Succinate B 8D Evolved + pICL1 0.12 0.90

. (Citricacid cycle

Otero et al. PLoS One. (2013) 8:e54144.
Slide from Kiran Patil



Pathway optimization improved vanillin production only

after designed optimization of network

o
Synthetic vanillin pathway *
Erythrose-4-phosphate .
1 - S | o0 O
J : o L K: ‘) 1 / .
8% PAC PAL %
ey coon \ ,’i; . 3DSD ACAR hsOMT UGT
[ J —o— — ) ——
N:;T;H G:JD: o l \-‘ o-e- ? ¢ “ ¢ Va:IIm
*
. Ethanol ar,:.\q,i—ggq:zi((;js AP B-D-glucoside
3DSD OH '
ACAR | it o © NADPH
et PPTase . PDC1
Dehydroshikimic acid Protocatechuic acid Pm;f"?;:;:u'c Vanillin VZTJICIL:&:- . — . — . — .
oH * NADPH
1 GDH2
4 .:2:’:— L-glutamate
Aromatic Amino acids GDH1
Experimental validation _ 700
E 600
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| Overall 5-fold § 400 | -
@ - - TIPAL
productivity £

tal
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Brochado et al. (2011, 2013). Dr. Kiran Patil in collaboration with Evolva A/S (Denmark)

o 300
. 2 200 1
Improvement § 100 - + :
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Strains with overexpressed O-methyltransferase in blue

Slide from Kiran Patil



Synthetic pathway design
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Synthetic pathway design

(1) Pathway
generation

(2) Enzyme
identification

(8) Pathway
selection

Manual Automated

CAR

NQE‘SH
S e g @ﬁb
Q
CD

O

SCIENMCE

i '_ i »@—«

@g

Pathway Score

1 55
2 4
3 3.7
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Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.



Biochemical pathway generation

i

(1) Pathway EL _NADPH 2l @
generation ™ % A -~-u
O

* Can be defined as a retrosynthesis problem from desired compound back
to precursors in microbial cells

» Such pathways can be searched through known biochemical reactions from
data bases like Kegg, Metacyc, Rhea

* They can also be searched through potential reactions that enzymes could
catalyze defined by reaction rules

EMETACYC EQ hea

29
Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.




Reaction rules model possible
enzyme catalyzed reactions

* Rules model similarities to known reactions (i.e.
similarities of reactants)

* Assume that if the core of the reaction (where the
bonds break) remains the same then an enzyme
could be found/built for the novel reaction

* Define different dimensions of the core

* Reaction rules create extended metabolic space

Table 1 Reactions in the EMRS

height h reactions % increase from canonical
2 9083 17.72%
3 7882 2.15%
2 7800 1.09%
< 7752 047%
7725 0.12%
canonical 7716 9%

Number of novel generated putative reactions in the EMRS for different
heights h.

Retropath method reaction signature

Molecular signature

atomic signature for each atom

4 (rcien
1 [C]( NJ)
H2N 1 ( - )
9(C)= , (e1)
o 1 ( )
Atomic 1 ( )
signature /I’\\
h=1© ©® ® (r ) collected for all
é atoms and sorted
h=2 [CI(ICI([C]) )
1
B:l Pf o
S 2 S; "-"\./\/\/é'a

8 [Cl([C]IC])
2 [CI([Cc1I[N])

: 4 [cycreiren)

ot Sl Sk 1 [C]([C][N])
[C1(ICII01=[0]) -
(N1 ([C]) olP=Tolfy) = '
= -['0]'[!__“;_3”3 1 [0](=[C])
1 [0]([C]) Sl

net

Reaction signature

'0(R) ='a(Py) + '0(P;) - '0(S,) - 'o(S;) =

Carbonell, P., Planson, A.-G., Fichera, D., & Faulon, J.-L. (2011). A retrosynthetic
biology approach to metabolic pathway design for therapeutic production. BMC
Systems Biology, 5(1), 122.




4
SCIENCE| .l :Q::.-i HO, o
@ enayme [~} -] -0
identification e Joum

* If the reactions were already known and annotated with enzyme sequences,
more candidate sequences found from sequence resources using similarity-
based search

* If many sequences encoding the desired enzymatic activity are known, likely
important sequence features for the activity can be identified

* If no sequence is known, reaction rules can be used for identifying
sequences that may encode also the desired activity (i.e. due to promiscuity)

If substantial sequence similarity is observed, the sequences are likely homologous (i.e. share ancestry
in evolution)

Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.



Synthetic pathway to pinocembrin to E.coli

l= Phenylalanine trans-Cinnamate Cinnamoyl-CoA Pinocembrin chalcone Pinocembrin

E. coli metabolism HO OH @
J\/\Q PAL/TAL )K/\Q 4CL J\/\© CHS l 10 II “ohl
EC 4.3.1.25 EC6.2.1.12 EC231.74 OHO EC551.6 OHO
-
hPAL (ATH) > h4CL (SCO) % hCHS (ATH) —————> hCHI(ATH) 2078 mgl
, \ -
m4CL (ATH) ICHI (SMa) 24139 mg |

Alternative enzyme options result in different pinocembrin titers
Pathway optimization could involve optimizing the enzyme levels or the actual
enzymes

Figure from Lee et al. Nature Catalysis 2,18—-33(2019) but data from Feher, T. et al. Biotechnol. J. 9, 1446-1457 (2014).
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THE WORK FLOW FOR THE DIRECTED EVOLUTION OF ENZYMES

Frances H. Arnold s nators v s e ) s e i
received the No :)le prize | produce randomiy mutated enzymes.
for directed evolution of

proteins in 2018

=z
b=

ENZYMES
WITH MUTATIONS

o - s}
=

5 B = The changed
%iﬂjﬂ’%ﬂ 3enzymes are tested.
HFA % % Those that are
"‘\E‘" R VI most efficient
- at catalysing the

tesT  desired chemical
PLATE reaction are

MUTATION

of i\t Jrtl Vet e
of [ Vet et e

RC/IRWS/IRIG
ot fit{ Yt [t Vet I

........ g . e e | selected.
, ) ® @
? o ®
- ®-® @
M ~ DISCARDED
) : : ENZYME
N V-,

4 New random mutations are introduced Y
in the genes for the selected enzymes.

) ) The cycle begins again.
https://www.quantamagazine.org/frances-arnold-george-smith-and-

gregory-winter-win-chemistry-nobel-for-directing-evolution-20181003/ ©Johan Jarnestad/The Royal Swedish Academy of Sciences



Novel protein design is coming within reach

AlphaFold by DeepMind is a breakthrough in natural protein folding prediction

Article

Improved protein structure prediction using
potentials fromdeeplearning

https:/fdoi.org/10.1038/s41586-012-1923-7  Andrew W. Senior'™, Richard Evans, John Jumper', James Kirkpatrick', Laurent Sifre™!,
Tim Green', Chongll Qin', Augustin Zidek', Alexander W. R. Nelson', Alex Bridgland’,
Rnoshed: 2 A 20W Hugo Pensdones’, Stig Pe'l.er:eﬂ’. Karen Simonyan’, Steve Crossan’, Pushmeet Kohlr',
Acoepted: 10 December 2019 David T. Jones™, David Silver', Koray Kavukouoglu' & Demis Hassabis'

Published online: 15 Jenuary 2020

Saiguanscf Deep neural Distance and torsion Gradient descent on
features network distribution predictions protein-specific potential
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Synthetic pathway design

Pathway Score
1 5.5
(3) Pathway IZI—-——:— 2 4
selection sscp ' 3 3.7

* Criteria e.g. theoretical yield, thermodynamics of reactions, pathway length,
number of new-to-nature reactions, toxicity

Finnigan et al. (2021) Nat Catal 4:98-104. doi: 10.1038/s41929-020-00556-z.



