

ULF* waves and related phenomena

*ultra-low frequency

Space Climate 2022 Reko Hynönen Sodankylä Geophysical Observatory <u>Reko.Hynonen@oulu.fi</u>

ULF waves

Many, many different waves!

- v < 1-5 Hz, period T > 0.2-1 s
- v ~ cyclotron frequency of proton ~ an ability to influence and accelerate/decelerate plasma
- Geomagnetic Pc and Pi pulsations
 - Descriptive categories by period and regularity
 - Pc, continuous pulsations
 - Pi, irregular pulsations

TABLE 1	
Notation	Period Range, sec
Pc 1 Pc 2 Pc 3 Pc 4 Pc 5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

	TABLE 2	
Notation	Period Range, sec	
Pi 1 Pi 2	1- 40 40-150	

From Jacobs (1964) https://doi.org/10.1029/JZ069i001p00180

ULF waves

Content

- Some waves in plasmas
- Magnetospheric and ionospheric structures and phenomena
- Statistical features

outer reflecting boundary

Content

- Some waves in
- Magnetosn
 ionosr
 phen
- Statist

1 Hz

- Learning goals:
- What is ULF wave?
- Some examples of ULF waves
- Where do they occur?

1h 20min

11 12 13 14 15 16 17 18 19 20 21 22 23

UT hour

2008

Cyclotron frequency

Charged particle in an magnetic field

Charged particle in an magnetic field

→ Undergoes cyclic motion at cyclotron frequency

$$\omega = 2\pi f = rac{zeB}{m},$$

 In magnetosphere: f ~ 0.1 - 5 Hz, known as EMIC* waves, or Pc1 and Pc2 pulsations *Electromagnetic ion cyclotron

Charged particle in an magnetic field

→ Undergoes cyclic motion at cyclotron frequency

$$\omega = 2\pi f = rac{zeB}{m},$$

 v ~ cyclotron frequency of proton ~ an ability to influence and accelerate/decelerate plasma

KILLER ELECTRONS ...IN SPACE!

ULF wave frequencies ~ ion cyclotron frequencies → One can "tap" into another → Electrons of MeV energies in the radiation belts

Oscillating magnetic field: Alfvén waves

"Alfvén waves ~ Ion oscillation waves"

Oscillating magnetic field: Alfvén waves

"Alfvén waves ~ Ion oscillation waves"

Oscillating magnetic field: Alfvén waves

"Alfvén waves ~ Ion oscillation waves"

- Theorized by Hannes Alfvén in 1942
- Oscillation of ions and magnetic field,
 B → B + dB
- Low frequency (less than ion cyclotron frequency)
 e.g. in solar wind ~ 2-10 mHz
- Can propagate long distance without dampening.
- Alfvén velocity depends on *magnetic field* and *plasma density*.

$$v_A=rac{B}{\sqrt{\mu_0
ho}}$$

- Fast magnetosonic wave speed $v^2 = v_s^2 + v_a^2$
- Slow magnetosonic wave speed $v^2 = v_s^2 v_a^2$

Kelvin-Helmholtz waves

Kelvin-Helmholtz waves

- Instability caused by velocity shear between two fluids
- Greater the speed difference between the fluids, the faster and greater the instability
- Also called KH waves

Kelvin-Helmholtz waves

outer reflecting boundary

Fast-mode waves bouncing between magnetospheric outer and inner boundaries FUT A

En L

Trajectory

Over Reflecting

Boundary

20

Δ

Slow

Reflecting Boundary Trapped ,

Dusk Flank

Over Reflected Modes

Fast-mode waves bouncing between magnetospheric outer and inner boundaries

FILL A

Field line resonance

Shear Alfvén waves

HILL A

Field line resonance

Shear Alfvén waves

→ Fast mode magnetosonic wave dampens fast, losing energy to particles and other waves

Full A

Field line resonance

Shear Alfvén waves

→ Fast mode magnetosonic wave dampens fast, losing energy to particles and **other waves**

→ transforms into shear Alfvén wave traversing the magnetic field lines

(Lots of *criticism* though: The frequency should vary by field line and latitude. But it's only detected sometimes, and not at consistent frequencies. Not always detected at conjugate stations.)

- Electromagnetic Ion Cyclotron (EMIC) waves,
 ~ 200 mHz 1 Hz
- Alfvén waves ion oscillation waves
 ~ 2-10 mHz in the solar wind
 ~ 2-10 mHz as field line resonances
 (~ 100 mHz 1 Hz in ionospheric Alfvén resonator)
- Sound waves and magnetosonic waves (like whistlers)
- Plasma instabilities:
 - Kelvin-Helmholtz waves

Magnetometer chains

- IMAGE network
- CARISMA (earlier CANOPUS)
- 210 CHAIN
- Greenland chain
- MAGDAS
- Scandinavian SME (only historical data).

Magnetometer networks

UNIVERSITY OF OULU https://space.fmi.fi/image/www/index.php?

Courtesy of Häkkinen

27

Conjugate magnetic measurements

Geomagnetic activity at high latitudes during magnetic storms

https://space.fmi.fi/image/www/index.php?

Filtering magnetic data

FILL A

Filtering magnetic data for FFT*

* Fast Fourier Transform

Part L

Δ

Filtering magnetic data for FFT

KIL spectral power 0.01 0.009 0.008 0.007 Power (nT²) 90000 (nT²) 90000 (nT²) 0.003 0.002 0.001 0 0 1 2 3 4 5 6 7 8 9 10 Frequency (mHz)

Frank A

* $L = 1/\cos^2 \theta$

Adapted from Hynönen et al. (2020) ³⁵

Sampling by the hour

FILL A

50°