Comparison of most used activation functions in deep neural networks and their circuit realizations in analog and digital neural networks

ELEC-L352001: Postgraduate Course in Electronic Circuit Design

Andrei Spelman 18.5.2022

Aalto-yliopisto Aalto-universitetet Aalto University - Introduction

- Theory

- Sigmoid function
- Hyperbolic tangent
- Rectified linear units
- Comparison
- Hardware
- Assignment

Introduction

- Main functional elements of neural networks are neurons
- Used for solving complex problems such as pattern classification, clustering, prediction, control and function approximation
 - Deep networks have layers between input and output
- More calculations, more layer, more complex

-

Neurons

- Inputs are weighted
- Adder sums input data together
- Activation function decides if neuron activated or not
- Activation functions can be linear or non-linear
- Non-linear are used for more complex calculations

Most used activation functions

- Sigmoid function
- Hyperbolic tangent
- Rectified linear units

Sigmoid function

- Saturated
- Centered at 0.5
- Gradient vanished especially in deep networks
- Soft saturation results in the difficulties of training a deep neural network
- Not used in deep networks
- Hard to optimize

$$f(x) = \frac{1}{1 + e^{-x}}$$

Improvements

- Orthogonal weight initialization can increase performance of sigmoid network
- Pre-training

—

- Adding noise to activation function
- Hyperbolic tangent

Hyperbolic tangent

- Saturated
- Centered at zero
- Derivative is steeper
- Faster than sigmoid
- Lower error
- Still vanisher in deep networks

$$tanh(x) = rac{sinh(x)}{cosh(x)} = rac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$tanh(x) = 2sigmoid(2x) - 1$$

Improvements

- Linear scaling to tackle its gradient diminishing problems
- Linearly Scaled Hyperbolic Tangent (LiSHT)
- Adaptive hyperbolic tangent

$$f_8\left(x
ight) = arac{\exp(2sx)-1}{\exp(2sx)+1}$$

-

Rectified linear units

- ReLU
- Most popular
- Simple and fast in training
- Not saturated
- Linear for positive values
- Zero for negative values
- "Dead neuron" or "dying ReLU"
- Bias shift

 $\operatorname{ReLU}(x) = \max(0, x)$

Leaky ReLU

- Leaky ReLU, LReLU
- Parametric leaky ReLU, PReLU, if α is learnable
- Attempt to fix "dying ReLU"
- Possible to perform back propagation

$$ext{PReLU}(x) = \max(0, \ x) + lpha * \min(0, \ x)$$

Exponential Linear Unit

 $\mathrm{ELU}(x) = \max(0,\ x) + \min(0,\ lpha(e^x-1))$

- ELU
- For negative values increases exponentially
- Same benefits as from Leaky ReLU
- Reduces bias shift problem, which is defined as the change of a neuron's mean value due to weights update

Scaled Exponential Linear Unit

 $\mathrm{SELU}(x) = \gamma * \left(\max(0,x) + \min\left(0, lpha\left(e^x - 1
ight)
ight)
ight)$

- SELU
- Self-normalizing
- Converges towards zero mean and unit variance even under the presence of noise

Comparison 1

- M. M. Lau and K. Hann Lim
- Four layers, feedforward
- Initialization for saturated activation functions with small random Gaussian weight initialization
 - Unsaturated activation function, the weight initialization were using Xavier weight initialization
- Training: 60000 images Testing: 10000 images

Activation Functions	Misclassification rate	Pre-train
Sigmoid	7.01	Yes
Hyperbolic Tangent	1.86	Yes
MSAF	12.59	Yes
MSAF_symmetrical	11.28	Yes
ReLU	2.08	No
LReLU	1.68	No
PReLU	1.6	No
ELU	1.88	No
Adaptive tanh	2.93	No

Aalto-yliopisto Aalto-universitetet Aalto University

Comparison 2

- B. Ding, H. Qian and J. Zhou
- Deep convolutional neural network
- Training: 60000 samples Testing: 10000 samples

Activation function	Parameter	Error (%)
Sigmoid	-	1.15
Tanh	-	1.12
ReLU	-	0.8
RReLU	a = 0.5	0.99
ELU	$\alpha = 1$	1.1

Hardware

Hardware implementations

- May be categorized into three approaches:

- Approximation
 - Taylor
 - Piecewise linear
 - Approximation of first derivative
- Lookup Table (LUT) based
- Hybrid Approaches

Sigmoid

Sigmoid, high-precision

- M1-M10 for linear weight
- M21 and M22 I-V circuit
- M23, M24 and M27 current bias
- Rest is differential pairs

Sigmoid, digital

Aalto-universitetet Aalto University

Hyperbolic tangent

- Passive resistive
- Max error 19.7%
- Average error 6.88%

Region	Vout	M_1	<i>M</i> ₂
Ι	$V_{out} < -V_{tp}$	OFF	Sat
II	$-V_{tp} < V_{out} < V_{tn}$	OFF	OFF
III	$V_{out} > V_{tn}$	Sat	OFF

Hyperbolic tangent

- "Hard" tanh
- Two adjusted inverters
- Small on-chip area and power consumption compared to other traditional tanh

Hyperbolic tangent, PWL

Format	<i>I</i> -bits	F-bits	Range	Max.error	Av.error
(2,6)	2	6	0,1.89750	0.53000	0.31623097
(3,5)	3	5	0,3.98675	0.238405844	0.08753644
(4,4)	4	4	0,7.93750	0.238405844	0.08649234

Hyperbolic tangent, CORDIC

- Coordinate Rotation DIgital Computer (CORDIC)
- CORDICs used for example in a transmitters

ReLU

- Voltage-mode
- Due to op amp, good linearity and operating range

ReLU

- Based on transmission gate (M7-M8 and M9-M10)
- Inverters' threshold voltage is zero
- Adding voltage divider to "negative" transmission gate makes ReLU leaky
 Returned

ReLU, digital

LUT

- LUT for every neuron present in the network
- Range addressable LUTs to reduce the LUT size
- A furthermore reduction in LUT is achieved by linearizing the activation function (Hybrid)
- Can have arbitrary activation function
- Simple, faster, and provide reasonable accuracy
- Only involves delay of one-memory access time to output the result, which is less than the usual computation time needed in arithmetic circuits

LUT

Comparison

	[1]	[2]	[3],[7]	This work
DRAM Type	LPDDR4	DDR4	HBM2	GDDR6
Process	20 nm	2x nm	20 nm	1y nm
Memory Density	8GB/chip (8H 8Gb mono die)	8GB/DIMM	6GB/cube (Buffer die + 4H 4Gb core-die with PCU + 4H 8Gb core-die)	8Gb/chip (4Gb DDP)
Data Rate	3.2Gbps	2.4Gbps	2.4Gbps	16Gbps
Bandwidth	25.6GB/s per chip	19.2GB/s per DIMM	307GB/s per cube	64GB/s per chip
# of Channel	1 per chip	16 per DIMM	8 per cube	2 per chip
# of Processing Unit (PU)	2048 per chip (256 per die)	128 per DIMM (8 per chip)	128 per cube (32 per core-die)	32 per chip (16 per die)
Processing Operation Speed	250MHz	500MHz	300MHz	1GHz
1 PU Throughput	2 GOPS (250MHz x 8byte)	4 GOPS (500MHz x 8byte)	9.6 GFLOPS (300MHz x 32byte)	32 GFLOPS (1GHz x 32byte)
Total Throughput (1 PU Throughput x # of PU)	0.5 TOPS per chip (2 GOPS x 256)	0.5 TOPS per DIMM (4 GOPS x 128)	1.2 TFLOPS per cube (9.6 GFLOPS x 128)	1 TFLOPS per chip (32 GFLOPS x 32)
Operation precision	INT8	INT8	FP16	BF16
Supported Activation Functions	-	-	ReLU	Sigmoid, Tanh, GELU, ReLU, Leaky ReLU, and Arbitrary Al

LUT

References

- M. Kaloev and G. Krastev, "Comparative Analysis of Activation Functions Used in the Hidden Layers of Deep Neural Networks," 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 2021, pp. 1-5, doi: 10.1109/HORA52670.2021.9461312.
- A. D. Rasamoelina, F. Adjailia and P. Sinčák, "A Review of Activation Function for Artificial Neural Network," 2020 IEEE 18th World Symposium on Applied Machine Intelligence and Informatics (SAMI), 2020, pp. 281-286, doi: 10.1109/SAMI48414.2020.9108717.
- M. M. Lau and K. Hann Lim, "Review of Adaptive Activation Function in Deep Neural Network," 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 2018, pp. 686-690, doi: 10.1109/IECBES.2018.8626714.
- B. Ding, H. Qian and J. Zhou, "Activation functions and their characteristics in deep neural networks," 2018 Chinese Control And Decision Conference (CCDC), 2018, pp. 1836-1841, doi: 10.1109/CCDC.2018.8407425.
- R. P. Tripathi, M. Tiwari, A. Dhawan, A. Sharma and S. K. Jha, "A Survey on Efficient Realization of Activation Functions of Artificial Neural Network," 2021 Asian Conference on Innovation in Technology (ASIANCON), 2021, pp. 1-9, doi: 10.1109/ASIANCON51346.2021.9544754.
- S. Lee et al., "A 1ynm 1.25V 8Gb, 16Gb/s/pin GDDR6-based Accelerator-in-Memory supporting 1TFLOPS MAC Operation and Various Activation Functions for Deep-Learning Applications," 2022 IEEE International Solid-State Circuits Conference (ISSCC), 2022, pp. 1-3, doi: 10.1109/ISSCC42614.2022.9731711.
- Krestinskaya, O., Choubey, B. & James, A.P. Memristive GAN in Analog. Sci Rep 10, 5838 (2020). https://doi.org/10.1038/s41598-020-62676-7.
- S. Xing and C. Wu, "Implementation of A Neuron Using Sigmoid Activation Function with CMOS," 2020 IEEE 5th International Conference on Integrated Circuits and Microsystems (ICICM), 2020, pp. 201-204, doi: 10.1109/ICICM50929.2020.9292239.
- J. Shamsi, A. Amirsoleimani, S. Mirzakuchaki, A. Ahmade, S. Alirezaee and M. Ahmadi, "Hyperbolic tangent passive resistive-type neuron," 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 581-584, doi: 10.1109/ISCAS.2015.7168700.
- T. D. Nguyen, D. H. Kim, J. S. Yang and S. Y. Park, "High-Speed ASIC Implementation of Tanh Activation Function Based on the CORDIC Algorithm," 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC), 2021, pp. 1-3, doi: 10.1109/ITC-CSCC52171.2021.9501440.
- S. M. Waseem, A. Venkata Suraj and S. K. Roy, "Accelerating the Activation Function Selection for Hybrid Deep Neural Networks FPGA Implementation," 2021 IEEE Region 10 Symposium (TENSYMP), 2021, pp. 1-7, doi: 10.1109/TENSYMP52854.2021.9551000.
- T. K. R. Arvind, M. Brand, C. Heidorn, S. Boppu, F. Hannig and J. Teich, "Hardware Implementation of Hyperbolic Tangent Activation Function for Floating Point Formats," 2020 24th International Symposium on VLSI Design and Test (VDAT), 2020, pp. 1-6, doi: 10.1109/VDAT50263.2020.9190305.
- B. Li, M. Yang and G. Shi, "Design of Analog CMOS-Memristive Neural Network Circuits for Pattern Recognition," 2021 IEEE 14th International Conference on ASIC (ASICON), 2021, pp. 1-4, doi: 10.1109/ASICON52560.2021.9620385.
- P. W. Zaki et al., "A Novel Sigmoid Function Approximation Suitable for Neural Networks on FPGA," 2019 15th International Computer Engineering Conference (ICENCO), 2019, pp. 95-99, doi: 10.1109/ICENCO48310.2019.9027479.
- Y. -H. Wu, W. -H. Lin and S. -H. Huang, "Low-Power Hardware Implementation for Parametric Rectified Linear Unit Function," 2020 IEEE International Conference on Consumer Electronics Taiwan (ICCE-Taiwan), 2020, pp. 1-2, doi: 10.1109/ICCE-Taiwan49838.2020.9258135.
- R. A. Callejas-Molina, V. M. Jimenez-Fernandez and H. Vazquez-Leal, "Digital architecture to implement a piecewise-linear approximation for the hyperbolic tangent function," 2015 International Conference on Computing Systems and Telematics (ICCSAT), 2015, pp. 1-4, doi: 10.1109/ICCSAT.2015.7362925.

Assignment

For each the most used activation function(Sigmoid, tanh, ReLU), find on the Internet example of the application and why that function is chosen over others.

