
CS-E4890: Deep Learning

Unsupervised learning via denoising

Alexander Ilin

Unsupervised learning via denoising

• We have previously seen that the task of denoising can encourage learning of useful

representations.

• Recall denoising autoencoders:

• Feed inputs corrupted with noise:

x̃ = x + ε with ε ∼ N (0, σ2I)

• Train a network s(x̃) to produce clean data x in the output:

L = E{‖s(x̃)− x‖2}

• We trained a denoising autoencoder in the assignment and it was able to learn useful features in

the bottleneck layer.

1

Denoising score matching

• It can be shown that for Gaussian corruption

ε ∼ N (0, σ2I), the optimal denoising is given by

s(x̃) = x̃ + σ2∇x̃ log p(x̃)

where p(x̃) is the pdf of the distribution of corrupted data.

• For small σ, p(x̃) ≈ p(x) and therefore we (implicitly) learn

the properties of p(x) by training a denoising function.
The optimal denoising function points towards areas

with higher probability density (Alain and Bengio,

2014)• ∇x log p(x) is often called a score function.

• This type of modeling is sometimes called denoising score matching (learning the score function

by denoising).

2

https://arxiv.org/abs/1211.4246
https://arxiv.org/abs/1211.4246

Semi-supervised learning

with Ladder networks

(Rasmus et al., 2015)

https://arxiv.org/abs/1507.02672

Ladder networks (Rasmus et al., 2015)

• Ladder networks used the principle of denoising to

learn useful features in the semi-supervised settings

(learning from both labeled and unlabeled examples).

• The architecture resembles a ladder (or a U-net).

• The bottom-up pass produces label y for a given

input x.

• For labeled examples, we can compute the standard

classification (e.g., cross-entropy) loss using the

network output ŷ and the correct label y.

x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

4

https://arxiv.org/abs/1507.02672

Ladder networks: Denoising

• The inputs x are corrupted by noise during training

(e.g, we never use clean images as inputs).

• The top-down pass tries to reconstruct the clean

(without noise) input x.

• For all examples (both labeled and unlabeled), we

compute the denoising cost at the bottom:

denoising cost = ‖x− x̂‖2

• The minimized cost is the sum of the classification

and denoising costs.
x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

5

Ladder networks: Intuitions

• Intuition: In order to reconstruct the clean image

from a noisy image, one has to understand what

features are commonly present in images.

• Note: corruption and denoising happens on multiple

representation levels.

• Therefore, denoising is an auxiliary task that helps

model p(x) and hopefully develop features useful for

the primary classification task.

• The label itself cannot contain enough information to

reconstruct the input. We need skip connections to

pass low-level details from the bottom-up pass.

• Ladder networks inspired modern models for deep

semi-supervised learning.
x x̂

ŷ

x

y

denoising
cost

denoising
cost

denoising
cost

denoising
cost

classification
cost

noise

noise

noise

noise

6

Generative Modeling

via denoising score matching

(Song and Ermon, 2020)

https://arxiv.org/pdf/1907.05600.pdf

Sampling with Langevin dynamics

• If we know the score function ∇x log p(x), we can sample from the corresponding distribution

using Langevin dynamics, a sampling procedure which iterates the following:

xt ← xt−1 + α∇x log p(xt−1) +
√

2αzt , 1 ≤ t ≤ T , zt ∼ N(0, I)

where α > 0 is a step size and x0 is a sample from any prior distribution π(x).

• When α is sufficiently small and T is sufficiently large, the

distribution of xT will be close to p(x) under some regularity

conditions.

• Question: Why do we need to add noise zt?

• If we have a neural network sθ(x) which has been trained such that

sθ(x) ≈ ∇x log p(x), we can generate samples from p(x) using

sθ(xt−1) instead of ∇x log p(xt−1).

‘

Image from (Song and Ermon, 2020)

8

https://arxiv.org/pdf/1907.05600.pdf

Problem 1 with Langevin dynamics sampling

• Score function may be poorly estimated in regions of low data density (due to lack of data

samples).

Darker color implies higher density. Red rectangles highlight regions where ∇x log pdata(x) ≈ sθ(x).

9

Problem 2: Bad mixing of Langevin dynamics

• Consider a mixture distribution pdata(x) = πp1(x) + (1− π)p2(x), where

p1(x) and p2(x) are normalized distributions with disjoint supports, and

π ∈ (0, 1).

• In the support of p1(x):

∇x log pdata(x) = ∇x(log π + log p1(x)) = ∇x log p1(x)

• In the support of p2(x):

∇x log pdata(x) = ∇x(log(1− π) + log p2(x)) = ∇x log p2(x)

• In either case, the score ∇x log pdata does not depend on π.

• Langevin dynamics estimate the relative weights between the two

modes incorrectly.

Exact sampling

Sampling using Langevin

dynamics with exact scores

10

Noise Conditional Score Networks (NCSN)

• Song and Ermon (2020) generate samples using Langevin dynamics with the score function

learned from data.

• The problems of Langevin dynamics are addressed in the following way:

1. Perturbe the data using various levels of noise σ1 > σ2 > . . . σL and estimate scores

corresponding to all noise levels by training a single conditional score network:

sθ(x, σ) ≈ ∇x log qσ(x)

where qσ(x) is the perturbed data distribution. The loss is

L =
1

L

L∑
i=1

λ(σi)Li , Li =
1

2
Epdata(x)Ex̃∼N(x,σ2

i I)

[∥∥∥∥sθ(x̃, σi) +
x̃− x

σi

∥∥∥∥2
]

• Li is the denoising score matching objective for σi

• coefficients λ(σ) = σ (chosen emperically).

2. Generate samples using annealed Langevin dynamics.

11

https://arxiv.org/pdf/1907.05600.pdf

Sample generation via annealed Langevin dynamics

• Initialize samples from some fixed prior

distribution, e.g., uniform noise.

• Run Langevin dynamics to sample from

qσ1 (x) with step size α1 = σ1
σL

.

• Run Langevin dynamics to sample from

qσ2 (x), starting from the final samples of

the previous simulation and using a reduced

step size α2 = σ2
σL

.

• ...

• Finally, run Langevin dynamics to sample

from qσL(x), which is close to pdata(x)

when σL ≈ 0.

12

Annealed Langevin dynamics: Toy example

• Annealed Langevin dynamics recover the relative weights faithfully.

Exact sampling Sampling using Langevin dynamics

with exact scores

Sampling using annealed Langevin

dynamics with exact scores

13

Generated samples with NCSN (Song and Ermon, 2020)

• When applied to images, the model sθ(x, σ) is a U-Net with dilated convolution.

• They use a modified version of conditional instance normalization to provide conditioning on σi .

14

https://arxiv.org/pdf/1907.05600.pdf

Diffusion probabilistic models

Diffusion probabilistic models (Sohl-Dickstein et al., 2015)

• Define a forward diffusion process which converts any complex data distribution into a simple,

tractable, distribution.

• Learn the generative model which is defined by a reversal of this diffusion process

16

https://arxiv.org/pdf/1503.03585.pdf

Forward diffusion process

x0 x1 xT

• Most popular forward process: Given a sample from the data distribution x0 ∼ q(x0), produce

chain x1, ..., xT by progressively adding Gaussian noise:

q(xt | xt−1) = N(xt ;
√

1− βtxt−1, βt I), with small βt .

• q(xt | x0) has a closed form:

q(xt | x0) = N(xt ;
√
ᾱtx0, (1− ᾱt)I), αt = 1− βt , ᾱt =

t∏
τ=1

ατ

and converges to a simple distribution: q(xt | x0) −→
t→∞

N(0, I).

• Selecting βt such that 1− ᾱt is close to 1, q(xT) is well approximated by N(0, I).

17

Reverse (generative) process

x0 x1 xT

• Produce samples x0 ∼ pθ(x0) by starting with Gaussian noise xT ∼ N(0, I) and gradually reducing

the noise in a sequence of steps xT−1, xT−2, ..., x0.

• For computational convenience, we define the reverse process as

p(xt−1 | xt) = N(xt−1;µθ(xt , t),Σθ(xt , t))

and the task is to learn µθ(xt , t), Σθ(xt , t) to maximize the log-likelihood E [log pθ(x0)].

• The original paper (Sohl-Dickstein et al., 2015) proposes estimation of model parameters θ by

minimizing the variational bound on negative log-likelihood:

E [− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T)

q(x1:T |x0)

]
= Eq

− log p(xT)−
∑
t≥1

log
pθ(xt−1 | xt)

q(xt | xt−1)

18

https://arxiv.org/pdf/1503.03585.pdf

Reverse (generative) process (Sohl-Dickstein et al., 2015)

• This loss can be re-written as

Eq

[
DKL(q(xT | x0) ‖ p(xT)) +

∑
t>1

DKL(q(xt−1 | xt , x0) ‖ pθ(xt−1 | xt))− log pθ(x0 | x1)

]
• Intuition: In the reverse process, the distribution pθ(xt−1 | xt) should be close to q(xt−1 | xt , x0)

which is obtained with the knowledge of the uncorrupted sample x0.

• Due to the selected diffusion process, q(xt−1 | xt , x0) has a closed form:

q(xt−1 | xt , x0) = N(xt−1; µ̃(xt , x0), β̃I)

µ̃t(xt , x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

β̃t =
1− ᾱt−1

1− ᾱt
βt

• The loss contains KL divergences between Gaussian distributions and therefore it can be

computed analytically!

19

https://arxiv.org/pdf/1503.03585.pdf

Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020)

Ho et al. (2020) proposed to simplify the diffusion model:

1. Use fixed variances βt in the forward process.

2. Use fixed diagonal covariance matrces in the reverse process p(xt−1 | xt) = N(xt−1;µθ(xt , t), σ2
t I),

where σ2
t = β2

t works well in practice.

• This simplifies the loss terms:

Lt−1 = DKL(q(xt−1 | xt , x0) ‖ pθ(xt−1 | xt)) = Eq

[
1

2σ2
t

||µ̃t(xt , x0)− µθ(xt , t)||2
]

+ C

• One can show (see next slide) that the target for the denoising model µθ(xt , t) can be written as

µ̃t(xt , x0) =
1√
αt

(
xt −

βt√
1− ᾱt

ε

)
where ε is the noise instance that was used to produce xt from x0:

xt =
√
ᾱtx0 +

√
1− ᾱtε, with ε ∼ N(0, I)

20

https://arxiv.org/pdf/2006.11239.pdf
https://arxiv.org/pdf/2006.11239.pdf

DDPM: Simplifying the loss

With the following identities

xt =
√
ᾱtx0 +

√
1− ᾱtε, with ε ∼ N(0, I)

µ̃t(xt , x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

we get

x0 =
1
√
ᾱt

(xt −
√

1− ᾱtε)

µ̃t(xt , x0) =

√
ᾱt−1βt

1− ᾱt

1
√
ᾱt

(xt −
√

1− ᾱtε) +

√
αt(1− ᾱt−1)

1− ᾱt
xt

µ̃t(xt , x0) =
βt

1− ᾱt

1
√
αt

(xt −
√

1− ᾱtε) +

√
αt(1− ᾱt−1)

1− ᾱt
xt because

√
ᾱt−1√
ᾱt

=
1
√
αt

=
xt

(1− ᾱt)
√
αt

(βt + αt(1− ᾱt−1))−
βt

√
αt

√
1− ᾱt

ε

=
xt

(1− ᾱt)
√
αt

(1− ᾱt−1)−
βt

√
αt

√
1− ᾱt

ε because βt = 1− αt

=
1
√
αt

(
xt −

βt√
1− ᾱt

ε

)

21

DDPM: Loss function

• Since the target is expressed as

µ̃t(xt , x0) =
1√
αt

(
xt −

βt√
1− ᾱt

ε

)
it is convenient to use a parameterization for the denoising model that has a similar form:

µθ(xt , t) =
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt , t)

)
,

• This parameterization leads to the following loss

Lt−1 = Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

||ε− εθ(xt , t)||2
]

22

DDPM: Loss term L0

• We need to define the model − log pθ(x0 | x1) to compute L0 = Eq [− log pθ(x0 | x1)].

• Ho et al. (2020) assume that image data consists of integers in {0, 1, ..., 255} scaled linearly to

[−1, 1]. They set log pθ(x0 | x1) to an independent discrete decoder derived from the Gaussian

N(x0;µθ(x1, 1), σ2
1I):

pθ(x0 | x1) =
D∏
i=1

∫ δ+(x i0)

δ−(x i0)

N(x ;µi
θ(x1, 1), σ2

1)dx

δ + (x i
0) =

∞, if x = 1

x + 1
255
, if x < 1

δ − (x i
0) =

−∞, if x = −1

x − 1
255
, if x > −1

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.

23

https://arxiv.org/pdf/2006.11239.pdf

DDPM: Training and sampling procedures

• The training procedure of DDPM:

1. Sample a mini-batch of samples x0 ∼ q(x0)

2. For each x0, sample t ∼ Uniform({1, ...,T})
3. Generate noise ε ∼ N(0, I) and compute corrupted samples

xt =
√
ᾱtx0 +

√
1− ᾱtε, with ᾱt =

t∏
s=1

αs .

4. Compute the loss L = ||ε− εθ(xt , t)||2
5. Compute the gradients and update the model parameters θ.

• Sampling procedure:

1. Sample xT ∼ N(0, I)

2. Perform T − 1 steps: xt−1 ∼ N
(

1√
αt

(
xt − 1−αt√

1−ᾱt
εθ(xt , t)

)
, σ2

t I
)

3. Compute generated sample x0 = 1√
α1

(
x1 − 1−α1√

1−ᾱ1
εθ(x1, 1)

)

24

Connection to denoising score matching

• DDPM: Given a corrupted example xt with the noise level determined by t, the task is to find the

noise instance ε that led to xt from x0:

Lt−1 = Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

||ε− εθ(xt , t)||2
]

• Compare this to the loss used to train the Noise Conditional Score Networks (Song and Ermon,

2020) that we considered previously:

Li =
1

2
Epdata(x)Ex̃∼N(x,σ2

i I)

[∥∥∥∥sθ(x̃, σi) +
x̃− x

σi

∥∥∥∥2
]

• The two approaches are very similar: the learning task is to denoise samples obtained with

different levels of noise.

25

https://arxiv.org/pdf/1907.05600.pdf
https://arxiv.org/pdf/1907.05600.pdf

DDPM: Generated samples

26

Diffusion models beat GANs on image synthesis (Dhariwal and Nichol, 2020)

• Dhariwal and Nichol (2020) fine-tuned the architecture of DDPM and showed that diffusion

models can outperform GANs.

27

https://arxiv.org/pdf/2105.05233.pdf
https://arxiv.org/pdf/2105.05233.pdf

Conditional generation with diffusion-based models

• Sohl-Dickstein et al. (2015) showed that one can condition generation on the label y by

modifying the sampling procedure in the following way:

1. Sample xT ∼ N(0, I)

2. For t from T to 2:

xt−1 ∼ N
(
µt−1+sΣt−1∇xt log p(y | xt),Σt−1

)
3. Return x0

where s is a hyperparameter. The classifier log p(y | xt) pulls the samples in the direction in which

the probability of the desired class increases.

• Another common practice is to use the conditioning information as extra inputs of the network

which models the reverse process, for example, εθ(xt , t, y).

28

https://arxiv.org/pdf/1503.03585.pdf

Diffusion models: Increasing the sampling speed

• A drawback of diffusion models is that they require many iterations to produce a high quality

sample. The generative process of DDPM usually contains T = 1000 steps.

• For comparison, GANs only need one pass through the generator network.

• For example, it takes around 20 hours to sample 50k images of size 32× 32 from a DDPM, but

less than a minute to do so from a GAN on a Nvidia 2080 Ti GPU (Song et al., 2021).

• Sampling 50k images of size 256× 256 from a DDPM could take nearly 1000 hours on the same

GPU.

29

https://arxiv.org/pdf/2010.02502.pdf

Denoising diffusion implicit model (DDIM) (Song et al., 2021)

• Song et al. (2021) proposed to accelerate the generation process by using only a sub-sequence

{τi} of steps [1, . . . ,T]. The training procedure of DDPM is unchanged!

• Each generation step is modified as

xt−1 =
√
αt−1

(
xt −

√
1− αtε

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

“predicted x0”

+
√

1− αt−1 − σ2
t · ε

(t)
θ (xt)︸ ︷︷ ︸

“direction pointing to xt”

+ σtεt︸︷︷︸
random noise

which can be seen as sampling from a generalized generative process.

• In the experiments, the use στi (η) = η
√

(1− ατi−1/(1− ατi)
√

1− ατi /ατi−1

• η = 0 which corresponds to a deterministic generative process (from xT to x0), which they call

denoising diffusion implicit model (DDIM).

30

https://arxiv.org/pdf/2010.02502.pdf
https://arxiv.org/pdf/2010.02502.pdf

DDIM can generate high-quality images with fewer steps

31

Diffusion autoencoder (Preechakul et al., 2021)

• Standard diffusion models do not encode the input a (low-dimensional) representation. There are

extensions which can do that.

32

https://arxiv.org/pdf/2111.15640.pdf

Image manipulation with a diffusion autoencoder

• The model allows manipulation of an existing image.

33

DALL·E-2

(Ramesh et al., 2021)

https://cdn.openai.com/papers/dall-e-2.pdf

DALL·E-2: Text-conditional image generation (Ramesh et al., 2021)

• The task is to generate an image x from a given textual description y.
• DALL·E-2 consists of two components:

1. P(zi | y): A generative model of CLIP image embeddings zi conditioned on captions y.

2. P(x | zi , y): A generative model of images x conditioned on CLIP image embeddings zi (and

optionally text captions y).

P(zi | y) P(x | zi , y)

35

https://cdn.openai.com/papers/dall-e-2.pdf

Prior P(zi | y): A generative model of CLIP image embeddings

• Option 1. Autoregressive (AR)

• Reduce the dimensionality of the CLIP image embeddings zi from 1024 to 319.

• Order the principal components and quantize each of the 319 dimensions into 1024 discrete buckets.

• Predict the resulting sequence with the Transformer decoder.

• The text caption y and the CLIP text embedding zt are encoded as a prefix to the sequence.

• Option 2. Diffusion prior

• The continuous vector zi is modelled using a Gaussian diffusion model conditioned on the caption y.

• Transformer decoder (with causal attention) is applied to a sequence consisting of encoded text, the

CLIP text embedding, an embedding for the diffusion timestep, the noised CLIP image embedding,

and a final embedding whose output from the Transformer is used to predict the unnoised CLIP

image embedding

• Simple mean-squared error loss is used:

L = Et∼[1,T],z i (t)∼qt
||fθ(zi (t), t, y)− zi ||2

36

Decoder P(x | zi , y): A generative model of images x conditioned on CLIP image embeddings

• Images are generated using diffusion models. Conditioning on CLIP image embeddings zi is done
this way:

• Project and add CLIP embeddings to the timestep embedding

• Project CLIP embeddings into four extra tokens of context that are concatenated to the sequence of

outputs from the text encoder.

• The previous version called GLIDE (Nichol et al., 2021) used conditioning similar to classifier

guidance:

µ̂θ(xt | c) = µθ(xt | c) + s ·Σθ(xt | c)∇xt (f (xt) · g(c))

where the classifier is replaced with a CLIP model: f (x) and g(c) are the CLIP image and caption

encoders, respectively.

• To generate high resolution images, they train two diffusion upsampler models: from 64× 64 to

256× 256, and from 256× 256 to 1024× 1024.

• For the upsampling model, the downsampled image 64x64 is passed as extra conditioning input to the

U-Net. This is similar to VQ-VAE-2 when the codes in high-resolution are conditioned on

low-resolution codes.

37

https://arxiv.org/pdf/2112.10741.pdf

DALL·E-2: Selected samples, more examples here

38

https://openai.com/dall-e-2/

DALL·E-2: Variations of one image

Variations of an input image by encoding with CLIP and then decoding with a diffusion model.
39

DALL·E-2: Variations between two images

Variations between two images by interpolating their CLIP image embedding and then decoding with a diffusion model.

40

