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Unsupervised learning via denoising

• We have previously seen that the task of denoising can encourage learning of useful

representations.

• Recall denoising autoencoders:

• Feed inputs corrupted with noise:

x̃ = x + ε with ε ∼ N (0, σ2I)

• Train a network s(x̃) to produce clean data x in the output:

L = E{‖s(x̃)− x‖2}

• We trained a denoising autoencoder in the assignment and it was able to learn useful features in

the bottleneck layer.
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Denoising score matching

• It can be shown that for Gaussian corruption

ε ∼ N (0, σ2I), the optimal denoising is given by

s(x̃) = x̃ + σ2∇x̃ log p(x̃)

where p(x̃) is the pdf of the distribution of corrupted data.

• For small σ, p(x̃) ≈ p(x) and therefore we (implicitly) learn

the properties of p(x) by training a denoising function.
The optimal denoising function points towards areas

with higher probability density (Alain and Bengio,

2014)• ∇x log p(x) is often called a score function.

• This type of modeling is sometimes called denoising score matching (learning the score function

by denoising).
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Semi-supervised learning

with Ladder networks

(Rasmus et al., 2015)

https://arxiv.org/abs/1507.02672


Ladder networks (Rasmus et al., 2015)

• Ladder networks used the principle of denoising to

learn useful features in the semi-supervised settings

(learning from both labeled and unlabeled examples).

• The architecture resembles a ladder (or a U-net).

• The bottom-up pass produces label y for a given

input x.

• For labeled examples, we can compute the standard

classification (e.g., cross-entropy) loss using the

network output ŷ and the correct label y.
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Ladder networks: Denoising

• The inputs x are corrupted by noise during training

(e.g, we never use clean images as inputs).

• The top-down pass tries to reconstruct the clean

(without noise) input x.

• For all examples (both labeled and unlabeled), we

compute the denoising cost at the bottom:

denoising cost = ‖x− x̂‖2

• The minimized cost is the sum of the classification

and denoising costs.
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Ladder networks: Intuitions

• Intuition: In order to reconstruct the clean image

from a noisy image, one has to understand what

features are commonly present in images.

• Note: corruption and denoising happens on multiple

representation levels.

• Therefore, denoising is an auxiliary task that helps

model p(x) and hopefully develop features useful for

the primary classification task.

• The label itself cannot contain enough information to

reconstruct the input. We need skip connections to

pass low-level details from the bottom-up pass.

• Ladder networks inspired modern models for deep

semi-supervised learning.
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Generative Modeling

via denoising score matching

(Song and Ermon, 2020)

https://arxiv.org/pdf/1907.05600.pdf


Sampling with Langevin dynamics

• If we know the score function ∇x log p(x), we can sample from the corresponding distribution

using Langevin dynamics, a sampling procedure which iterates the following:

xt ← xt−1 + α∇x log p(xt−1) +
√

2αzt , 1 ≤ t ≤ T , zt ∼ N(0, I)

where α > 0 is a step size and x0 is a sample from any prior distribution π(x).

• When α is sufficiently small and T is sufficiently large, the

distribution of xT will be close to p(x) under some regularity

conditions.

• Question: Why do we need to add noise zt?

• If we have a neural network sθ(x) which has been trained such that

sθ(x) ≈ ∇x log p(x), we can generate samples from p(x) using

sθ(xt−1) instead of ∇x log p(xt−1).

‘

Image from (Song and Ermon, 2020)

8

https://arxiv.org/pdf/1907.05600.pdf


Problem 1 with Langevin dynamics sampling

• Score function may be poorly estimated in regions of low data density (due to lack of data

samples).

Darker color implies higher density. Red rectangles highlight regions where ∇x log pdata(x) ≈ sθ(x).
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Problem 2: Bad mixing of Langevin dynamics

• Consider a mixture distribution pdata(x) = πp1(x) + (1− π)p2(x), where

p1(x) and p2(x) are normalized distributions with disjoint supports, and

π ∈ (0, 1).

• In the support of p1(x):

∇x log pdata(x) = ∇x(log π + log p1(x)) = ∇x log p1(x)

• In the support of p2(x):

∇x log pdata(x) = ∇x(log(1− π) + log p2(x)) = ∇x log p2(x)

• In either case, the score ∇x log pdata does not depend on π.

• Langevin dynamics estimate the relative weights between the two

modes incorrectly.

Exact sampling

Sampling using Langevin

dynamics with exact scores
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Noise Conditional Score Networks (NCSN)

• Song and Ermon (2020) generate samples using Langevin dynamics with the score function

learned from data.

• The problems of Langevin dynamics are addressed in the following way:

1. Perturbe the data using various levels of noise σ1 > σ2 > . . . σL and estimate scores

corresponding to all noise levels by training a single conditional score network:

sθ(x, σ) ≈ ∇x log qσ(x)

where qσ(x) is the perturbed data distribution. The loss is

L =
1

L

L∑
i=1

λ(σi )Li , Li =
1

2
Epdata(x)Ex̃∼N(x,σ2

i I )

[∥∥∥∥sθ(x̃, σi ) +
x̃− x

σi

∥∥∥∥2
]

• Li is the denoising score matching objective for σi

• coefficients λ(σ) = σ (chosen emperically).

2. Generate samples using annealed Langevin dynamics.
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Sample generation via annealed Langevin dynamics

• Initialize samples from some fixed prior

distribution, e.g., uniform noise.

• Run Langevin dynamics to sample from

qσ1 (x) with step size α1 = σ1
σL

.

• Run Langevin dynamics to sample from

qσ2 (x), starting from the final samples of

the previous simulation and using a reduced

step size α2 = σ2
σL

.

• ...

• Finally, run Langevin dynamics to sample

from qσL(x), which is close to pdata(x)

when σL ≈ 0.

12



Annealed Langevin dynamics: Toy example

• Annealed Langevin dynamics recover the relative weights faithfully.

Exact sampling Sampling using Langevin dynamics

with exact scores

Sampling using annealed Langevin

dynamics with exact scores
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Generated samples with NCSN (Song and Ermon, 2020)

• When applied to images, the model sθ(x, σ) is a U-Net with dilated convolution.

• They use a modified version of conditional instance normalization to provide conditioning on σi .
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Diffusion probabilistic models



Diffusion probabilistic models (Sohl-Dickstein et al., 2015)

• Define a forward diffusion process which converts any complex data distribution into a simple,

tractable, distribution.

• Learn the generative model which is defined by a reversal of this diffusion process
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Forward diffusion process

x0 x1 xT

• Most popular forward process: Given a sample from the data distribution x0 ∼ q(x0), produce

chain x1, ..., xT by progressively adding Gaussian noise:

q(xt | xt−1) = N(xt ;
√

1− βtxt−1, βt I), with small βt .

• q(xt | x0) has a closed form:

q(xt | x0) = N(xt ;
√
ᾱtx0, (1− ᾱt)I), αt = 1− βt , ᾱt =

t∏
τ=1

ατ

and converges to a simple distribution: q(xt | x0) −→
t→∞

N(0, I).

• Selecting βt such that 1− ᾱt is close to 1, q(xT ) is well approximated by N(0, I).
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Reverse (generative) process

x0 x1 xT

• Produce samples x0 ∼ pθ(x0) by starting with Gaussian noise xT ∼ N(0, I) and gradually reducing

the noise in a sequence of steps xT−1, xT−2, ..., x0.

• For computational convenience, we define the reverse process as

p(xt−1 | xt) = N(xt−1;µθ(xt , t),Σθ(xt , t))

and the task is to learn µθ(xt , t), Σθ(xt , t) to maximize the log-likelihood E [log pθ(x0)].

• The original paper (Sohl-Dickstein et al., 2015) proposes estimation of model parameters θ by

minimizing the variational bound on negative log-likelihood:

E [− log pθ(x0)] ≤ Eq

[
− log

pθ(x0:T )

q(x1:T |x0)

]
= Eq

− log p(xT )−
∑
t≥1

log
pθ(xt−1 | xt)

q(xt | xt−1)
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Reverse (generative) process (Sohl-Dickstein et al., 2015)

• This loss can be re-written as

Eq

[
DKL(q(xT | x0) ‖ p(xT )) +

∑
t>1

DKL(q(xt−1 | xt , x0) ‖ pθ(xt−1 | xt))− log pθ(x0 | x1)

]
• Intuition: In the reverse process, the distribution pθ(xt−1 | xt) should be close to q(xt−1 | xt , x0)

which is obtained with the knowledge of the uncorrupted sample x0.

• Due to the selected diffusion process, q(xt−1 | xt , x0) has a closed form:

q(xt−1 | xt , x0) = N(xt−1; µ̃(xt , x0), β̃I)

µ̃t(xt , x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

β̃t =
1− ᾱt−1

1− ᾱt
βt

• The loss contains KL divergences between Gaussian distributions and therefore it can be

computed analytically!
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Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020)

Ho et al. (2020) proposed to simplify the diffusion model:

1. Use fixed variances βt in the forward process.

2. Use fixed diagonal covariance matrces in the reverse process p(xt−1 | xt) = N(xt−1;µθ(xt , t), σ2
t I),

where σ2
t = β2

t works well in practice.

• This simplifies the loss terms:

Lt−1 = DKL(q(xt−1 | xt , x0) ‖ pθ(xt−1 | xt)) = Eq

[
1

2σ2
t

||µ̃t(xt , x0)− µθ(xt , t)||2
]

+ C

• One can show (see next slide) that the target for the denoising model µθ(xt , t) can be written as

µ̃t(xt , x0) =
1√
αt

(
xt −

βt√
1− ᾱt

ε

)
where ε is the noise instance that was used to produce xt from x0:

xt =
√
ᾱtx0 +

√
1− ᾱtε, with ε ∼ N(0, I)
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DDPM: Simplifying the loss

With the following identities

xt =
√
ᾱtx0 +

√
1− ᾱtε, with ε ∼ N(0, I )

µ̃t(xt , x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

we get

x0 =
1
√
ᾱt

(xt −
√

1− ᾱtε)

µ̃t(xt , x0) =

√
ᾱt−1βt

1− ᾱt

1
√
ᾱt

(xt −
√

1− ᾱtε) +

√
αt(1− ᾱt−1)

1− ᾱt
xt

µ̃t(xt , x0) =
βt

1− ᾱt

1
√
αt

(xt −
√

1− ᾱtε) +

√
αt(1− ᾱt−1)

1− ᾱt
xt because

√
ᾱt−1√
ᾱt

=
1
√
αt

=
xt

(1− ᾱt)
√
αt

(βt + αt(1− ᾱt−1))−
βt

√
αt

√
1− ᾱt

ε

=
xt

(1− ᾱt)
√
αt

(1− ᾱt−1)−
βt

√
αt

√
1− ᾱt

ε because βt = 1− αt

=
1
√
αt

(
xt −

βt√
1− ᾱt

ε

)
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DDPM: Loss function

• Since the target is expressed as

µ̃t(xt , x0) =
1√
αt

(
xt −

βt√
1− ᾱt

ε

)
it is convenient to use a parameterization for the denoising model that has a similar form:

µθ(xt , t) =
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt , t)

)
,

• This parameterization leads to the following loss

Lt−1 = Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

||ε− εθ(xt , t)||2
]

22



DDPM: Loss term L0

• We need to define the model − log pθ(x0 | x1) to compute L0 = Eq [− log pθ(x0 | x1)].

• Ho et al. (2020) assume that image data consists of integers in {0, 1, ..., 255} scaled linearly to

[−1, 1]. They set log pθ(x0 | x1) to an independent discrete decoder derived from the Gaussian

N(x0;µθ(x1, 1), σ2
1I):

pθ(x0 | x1) =
D∏
i=1

∫ δ+(x i0)

δ−(x i0)

N(x ;µi
θ(x1, 1), σ2

1)dx

δ + (x i
0) =

∞, if x = 1

x + 1
255
, if x < 1

δ − (x i
0) =

−∞, if x = −1

x − 1
255
, if x > −1

where D is the data dimensionality and the i superscript indicates extraction of one coordinate.
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DDPM: Training and sampling procedures

• The training procedure of DDPM:

1. Sample a mini-batch of samples x0 ∼ q(x0)

2. For each x0, sample t ∼ Uniform({1, ...,T})
3. Generate noise ε ∼ N(0, I ) and compute corrupted samples

xt =
√
ᾱtx0 +

√
1− ᾱtε, with ᾱt =

t∏
s=1

αs .

4. Compute the loss L = ||ε− εθ(xt , t)||2
5. Compute the gradients and update the model parameters θ.

• Sampling procedure:

1. Sample xT ∼ N(0, I )

2. Perform T − 1 steps: xt−1 ∼ N
(

1√
αt

(
xt − 1−αt√

1−ᾱt
εθ(xt , t)

)
, σ2

t I
)

3. Compute generated sample x0 = 1√
α1

(
x1 − 1−α1√

1−ᾱ1
εθ(x1, 1)

)
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Connection to denoising score matching

• DDPM: Given a corrupted example xt with the noise level determined by t, the task is to find the

noise instance ε that led to xt from x0:

Lt−1 = Ex0,ε

[
β2
t

2σ2
tαt(1− ᾱt)

||ε− εθ(xt , t)||2
]

• Compare this to the loss used to train the Noise Conditional Score Networks (Song and Ermon,

2020) that we considered previously:

Li =
1

2
Epdata(x)Ex̃∼N(x,σ2

i I)

[∥∥∥∥sθ(x̃, σi ) +
x̃− x

σi

∥∥∥∥2
]

• The two approaches are very similar: the learning task is to denoise samples obtained with

different levels of noise.
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DDPM: Generated samples
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Diffusion models beat GANs on image synthesis (Dhariwal and Nichol, 2020)

• Dhariwal and Nichol (2020) fine-tuned the architecture of DDPM and showed that diffusion

models can outperform GANs.
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Conditional generation with diffusion-based models

• Sohl-Dickstein et al. (2015) showed that one can condition generation on the label y by

modifying the sampling procedure in the following way:

1. Sample xT ∼ N(0, I )

2. For t from T to 2:

xt−1 ∼ N
(
µt−1+sΣt−1∇xt log p(y | xt),Σt−1

)
3. Return x0

where s is a hyperparameter. The classifier log p(y | xt) pulls the samples in the direction in which

the probability of the desired class increases.

• Another common practice is to use the conditioning information as extra inputs of the network

which models the reverse process, for example, εθ(xt , t, y).
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Diffusion models: Increasing the sampling speed

• A drawback of diffusion models is that they require many iterations to produce a high quality

sample. The generative process of DDPM usually contains T = 1000 steps.

• For comparison, GANs only need one pass through the generator network.

• For example, it takes around 20 hours to sample 50k images of size 32× 32 from a DDPM, but

less than a minute to do so from a GAN on a Nvidia 2080 Ti GPU (Song et al., 2021).

• Sampling 50k images of size 256× 256 from a DDPM could take nearly 1000 hours on the same

GPU.
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Denoising diffusion implicit model (DDIM) (Song et al., 2021)

• Song et al. (2021) proposed to accelerate the generation process by using only a sub-sequence

{τi} of steps [1, . . . ,T ]. The training procedure of DDPM is unchanged!

• Each generation step is modified as

xt−1 =
√
αt−1

(
xt −

√
1− αtε

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

“predicted x0”

+
√

1− αt−1 − σ2
t · ε

(t)
θ (xt)︸ ︷︷ ︸

“direction pointing to xt”

+ σtεt︸︷︷︸
random noise

which can be seen as sampling from a generalized generative process.

• In the experiments, the use στi (η) = η
√

(1− ατi−1/(1− ατi )
√

1− ατi /ατi−1

• η = 0 which corresponds to a deterministic generative process (from xT to x0), which they call

denoising diffusion implicit model (DDIM).
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DDIM can generate high-quality images with fewer steps
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Diffusion autoencoder (Preechakul et al., 2021)

• Standard diffusion models do not encode the input a (low-dimensional) representation. There are

extensions which can do that.
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Image manipulation with a diffusion autoencoder

• The model allows manipulation of an existing image.
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DALL·E-2

(Ramesh et al., 2021)

https://cdn.openai.com/papers/dall-e-2.pdf


DALL·E-2: Text-conditional image generation (Ramesh et al., 2021)

• The task is to generate an image x from a given textual description y.
• DALL·E-2 consists of two components:

1. P(zi | y): A generative model of CLIP image embeddings zi conditioned on captions y.

2. P(x | zi , y): A generative model of images x conditioned on CLIP image embeddings zi (and

optionally text captions y).

P(zi | y) P(x | zi , y)
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Prior P(zi | y): A generative model of CLIP image embeddings

• Option 1. Autoregressive (AR)

• Reduce the dimensionality of the CLIP image embeddings zi from 1024 to 319.

• Order the principal components and quantize each of the 319 dimensions into 1024 discrete buckets.

• Predict the resulting sequence with the Transformer decoder.

• The text caption y and the CLIP text embedding zt are encoded as a prefix to the sequence.

• Option 2. Diffusion prior

• The continuous vector zi is modelled using a Gaussian diffusion model conditioned on the caption y.

• Transformer decoder (with causal attention) is applied to a sequence consisting of encoded text, the

CLIP text embedding, an embedding for the diffusion timestep, the noised CLIP image embedding,

and a final embedding whose output from the Transformer is used to predict the unnoised CLIP

image embedding

• Simple mean-squared error loss is used:

L = Et∼[1,T ],z i (t)∼qt
||fθ(zi (t), t, y)− zi ||2
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Decoder P(x | zi , y): A generative model of images x conditioned on CLIP image embeddings

• Images are generated using diffusion models. Conditioning on CLIP image embeddings zi is done
this way:

• Project and add CLIP embeddings to the timestep embedding

• Project CLIP embeddings into four extra tokens of context that are concatenated to the sequence of

outputs from the text encoder.

• The previous version called GLIDE (Nichol et al., 2021) used conditioning similar to classifier

guidance:

µ̂θ(xt | c) = µθ(xt | c) + s ·Σθ(xt | c)∇xt (f (xt) · g(c))

where the classifier is replaced with a CLIP model: f (x) and g(c) are the CLIP image and caption

encoders, respectively.

• To generate high resolution images, they train two diffusion upsampler models: from 64× 64 to

256× 256, and from 256× 256 to 1024× 1024.

• For the upsampling model, the downsampled image 64x64 is passed as extra conditioning input to the

U-Net. This is similar to VQ-VAE-2 when the codes in high-resolution are conditioned on

low-resolution codes.
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DALL·E-2: Selected samples, more examples here
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DALL·E-2: Variations of one image

Variations of an input image by encoding with CLIP and then decoding with a diffusion model.
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DALL·E-2: Variations between two images

Variations between two images by interpolating their CLIP image embedding and then decoding with a diffusion model.
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