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- Main functional elements of neural 
networks are neurons

- Used for solving complex 
problems such as pattern 
classification, clustering, 
prediction, control and function 
approximation

- Deep networks have layers 
between input and output

- More calculations, more layer, 
more complex

Introduction



- Inputs are weighted
- Adder sums input data 

together
- Activation function decides 

if neuron activated or not
- Activation functions can be 

linear or non-linear
- Non-linear are used for more 

complex calculations

Neurons



- Sigmoid function
- Hyperbolic tangent
- Rectified linear units

Most used activation functions



Theory



- Saturated
- Centered at 0.5
- Gradient vanished especially 

in deep networks
- Soft saturation results in the 

difficulties of training a deep 
neural network

- Not used in deep networks
- Hard to optimize

Sigmoid function



- Orthogonal weight initialization can 
increase performance of sigmoid 
network

- Pre-training
- Adding noise to activation function
- Hyperbolic tangent

Improvements



- Saturated
- Centered at zero
- Derivative is steeper
- Faster than sigmoid
- Lower error
- Still vanisher in deep 

networks

Hyperbolic tangent



- Linear scaling to tackle its gradient 
diminishing problems

- Linearly Scaled Hyperbolic Tangent 
(LiSHT )

- Adaptive hyperbolic tangent

Improvements



Rectified linear units
- ReLU
- Most popular
- Simple and fast in training
- Not saturated
- Linear for positive values
- Zero for negative values
- “Dead neuron” or “dying ReLU”
- Bias shift



Leaky ReLU

- Leaky ReLU, LReLU
- Parametric leaky ReLU, 

PReLU, if 𝜶𝜶 is learnable
- Attempt to fix “dying ReLU”
- Possible to perform back 

propagation



Exponential Linear Unit

- ELU
- For negative values increases 

exponentially
- Same benefits as from Leaky 

ReLU
- Reduces bias shift problem, 

which is defined as the change of 
a neuron’s mean value due to 
weights update



Scaled Exponential Linear Unit

- SELU
- Self-normalizing
- Converges towards zero mean 

and unit variance even under the 
presence of noise



Comparison 1
- M. M. Lau and K. Hann Lim
- Four layers, feedforward
- Initialization for saturated 

activation functions with 
small random Gaussian 
weight initialization

- Unsaturated activation 
function, the weight 
initialization were using 
Xavier weight initialization

- Training: 60000 images
Testing: 10000 images



Comparison 2

- B. Ding, H. Qian and J. Zhou
- Deep convolutional neural 

network
- Training: 60000 samples

Testing: 10000 samples



Hardware



Hardware implementations

- May be categorized into three approaches:
- Approximation

- Taylor
- Piecewise linear
- Approximation of first derivative

- Lookup Table (LUT) based
- Hybrid Approaches



Sigmoid



Sigmoid, high-precision

- M1-M10 for linear weight
- M21 and M22 I-V circuit
- M23, M24 and M27 

current bias
- Rest is differential pairs



Sigmoid, digital



Hyperbolic tangent

- Passive resistive
- Max error 19.7%
- Average error 6.88%



Hyperbolic tangent

- “Hard” tanh
- Two adjusted inverters
- Small on-chip area and 

power consumption 
compared to other 
traditional tanh



Hyperbolic tangent, PWL



Hyperbolic tangent, CORDIC

- Coordinate Rotation DIgital
Computer (CORDIC)

- CORDICs used for example in 
a transmitters



ReLU

- Voltage-mode
- Due to op amp, good linearity and operating 

range



ReLU
- Based on transmission gate (M7-M8 

and M9-M10)
- Inverters’ threshold voltage is zero
- Adding voltage divider to 

“negative” transmission gate 
makes ReLU leaky



ReLU, digital



LUT

- LUT for every neuron present in the network

- Range addressable LUTs to reduce the LUT size

- A furthermore reduction in LUT is achieved by linearizing the 
activation function (Hybrid)

- Can have arbitrary activation function

- Simple, faster, and provide reasonable accuracy 

- Only involves delay of one-memory access time to output the result, 
which is less than the usual computation time needed in arithmetic 
circuits



LUT



LUT
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Assignment

For each the most used activation function(Sigmoid, tanh, ReLU), 
find on the Internet example of the application and why that 
function is chosen over others. 
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