

ELEC-L352001: Study on analog memories to exclude data conversion in neural networks

Miikka Tenhunen

miikka.tenhunen@aalto.fi

25.5.2022

Outline

- Background
- Paper 1: DARAM
- Paper 2: ARCHON
- Paper 3: eDRAM
- Assignment

Background: convolutional neural networks (CNN)

- CNNs classify image data based on detected patterns
 - Image and video analysis, autonomous vehicles, medical applications...
- Key operation is convolutional filtering
 - Filter matrix is slid over the image to extract patterns such as edges
- Filtering consists of multiply-accumulate (MAC) operations
 - ► Element-wise multiplication between filter and image ⇒ multiplication results summed ⇒ feature map for next layer
- MAC typically done using digital processing
- Lately analog MAC has gained attention due to its efficiency (low power, small area, high speed)

Background: analog MAC and memory

- Analog MAC requires at least one of its inputs to be analog
 - Filter weights or image data
 - Frequent use of DACs
- Analog MAC result must be stored somehow for further processing
 - Frequent use of ADCs to store to digital memory
- ► Data converters are slow and use a lot of power ⇒ analog MAC potential wasted
- Converter usage may be reduced by using analog memory
- Analog memory = capacitor that stores analog voltage + a few transistors

A 65nm 3T Dynamic Analog RAM-Based Computing-in-Memory Macro and CNN Accelerator with Retention Enhancement, Adaptive Analog Sparsity and 44TOPS/W System Energy Efficiency

> Zhengyu Chen, Xi Chen, Jie Gu ISSCC 2021

Design highlights

- Compute-in-memory (CIM) analog MAC
- 3T1C dynamic-analog-RAM (DARAM)
 - Density (4b per DARAM)
 - Retention
- 4b/4b or 8b/8b activation/weight data
 - Two DARAM cells combined for 8b/8b operation
- ADC skipping for power savings
 - Multiple MAC operations before A/D conversion

Block diagram

- Activation and weight data loaded from SRAM
- Activation data controls analog MAC through DTC
- Weight stored in DARAM of CIM array
- MAC result A/D converted for digital postprocessing

64x32 CIM array

- 64 rows, 32 columns (2048 DARAM)
- Each row has a 4b DTC
- Each column has 4b DAC, 5b ADC, MAC capacitor, precharge PMOS
- Each DARAM has WE, RE, BL_W, BL_R

DARAM cell

3T1C cell

- Write access PMOS
- Capacitor for storing 4-bit weight as analog voltage
- NMOS buffer for reading data and performing analog MAC
- M1 W and L large to prevent mismatch related read errors

DARAM cell

- Capacitor on top of transistors to save area
- Special 3D capacitor interleaving GND and MEM nodes
 - 3x capacitance density

DARAM density

- 4-bit weight stored in one DARAM cell
- Effective 1-bit area is 75 % of foundry provided 6T SRAM area
- Transistor count greatly decreased from 6T-8T SRAM

ELEC-L352001: Study on analog memories to exclude data conversion in neural networks

Memory leakage

- Leakage Isub minimized by biasing BL_W with DAC when not writing
- 0.8 V results in 20x reduced leakage
- Retention time 5k-41k clock cycles
 - 5-40 images may be processed without refreshing memory
- ► Refresh every 5.5k-41k cycles ⇒ < 1.2 % throughput and < 0.4 % energy overhead
 - Refreshing takes 64 clock cycles (CIM array has 64 rows)

ARCHON: A 332.7TOPS/W 5b Variation-Tolerant Analog CNN Processor Featuring Analog Neuronal Computation Unit and Analog Memory

> Jin-O Seo, Mingoo Seok, SeongHwan Cho ISSCC 2022

Design highlights

- Fully analog processing for efficiency
 - ► DACs, ADCs and input registers used only once per image ⇒ power savings
- Analog memory (AMEM) that stores computation results and passes them to next layer
- Tolerance to PVT variations
 - AMEM write with feedback

Block diagram

- Input data and weights stored in DFFs
- Input data (84 pixels) is converted to 84 voltages
- Analog neuronal computation unit (ANU) processes signal
 - Analog MAC, average pooling, ReLU, FC
- ANU result is written to AMEM
 - Two AMEMs, when one is writing the other is reading
- AMEM data is read back to ANU for next CNN layer
- Final result (classified output) is A/D converted

Analog operation

- All layers (convolution, pooling, fully connected) implemented in analog side
- Two AMEMs used in ping-pong manner

AMEM cell

- 6T1C analog memory cell
 - Write access transistor
 - 3 fF MOM capacitor storing ANU result (5b precision)
 - Source follower
 - Three read access transistors for 3x read speed
- Capacitor on top of transistors for increased density

Analog MAC

ELEC-L352001: Study on analog memories to exclude data conversion in neural networks 25.5.2022

AMEM potential problems

- Problem 1: leak current through write access transistor Sw
 - Changes capacitor voltage and degrades CNN performance
- Solution 1: this is not a problem
 - ► AMEM needs to hold the result only for a short time (computation of next layer) ⇒ low retention time requirement
- Problem 2: source follower sensitivity to PVT variations
 - AMEM output varies with threshold voltage of M1
- Solution 2: write with feedback (WFB)

Write with feedback

- Write ANU result to AMEM using negative feedback
- WFB forces AMEM and ANU output voltages to be equal regardless of the source follower properties
- 28 amplifiers required

Write with feedback

WFB reduces AMEM output variations by 90 %

Leakage and PVT tolerance

Aalto University School of Electrical Engineering

ELEC-L352001: Study on analog memories to exclude data conversion in neural networks

Performance table

Column 1 shows paper 1 performance

	[1] ISSCC 2021	[2] JSSC 2019	[3] VLSI 2016	[4] JSSC 2019	[5] JSSC 2017	[6] JSSC 2019	This Work
Technology (nm)	65	28	65	28	130	55	28
Computing Method	In-memory Computing	VCO-Counter	DSM	Charge Redistribution	Charge Redistribution	VCO-Counter	Time-domain & Charge Accum.
Area (mm²)	3.3 (System)	960	0.9504	5.76 (System)	0.012	3.4 (System)	1.26 (System)
Supply Voltage (V)	0.85-1.1	0.7		0.8	1.2	0.4-1	1
Clock Frequency (MHz)	105	753	0.1	-	2500		200
Bit Precision (bit)	4, 8 (weight) 2, 4, 8 (input)	8	16	1	4 (weight) / 6 (input)	6	5 (weight) / analog (input)
Full Processing w/o Data Conversion	х	х	Х	х	x	х	0
Throughput (GOPS) 1)	1720	2.06	3.23	478	5.00	2.15	100.8
Power (System) 2 (µW)	38400 a)	N. A.	N. A.	899 d)	647 ^{b) d)}	690 (peak)	4637 (peak) 5073 (mean) 5375 (worst)
Energy Efficiency (System) 4) (TOPS/W/bit)	28.6 ^{a) d)}	N. A.	N. A.	21.3 ¢)	7.41 ^{b) d)}	4.49 (peak)	21.7 (peak) ^{c)} 19.9 (mean) ^{c)} 18.8 (worst) ^{c)}
Weight Sparsity	44.0%	N. A.	N. A.	N. A.	N. A.	N. A.	12.9%
Power (Datapath) 3) (µW)	4060 ^{d)}	166 ^{d)}	3899 ^{d)}	583 ^{d)}		~	182 (peak) 303 (mean) 604 (worst)
Energy per Operation (Datapath) (fJ/op) 4)	0.288 ^{d)}	1.26 ^{b) d)}	4.71 b) d)	1.22 d)	-		0.072 (peak) ^{c)} 0.120 (mean) ^{c)} 0.24 (worst) ^{c)}
Energy Efficiency (Datapath) (TOPS/W) ⁴⁾	138.8 ^{a)}	31.74 ^{b) d)}	8.49 b) d)	32.80 d)			552.5 (peak) c) 332.7 (mean) c) 166.8 (worst) c)
PVT Tolerance	х	х	Х	х	x	X	0

ELEC-L352001: Study on analog memories to exclude data conversion in neural networks

eDRAM-CIM: Compute-In-Memory Design with Reconfigurable Embedded-Dynamic-Memory Array Realizing Adaptive Data Converters and Charge-Domain Computing

Shanshan Xie, Can Ni, Aseem Sayal, Pulkit Jain, Fatih Hamzaoglu, Jaydeep P. Kulkarni ISSCC 2021

Design highlights

- Embedded dynamic random-access memory (eDRAM) cell that does everything
- CIM analog CNN operations

eDRAM cell

- 1T1C cell
 - Write/read access NMOS
 - 13 fF capacitor
- Used
 - as digital/analog memory that stores weight bits or computation results
 - to perform analog multiply-accumulate-average and other CNN operations
 - as a part of DAC
 - as a part of ADC
 - ▶ ...

Block diagram

- Diff. eDRAM DAC transforms 8-bit image data to voltage
 - Two cycles, 4-bit per cycle, voltages stored in eDRAM
 - Charge redistribution between eDRAMs to get final result
- DAC output multiplied with 8b weight using 2:1 analog muxes
 - Weight bit selects between 0 and DAC voltage \Rightarrow multiplication
- MUX outputs saved to binary weighted eDRAM
 - ► Charge redistribution ⇒ accumulate-average
- Other CNN operations with eDRAM
- Final result converted to 8 bits by eDRAM SAR ADC

eDRAM array

ELEC-L352001: Study on analog memories to exclude data conversion in neural networks

Performance

	This work	ISSCC'20 [3]	ISSCC'20 [4]	ISSCC'20 [5]	ISSCC'18 [6]	
Technology	65nm	28nm	28nm	22nm	65nm	
Memory Cell Structure	1T1C eDRAM	6T SRAM	6T + Local Computing SRAM	1T1R SLC ReRAM	6T SRAM	
Array Size	16Kb	64Kb	64Kb	2Mb	128Kb	
Input Precision (bit)	8	8	8	4	8	
Weight Precision (bit)	8	8	8	4	8	
Supply Voltage (V)	1~1.2	0.85~1.0	0.7~0.9	0.8	1	
Dataset	CIFAR-10 CIFAR-10					
Model	CNN: 4 CONV + 2 Pooling + 2 FC	CNN: ResNet-20	CNN: ResNet-20	N/A	SVM	
Measured Accuracy	80.1% (Top-1), 98.1 % (Top-5)	⁵ 91.91%	⁵ 92.02%	N/A	⁵ 83.27%	
Throughput (GOPS)	1.34.71	N/A	N/A	N/A	4	
Average Energy Efficiency (TOPS/W)	¹ 4.76	7.3 ² (1.35)	14.08 ² (2.61)	28.93 ² (3.31)	3.125	
GOPS/mm ²	8.26	N/A	N/A	N/A	2.78	
⁴ FoM	304.6	86.4	167	53	201.6	

Assignment

- Compare analog and digital MAC. Why is analog better?
- Oerive the output voltage (voltage over C_{BL_R}) after MAC operation. The output capacitor is initially charged to VDD and it is shared by three DARAM circuits. Each DARAM has different weight stored in it (output currents I_{MEM1} , I_{MEM2} , I_{MEM3}) and each gets a different read enable pulse (T_{RE1} , T_{RE2} , T_{RE3}).

