Angular momentum
orbital
In classical physics, the V angular momentum Of a particle is given by

$$
\begin{aligned}
L & =\underset{z_{p o s i f i o n ~}^{r}}{L} \underline{p} p_{\text {momentum }} \\
& =\left|\begin{array}{ccc}
\underline{x} & z \\
x & y & z \\
p_{x} & p_{y} & p_{z}
\end{array}\right| \\
& =\underline{x} y p_{z}+7 z p_{x}+\underline{z} x p_{y} \\
& -\left(\begin{array}{l}
x z p_{y}-y x p_{z}-\underline{z} y p_{x} \\
z p_{x}-z p_{y} \\
x p_{y}-y p_{x}
\end{array}\right) \\
\rightarrow L_{x} & =y p_{z}-z p_{y}, L_{y}=z p_{x}-x p_{z}, L_{z}=x p_{y}-y p_{x}
\end{aligned}
$$

To obtain the corresponding quarturn mechanic operators, we replace P_{α} by $-i \hbar \partial_{\alpha}$; ie.

$$
\begin{aligned}
& \hat{L}_{x}=\frac{\hbar}{i}\left(y \partial_{z}-z \partial_{y}\right) \\
& \hat{L}_{y}=\frac{\hbar}{i}\left(z \partial_{x}-x \partial_{z}\right) \\
& \hat{L}_{z}=\frac{\hbar}{i}\left(x \partial_{y}-y \partial_{x}\right)
\end{aligned}
$$

We can start by working out the commutation relations of the operators, i.e. $\left[\hat{L}_{x}, \hat{L}_{y}\right]$ etc.
To evaluate the commutator, we apply it to a test function 4 :

$$
\begin{aligned}
& {\left[\hat{L}_{x}, \hat{L}_{y}\right] 4=\left(\frac{\hbar}{i}\right)^{2}\left[\left(y \partial_{z}-z \partial_{y}\right)\left(z \partial_{x}-x \partial_{z}\right)\right.} \\
& \left.-\left(z \partial_{x}-x \partial_{z}\right)\left(y \partial_{z}-z \partial_{y}\right)\right] \psi \\
& =\left(\frac{\hbar}{i}\right)^{2}\left[y \partial_{z} z \partial_{x}-y \partial_{z} \times \partial_{z}-z \partial_{y} z \partial_{x}+z \partial_{y} \times \partial_{z}\right. \\
& \left.-z \partial_{x} y \partial_{z}+z \partial_{x} z \partial_{y}+x \partial_{z} y \partial_{z}-x \partial_{z} z \partial_{y}\right] \psi \\
& =\left(\frac{\hbar}{i}\right)^{2}\left[y \partial_{x} 4+y z \partial_{z} \partial_{x} 4-y x \partial_{z}^{2} \psi\right. \\
& -z^{2} \partial_{y} \partial_{x} 4+z x \partial_{y} \partial_{z} 4 \\
& -z_{y} \partial_{x} \partial_{z} 4+z^{2} \partial_{x} \partial_{y} y+x y \partial_{z}^{2} y \\
& \left.-x \partial_{y} y-x z \partial_{z} \partial_{y} \psi\right] \\
& =\left(\frac{\hbar}{i}\right)^{2}[y \partial_{x}-x \partial_{y}+(\overbrace{y z \partial_{z} \partial_{x}-z_{y} \partial_{x} \partial_{z}}^{0}) \\
& +\left(x_{y} \partial_{z}^{2}-y x \partial_{z}^{2}\right)+\left(z^{2} \partial_{x} \partial_{y}-z^{2} \partial_{y} \partial_{x}\right) \\
& \left.+\left(z \times \partial_{y} \partial_{z}-x z \partial_{z} \partial_{y}\right)\right] \varphi \\
& =\left(\frac{\hbar}{i}\right)^{2}\left[y \partial_{x}-x \partial_{y}\right] \varphi=\frac{\hbar}{i}\left(-\hat{L}_{z}\right) \varphi
\end{aligned}
$$

Thus, we find

$$
\left[\hat{L}_{x}, \hat{L}_{y}\right]=i \hbar \hat{L}_{z} .
$$

Similar arguments lead to the expressions

$$
\left[\hat{L}_{y}, \hat{L}_{z}\right]=i \hbar \hat{L}_{x} \&\left[\hat{L}_{z_{1}} \hat{L}_{x}\right]=i \hbar \tilde{L}_{y}
$$

While the individual components of the angular momentum do not commute, the Situation is different for the square of the angular momentern:

$$
\hat{L}^{2} \equiv \hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}
$$

To see this, we evaluate the commutator

$$
\begin{aligned}
{\left[\hat{L}^{2}, \hat{L}_{x}\right]=} & \underbrace{\left[\hat{L}_{x}^{2} \hat{L}_{x}\right]}_{0}+\left[\hat{L}_{y,}^{2} \hat{L}_{x}\right]+\left[\hat{L}_{z}^{2} \hat{L}_{x}\right] \\
= & \hat{L}_{y}^{2} \hat{L}_{x}-\hat{L}_{x} \hat{L}_{y}^{2}+\hat{L}_{z}^{2} \hat{L}_{x}-\hat{L}_{x} \hat{L}_{z}^{2} \\
= & \hat{L}_{y} \hat{L}_{y} \hat{L}_{x}-\hat{L}_{y} \hat{L}_{x} \hat{L}_{y}+\hat{L}_{y} \hat{L}_{x} L_{y}-\hat{L}_{x} \hat{L}_{y} \hat{L}_{y} \\
& +\hat{L}_{z} \hat{L}_{z} \hat{L}_{x}-\hat{L}_{z} \hat{L}_{z} \hat{L}_{z}+\hat{L}_{z} \hat{L}_{x} \hat{L}_{z}-\hat{L}_{x} \hat{L}_{z} \hat{L}_{z} \\
= & \left.\hat{L}_{y}\left[\hat{L}_{y} \hat{L}_{x}\right]+\left[\hat{L}_{y}, \hat{L}_{x}\right] \hat{L}_{y}+\hat{L}_{z}+\hat{L}_{z} \hat{L}_{x}\right]+\left[\hat{L}_{z} \hat{L}_{x}\right] \hat{L}_{z}
\end{aligned}
$$

$$
\begin{aligned}
& =\hat{L}_{y}\left(-i \hbar \hat{L}_{z}\right)+\left(-i \hbar \hat{L}_{z}\right) \hat{L}_{y}+\hat{L}_{z}\left(i \hbar \hat{L}_{y}\right)+\left(i \hbar \hat{L}_{z}\right) \hat{L}_{z} \\
& =0
\end{aligned}
$$

In a similar way, one finds

$$
\left[\hat{L}^{2}, \hat{L}_{x}\right]=\left[\hat{L}^{2}, \hat{L}_{y}\right]=\left[\hat{L}^{2}, \hat{L}_{z}\right]=0
$$

Since \hat{L}^{2} and \hat{l}_{α} commute we can hope to find a common set of eigenvectors.

To see this, assume that \mathcal{L}^{2} has non-degenerete eigenvalues of the form

$$
\dot{L}^{2}\left|\psi_{n}\right\rangle=\lambda_{n}\left|\psi_{n}\right\rangle
$$

The degenerate case] is disclosed in is discussed in
Zettili P. 177
Now, we have

$$
\begin{aligned}
& \left\langle\psi_{m}\right| \underbrace{\left[\hat{L}^{2}, \hat{L}_{\alpha}\right]}_{0}\left|\psi_{n}\right\rangle= \\
& 0=\left\langle\psi_{m}\right| \hat{L}^{2} \hat{L}_{\alpha}\left|\psi_{n}\right\rangle \\
& \\
& =\lambda_{m}\left\langle\psi_{m}\right| \hat{L}_{\alpha}\left|\psi_{n}\right\rangle-\lambda_{\alpha} \hat{L}^{2}\left|\psi_{n}\right\rangle \\
& =\left(\psi_{m}\left|\hat{L}_{\alpha}\right| \psi_{n}\right\rangle \\
& \Rightarrow\left\langle\lambda_{n}\right\rangle\left\langle\psi_{m}\right| \hat{L}_{\alpha}\left|\psi_{n}\right\rangle
\end{aligned}
$$

$\Rightarrow \hat{L}_{\alpha}$ is dicgenal in the basis $\left\{\left|\psi_{n}\right\rangle\right\}$

To find the eigenvalues, we introduce ledder operators (cf. the hamomic oscillator),

$$
\hat{L}_{ \pm} \equiv \hat{L}_{x} \pm i \hat{L}_{y}
$$

The commuter with ${\hat{L_{z}}}_{z}$ reads

$$
\begin{aligned}
{\left[\hat{L}_{z}, \hat{L}_{ \pm}\right] } & =\left[\hat{L}_{z}, \hat{L}_{x}\right] \pm i\left[\hat{L}_{z} \hat{\iota}_{y}\right] \\
& =i \hbar \hat{L}_{y} \pm i\left(-i \hbar \hat{L}_{x}\right) \\
& = \pm \hbar\left(\hat{L}_{x} \pm i \hat{L}_{y}\right) \\
& = \pm \hbar \hat{L}_{ \pm}
\end{aligned}
$$

and we also have $\left[\hat{L}^{2}, \hat{L}_{ \pm}\right]=0$.
Let us know consider an eigenstate ψ_{n} of i^{2}.
We easily see that

$$
\hat{L}^{2}\left(L_{ \pm} 4\right)=L_{ \pm}\left(\hat{L}^{2} 4\right)=L_{ \pm} \lambda_{n} 4=\lambda_{n} L_{ \pm} 4
$$

So that $L_{ \pm} \varphi$ is also an eigenstate of L^{2}. with eigen roue λ_{n}.
We also see that

$$
\begin{aligned}
\hat{L_{z}}\left(L_{ \pm} \psi\right) & =\hat{L}_{z}\left(L_{ \pm} \psi\right)+L_{ \pm} L_{z} \psi-L_{ \pm} L_{z} \psi \\
& =\left[\hat{L}_{z}, \hat{L}_{ \pm}\right] \psi+\hat{L}_{ \pm} \hat{L}_{z} \psi
\end{aligned}
$$

$$
\begin{aligned}
& = \pm \hbar \hat{L}_{ \pm} \psi+L_{ \pm} \underbrace{L_{z} \Psi}_{=\mu_{n} \psi} \\
& =\left(\mu_{n} \pm \hbar\right) \hat{L}_{ \pm} \psi
\end{aligned}
$$

$\Rightarrow L_{ \pm} 4$ is an eigenvector of \hat{l}_{z} with eigenvalue $\mu_{n} \pm \hbar$
$\Rightarrow L \pm$ lowers (- / / raises ((1) the eigenvalue by \hbar
Based on physical argenments, the z-compment of the angular momentum cannot become arbitrarily laige (positive or negetive); it cancot exceed the total angular momentum. Thus, at some point, we must reach the largest Value of the angular momentunn, such that

$$
\hat{L}_{t} \psi_{\max }=0
$$

We wite the corresponding eigenvalue as

$$
\hat{L_{z}} \psi_{\max }=\hbar \ell \psi_{\max }
$$

where l is known as the lizimhthal quantum number.
We recall that $\hat{L}^{2} \psi_{\text {max }}=\lambda_{n} \psi_{\max }$

We also have that

$$
\begin{aligned}
\hat{L}_{ \pm} \hat{L}_{\mp} & =\left(\hat{L}_{x} \pm i \hat{L}_{y}\right)\left(\hat{L}_{x} \mp i \hat{L}_{y}\right) \\
& =\hat{L}_{x}^{2}+\hat{L}_{y}^{2} \mp i\left(\hat{L}_{x} \hat{L}_{y}-\hat{L}_{y} \hat{L}_{x}\right) \\
& =\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2}-\hat{L}_{z}^{2} \mp i\left(i \hbar \hat{L}_{z}\right) \\
& =\hat{L}^{2}-\hat{L}_{z}^{2} \mp i\left(i \hbar \hat{E}_{z}\right) \\
\Rightarrow \hat{L}^{2} & =\hat{L}_{ \pm} \hat{L}_{\mp}+\hat{L}_{z}^{2} \mp \hbar \hat{L}_{z}
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
\hat{L}^{2} \psi_{\max } & =\left(\hat{L}_{-} \hat{L}_{+}+\hat{L}_{z}^{2}+\hbar \hat{L}_{z}\right) \psi_{\max } \\
& =\left(0+\hbar^{2} l^{2}+\hbar^{2} l\right) \psi_{\max } \\
& =\underbrace{\hbar^{2} l(l+1) \psi_{\max }}_{\lambda_{n}} \\
\Rightarrow \lambda_{n} & =\hbar^{2} l(l+1)
\end{aligned}
$$

For the lowest eigenvalue, we similarly have

$$
\hat{L_{-}} \psi_{\text {min }}=0, \hat{L}_{z} \psi_{\text {min }}=\hbar \tilde{l} \psi_{\text {min }}
$$

and $\hat{L}^{2} 4_{\text {min }}=\lambda_{n} 4_{\text {min }}$

In this case, we use that

$$
\begin{aligned}
\hat{L}^{2} 4_{\text {min }} & =\left(\hat{L}_{+} \hat{L}_{-}+\tilde{L}_{z}^{2}-\hbar \hat{L}_{z}\right) \psi_{\text {min }} \\
& =\left(0+(\hbar \tilde{l})^{2}-\hbar \hbar \hat{l}\right) \psi_{\text {min }} \\
& =\hbar^{2} \hat{\ell}(\tilde{l}-1) \psi_{\text {min }} \Rightarrow \lambda_{n}=\hbar^{2} \hat{l}(\tilde{l}-1)
\end{aligned}
$$

We can how conclucle that

$$
\begin{aligned}
& \lambda_{n}=\hbar^{2} l(l+1)=\hbar^{2} \tilde{l}(l-1) \\
\Rightarrow & \tilde{l}=l+1 \text { or } \tilde{l}=-l \Rightarrow \tilde{l}=-l \text { sicice } \tilde{l} r l
\end{aligned}
$$

Thus, the eigenvalues of \hat{l}_{z} are $m \hbar$, where m goes from $-l$ to $+l$ in N integer steps, ie.
$l=-l+N \Rightarrow l=\frac{N}{2}$, which must be an integer bar a half-integer. Hence, we find that the eigenvalues are

$$
L^{12} 4_{m, l}=\hbar^{2} l(l+1) \psi_{m, l}, \hat{L}_{2} \psi_{m, l}=\hbar m \psi_{m, l}
$$

where $l=0,1 / 2,1,3 / 2, \ldots \& m=-l,-l+1, \ldots, l-1, l$
For a given value of l, there are $2 l+1$ values of m.
The eigenfunction $4 m_{\text {ge }}$ are the spherical harmonics $Y_{\ell, m}(\xi, \varphi)$, see Zettiti, sec 5.7.

We shale now argue that l must be an integer for orbital angel ar momentary.
(More generally, it can abs be a halt-integer!)

To see that m and l must be integers for orbital angular momentum, we consider $\operatorname{again} \hat{L}_{z}=\hat{x} \hat{p}_{y T} \hat{y} \hat{p}_{x}$ with $\left[\hat{x}_{1}, \hat{p}_{x}\right]=\left[\hat{\eta}, \hat{p}_{y}\right]=i \hbar$.

We now define the eperators

$$
\begin{aligned}
& \hat{q}_{1}=\frac{1}{\sqrt{2}}\left(\hat{x}+\hat{p}_{y} / \hbar\right) \\
& \hat{q}_{2}=\frac{1}{\sqrt{2}}\left(\hat{x}-\hat{p}_{y} / \hbar\right) \\
& \hat{p}_{1}=\frac{1}{\sqrt{2}}\left(p_{x} / \hbar-y\right) \\
& \hat{p}_{2}=\frac{1}{\sqrt{2}}\left(p_{x} / \hbar+y\right)
\end{aligned}
$$

with the commentors $\left[\hat{q}_{1}, \hat{q}_{2}\right]=\left[\hat{p}_{11} \hat{\tilde{R}}_{2}\right]=0$,

$$
\left[\hat{q_{1}}, \hat{p}_{2}\right]=\left[\hat{q_{2}}, \hat{p}_{1}\right]=0 \text {, and }\left[\hat{q}_{1}, \hat{p}_{1}\right]=\left[\hat{q_{2}}, \hat{p_{2}}\right]=i
$$

We then have

$$
\begin{aligned}
\hat{x} & =\frac{1}{\sqrt{2}}\left(\hat{q}_{1}+\hat{q}_{2}\right) ; \quad \frac{\hat{p_{x}}}{\hbar}=\frac{1}{\sqrt{2}}\left(\hat{q}_{1}-\hat{q}_{2}\right) \\
\hat{y} & =\frac{1}{\sqrt{2}}\left(\hat{p}_{2}-\hat{p}_{1}\right) ; \quad \hat{p_{x}} \\
\hbar & =\frac{1}{\sqrt{2}}\left(\hat{p}_{2}+\hat{p}_{1}\right) \\
\text { and } \hat{p_{z}} & =\frac{1}{2}\left(\hat{q}_{1}+\hat{q}_{2}\right)\left(\hat{q}_{1}-\hat{q}_{2}\right) \frac{1}{2}\left(\hat{p}_{2}-\hat{p}_{1}\right)\left(\hat{p}_{2}+\hat{p}_{1}\right) \\
\hbar & =\frac{1}{2}\left(\hat{q}_{1}^{2}+\hat{p}_{1}^{2}\right)-\frac{1}{2}\left(\hat{q}_{2}^{2}+\hat{p}_{2}^{2}\right)
\end{aligned}
$$

These are two harmonic oscillates with $M=1$ and $w_{0} \rightarrow 1$

$$
\Rightarrow \frac{E_{z}}{\hbar}=\left(n_{1}+\frac{1}{2}\right)-\left(n_{2}+\frac{1}{2}\right)=h_{1}-n_{2}=\text { integer! }
$$

The Stern-Gerlach experiment and spin

screen
In 1922, Stern and Gerlach observed that a beam of silver atoms were split into two When passing through a non-uniform magnetic field. The atoms were in the grounditate with vanishing orbital angular momentum, so no splitting was expected. (A non-uniform mogurtic field will exhibit a force on a magnetic dipole; $E=\underline{\nabla}(\mu \cdot \underline{B})$)
In the case of silver, only the outermost electron is unpaired, and it is the angular momentum of this election that callses the beam to split into two. This observation led Gondsmit and Uhlenbeck to postulate that the election has an additional intrinsic angular momentum called spin

The magnetic divide moment of the spin is

$$
\bar{\mu}_{s}=-g_{s} \frac{e}{2 m_{e} c} \bar{s}
$$

where $g_{s} \simeq 2$ is called the Lander factor, and

$$
\bar{S}=\left(\begin{array}{l}
\hat{S}_{x} \\
\hat{S}_{y} \\
\hat{s}_{z}
\end{array}\right)=\frac{\hbar}{2}\left(\begin{array}{c}
\hat{\sigma}_{x} \\
\hat{\sigma}_{y} \\
\hat{\sigma}_{z}
\end{array}\right)
$$

in terms of the Pauli matrices $\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{t}$.
Notice how the spin operators fulfill the algebra of angular momentum, namely

$$
\begin{aligned}
& {\left[\hat{S}_{x}, \hat{S}_{y}\right]=i \hbar \hat{S}_{z}} \\
& {\left[\hat{S}_{y}, \hat{S}_{z}\right]=i \hbar \hat{S}_{x}} \\
& {\left[\hat{S}_{2}, \hat{S}_{x}\right]=i \hbar \hat{S}_{y}}
\end{aligned}
$$

Moreover, bosons (e, g. photons, phonous, magrass) have liker $5 p i n, s=0,1,2, \ldots$, while fenicions (a.8. electrons, protons, neutrons) have halt-integer spin, $s=1 / 2,3 / 2,5 / 2, \ldots$, in particular $s=1 / 2$ for electrons.

