Fritz Haber Institute

ab initio materials simulations:
FHI-aims

09
0:°%° 0

e _0 @
19200

FHI-alhnS

The ab initio materials
simulation package

All-Electron Electronic Structure Theory
with Numeric Atom-Centered Basis Functions

A Users’ Guide

FHI-aims team
with many contributors around the world.
August 12, 2022

Contents

How to use this manual
Introduction

1 Getting started with FHI-aims

1.1 First step: Installation
1.2 Prerequisites (libraries and software) you'll need
1.3 Managing the build process with CMake

1.3.1 Example CMakeusage
1.4 CMakevariables

1.4.1 MPI parallelization
1.5 Running FHI-aimso
1.6 Compiling faster versions of FHI-aims on specific platforms

1.7 Finding the other FHI-aims developers and users (talk tous!)

2 Input Files: Basic Handling

2.1 The mandatory input files: control.in and geometry.in

2.2 Defaults for chemical elements: species_defaults

2.3 A very quick guide to ensuring numerical convergence with FHI-aims
23.1 Basisset
2.3.2 Hartree potential oo
2.3.3 Integration grido

2.4 Why does my calculation take too long?

2.5 Stopping a run: Files abort_scf and abort_opt

3 The Full Monty: All Keywords and Capabilities

12
12
14
15
15
17
18
19
22
22

24
25
28

32
34
35
38
41

42

Contents 3
3.1 Usability (convenience) 43
3.2 Physical model: Geometry, charge, spin, etc. 47
3.3 Electronic structure: Exchange, correlation (incl. DFT+U), and excited

states L L 53
3.4 Specifying the basis (functions, empty sites, k-points, ...) 68
3.5 Integration, grids, and partitioning 84
3.6 Electron density updateo 95
3.7 Electrostatic (Hartree) potential 97
3.7.1 Non-periodic Ewald method 98
3.8 Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity . . 109
3.9 Eigenvalue solver and (fractional) occupation numbers 116
3.10 SCF Cycle: Initialization, density mixing, preconditioning, convergence . . 132
3.10.1 Visualizing the convergence of the s.c.f. cycle. 133
3.11 Energy derivatives (forces, stress) and geometry optimization 157
3.12 Molecular dynamicso 174
3.12.1 Path integral molecular dynamics and advanced types of dynamics 183
3.12.2 Running FHI-aims with i-Pl over TCP/IP Sockets 184
3.13 Thermodynamic Integration 186
3.14 Electronic constraints 190
3.15 Embedding in external fields oL 198
3.16 QM/MM Embedding 202
3.17 Continuum Solvation Methods 206
3.17.1 MPE Implicit Solvent Model 206
3.17.2 SMPB Implicit Electrolyte Model 219
3.18 Hubbard corrected DFT (DFT4+U) 225
3.18.1 DFT+U correction as it is implemented in FHl-aims 226
3.19 Cs/ RS corrections for long-range van der Waals interactions 232
3.20 Many-Body Dispersion (MBD) method 236
3.21 Calculating nonlocal correlation energy within density functional approach 239
3.21.1 Monte Carlo integration based vdW-DF 239
3.21.2 Analytic integration scheme for non-selfconsistent and self-consistent
vdW-DFo 244
3.22 Hartree-Fock, hybrid functionals, GW, et al.: All the details 246

Contents

3.23 Hartree-Fock and hybrid functionals, including periodic systems 267
3.24 Periodic GW in FHl-aims 272
3.25 TDDFT - linear response i 275
3.26 Real-Time TDDFT 279
3.27 Bethe-Salpeter equation: BSE 295

3.28 DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 297
3.29 Calculating polarization of solids with FHI-aims 318
3.30 Molecular Dynamics with Electronic Friction 323
3.31 Linear macroscopic dielectric function and Kubo-Greenwood transport . . 331
3.32 Electronic Transport 338
333 ESP charges 342
3.34 Magnetic Response 350
3.35 Large-scale, massively parallel: Memory use, sparsity, communication, etc. 362
3.36 Fragment molecular orbital DFT calculations 370
3.37 Symmetry ... 379
3.38 Qutput options 385
3.39 Deprecated keywords 426
Running FHI-aims: Guides to specific tasks 433
4.1 Ground state DFT: Total energies and relaxation 434
4.2 Heavy elements (Z 230): Modifications for scalar relativity 440
4.3 k-point sampling in the Brillouin zone for semiconductors 442
4.4 Plotting the band structure and density of statesof asolid 446
4.5 Visualizing charge densities and orbitals 449
4.6 Computation of vibrational and phonon properties 452
4.6.1 Perl script: aims.vibrations.*.pl (non-periodic systems) 452

4.6.2 Python script: get_vibrations.py (non-periodic and periodic (I'-
pointonly) systems) 457

4.6.3 Vibrations and Polarizability by DFPT within FHI-aims (non-
periodic systems) 460
4.6.4 Phonons via FHI-vibes and Phonopy (periodic systems) 461
4.6.5 Phonons by DFPT within FHI-aims (periodic systems) 462
4.7 Restarting FHIl-aims calculations 464

Contents 5

4.7.1 General restart procedure 464
4.7.2 Mixing variants - the "force_single_restartfile" option 465

4.7.3 Comments on the 'restart’ starting point and on self-consistency . 465

4.7.4 Rotating the FHI-aims wavefunction 465

4.8 Finding Transition States: the aimsChain, 470
4.8.1 Installation 470
482 A Quick Start 471
4.8.3 Configuration 473
4.8.4 Preparation before running 483
4.8.5 Runningthescript L. 487
4.8.6 Tips & Guides On Running 489

4.9 Plugin for free-energy calculations with molecular dynamics: PLUMED . . 491
491 Usage 491

4.10 Script based parallel tempering (a.k.a. replica exchange) 493
4.10.1 Usage 493
4102 Output 495

4.11 Formation energies of charged defects 497
5 The AITRANSS package 499
5.1 Source code and supporting materials L. 500
5.2 Compiling the ATITRANSS module 500
5.3 How to set-up and run transport calculations 501
5.3.1 FHIl-aims run: input and output 501
5.3.2 What to be aware of before running AITRANSS module 501
5.3.3 How to create a mandatory file tcontrol 503
5.3.4 How to submit a transport calculation and its output 505
5.3.5 Further option: local density of states 506

5.4 Keywords of file tcontrol 506
A Trouble-shooting 513
A.1 Format flags required by some compilers 513
A.2 FHI-aims aborts with a segfault at the beginning of the first test run. . . 514

A.3 Use of FHI-aims with multithreaded BLAS (e.g., Intel's MKL) 515

Contents

A.4 Parallel runs across different file systems

A5 I'm running a calculation for a large system, and it exits abrutply. What's

A6 What do | do if | run out of memory?

A.7 Nearly singular basis sets: Strange results from small-unit-cell periodic
calculation with many k-points

A.8 No convergence of the s.c.f. cycle even after many iterations.

Structure of the code

B.1 Flow of the program
B.2 Commenting and style requests L.
Debug Manager

XML output

Optional Libraries to be Linked into FHI-aims

E.1 Adding Optional Libraries into FHI-aims: Stubs
E2 Spglib
E.3 Libxc

E.4 cffi — Python 2/3 interface to FHl-aims
Multiple Instances of FHI-aims

GPU Acceleration of FHI-aims

G.1 Introduction
G.1.1 Overview of GPU Acceleration Philosophy in FHl-aims
G.1.2 Current State of GPU Acceleration in FHl-aims

G.2 Prerequisites

G.3 nstallation
G.3.1 Example initial_cache.cmake file for GPU Acceleration

G.4 Running FHI-aims with GPU Acceleration
G.4.1 Memory Usage with GPU Acceleration

More on CMake
H.1 The build process

521
521
925

526

527

528
228
529
230
530

536

537
237
537
238
540
540

. 540

041
543

544

Contents 7
H.2 All CMake variables 546
H.3 CMake for developers 550

| Building FHI-aims with a make.sys 553
[.1 A more measured approach to building FHl-aims 556

[.1.1 Cross-Compiling with a C Compiler 557

[.2 Compilation options beyond the standard Makefile 557
Bibliography 575
Index 575

How to use this manual

If you are reading this introduction, you are likely reading the manual for the first time.
In that case, please read on. There is, however, a strategy to use this manual most
effectively to find keywords used in the input files to FHI-aims. This is it:

« Open the manual (pdf)

» Go to the table of contents

o At the bottom of the table of contents, click on “Index”
o Find the keyword you are looking for in the index

o Click on it.

Using the manual in this way may greatly reduce the barrier to looking up what a keyword
actually does.

To first build FHI-aims, please also read this manual. You cannot simply type 'make’.
Chapter 1, particularly sections 1.1-1.3, are what you need to read.

And now, for the actual ...

Introduction

FHI-aims (“Fritz Haber Institute ab initio molecular simulations") is a computer program
package for computational materials science based only on quantum-mechanical first
principles. The main production method is density functional theory (DFT) [106, 125, 56]
to compute the total energy and derived quantities of molecular or solid condensed
matter in its electronic ground state. In addition, FHI-aims allows to describe electronic
single-quasiparticle excitations in molecules using different self-energy formalisms (e.g.,
GW and MP2), and wave-function based molecular total energy calculation based on
Hartree-Fock and many-body perturbation theory (e.g., MP2, RPA, SOSEX, or the more
encompassing renormalized second-order perturbation theory, RPT2).

The basic physical algorithms in FHI-aims concerning ground state DFT and applications
are described in

Volker Blum, Ralf Gehrke, Felix Hanke, Paula Havu, Ville Havu, Xinguo Ren,
Karsten Reuter, and Matthias Scheffler, Computer Physics Communications
180, 2175-2196 (2009).

A copy of this paper can also be obtained from our web site:
http://www.fhi-berlin.mpg.de/aims/ .
Please cite this reference if you use FHI-aims.

However, FHI-aims is not just a product of this basic reference. Many more developments
make this code a reality. For each individual FHI-aims run, a list of references describing
the specific methods used is given at the end of the FHI-aims standard output. Please
give credit in your publications if you can. FHI-aims is a scientific code, written by and
for scientists. The primary recognition for their work is credit in the form of appropriate
reference to their work.

Some particularly important papers (also worth reading!) follow below. When making
use of / reference to scalability, please refer to and cite

Ville Havu, Volker Blum, Paula Havu, and Matthias Scheffler, Journal of
Computational Physics 228, 8367-8379 (2009).

and also to the large-scale eigenvalue solver ELPA:

A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler, A. Hei-
necke, H.-J. Bungartz, and H. Lederer, The Journal of Physics: Condensed
Matter 26, 213201 (2014).

http://www.fhi-berlin.mpg.de/aims/

10 Contents

Any application making use of functionality beyond LDA, GGA, or mGGA —i.e., Hartree-
Fock, hybrid functionals, MP2, RPA, GW, etc. — should please refer to and cite

Xinguo Ren, Patrick Rinke, Volker Blum, Jirgen Wieferink, Alex
Tkatchenko, Andrea Sanfilippo, Karsten Reuter, and Matthias Scheffler,
New Journal of Physics 14, 053020 (2012).

Further methodological publications for specific methods in FHI-aims can also be found
at

https://aimsclub.fhi-berlin.mpg.de/aims_publications.php

Finally, we're quite proud that FHI-aims performed extremely well in the precision
benchmark of 15 leading electronic structure codes known as the “Delta Project”,
https://molmod.ugent.be/deltacodesdft — see Reference [143] in Science Magazine for
details. Numerical reliability — high precision — in everyday applications, applicable up
to very large production problems — continues to be a top priority and is, in fact, one of
the key reasons why FHI-aims was written in the first place.

In the present documentation, we do not repeat the basic physical algorithms; rather,
the focus is on the actual use of the methods in FHI-aims for a given task, including a
full description of all input and output possibilities.

The rest of this document is organized as follows:

o In Chapter 1, a “quickstart” description attempts to give you all the necessary
(but not more) information to get FHI-aims up and running on your own computer
system, up to the first test run.

o Chapter 2 explains the basic input files and input philosophy very briefly. Some
important remarks on choosing the numerical accuracy are summarized here.

o Chapter 3 gets into the gory details, summarizing all available input keywords and
their meaning, sorted roughly by their expected use.

o A large chapter 4 is dedicated to some frequently required “meta-tasks” of elec-
tronic structure theory: Not just setting up a specific set of input files for a given
run, but actually extracting some of the frequently required information from those
runs. For the more complex tasks (e.g., a transition state search), we attempt to
provide scripts that perform a series of well-defined runs automatically, the use of
an external visualization tool, etc.

e In chapter 5 we provide a description of the AITRANSS (ab initio transport simu-
lations) package which is a project under continuous development at the Institute
of Nanotechnology of the Karlsruhe Institute of Technology (KIT), Germany, since
2002. When combined with FHI-aims, AITRANSS provides a post-processor mod-
ule that enables calculation of the electron transport characteristics of molecular
junctions based on a Landauer formalism in a Green's function formulation.

e In the appendices, we suggest further reading, more on building the code from
source, and we also address some issues (“troubleshooting™) that are either beyond

https://aimsclub.fhi-berlin.mpg.de/aims_publications.php

Contents 11

our control (operating-system related issues come to mind), or simply require some
level of experience to address.

Electronic structure theory (and FHI-aims) is extremely versatile but many of the most
interesting applications require complex workflows. We cannot possibly document them
all on our own. Please consider sending us hands-on descriptions of any complex work-
flows that worked for you, and we would gladly include them in this manual (obviously,
we'll happily include references to your work).

In any case, we hope that this manual will be helpful for your specific purposes. We
welcome feedback, in particular regarding issues from production settings that we might
not yet have thought of / experienced ourselves. In any event: Happy computing with
FHI-aims!

12

Chapter 1

Getting started with FHI-aims

1.1 First step: Installation

FHI-aims comes as a gzipped tar archive that can be extracted in any directory of your
choice, e.g., by typing

gzip -d fhi-aims.tar.gz
tar -xvf fhi-aims.tar

at the command line of any current Unix-like system.

Note: You cannot simply type 'make’. To find out what to do for a successful build, please
look at sections 1.3-1.4, which will tell you what to do. There are a few performance
related decisions that we cannot make for you on an unknown computer system, and
the description below will hopefully help you make those decisions.

Before you ask: FHI-aims is designed to run on any current Unix-based or
Unix-like system, such as Linux or Mac OS X. However, we do not support
FHI-aims on Windows at this point. It is certainly possible to make it run
on a Windows platform using the appropriate tools, but not simply out-of-
the-box.

The full package then extracts itself into a directory . /fhi-aims, with the following sub-
directories:

e bin/ : Location for any FHI-aims binaries built using the standard Makefile
e doc/ : Contains possible further documentation.

o species_defaults/ : Grids, basis sets and other defaults for chemical elements 1-
102. These can be copy-pasted as “species” into the FHI-aims input file control. in.
FHI-aims provides three levels of standard species defaults: “light”, “tight”, and
“really_tight" (see Sec. 2.2). In addition, some further preconstructed special-
purpose species defaults are provided in a “non-standard” subdirectory.

1.1. First step: Installation 13

o src/ : This directory, and its subdirectories, contain all of FHI-aims source code
files.

o testcases/ : Simple examples to test and illustrate the basic functioning of the
code. The input files provided here may also be used as templates for any new
electronic structure calculations, rather than assembling them from scratch.

o utilities/ : Some simple scripts to extract basic information from the standard
output of FHI-aims: Visualization of geometries using the .xyz format, extracting
a series of geometries during relaxation as a movie, or extracting the development
of energies and forces during relaxation. There is also some more sophisticated
infrastructure here: Script-based ab initio replica exchange molecular dynamics
(Luca Ghiringhelli) and a basin-hopping framework to predict the structure of
small clusters from scratch (Ralf Gehrke).

o regression_tests/ : This directory contains a set of small standard test cases that
can be run automatically using a script, regressiontools.py — when run without
any flags, it will provide its own self-documentation. Unfortunately, running this
script on a given platform and queueing system is not always trivial. If you can
figure this out, we do recommend running and checking the regression tests on
any new machine on which FHI-aims was installed. We have encountered rare
but non-zero instances of compiler options (outside the control of FHI-aims) that
produce correct numbers almost always — except for specific methods where the
compiler has a bug. The regression tests will catch such issues before they strike
in a production run. They will allow to check the compiled FHI-aims binary a
little more extensively, but they are not strictly necessary to run FHI-aims. In
particular, please do not view the input files of the regression tests as FHI-aims
best practices. Follow the manual, not simply the regression tests. In many cases,
they are not. Rather, what is tested may be a corner case that can be handled
differently (better) in normal practical scenarios.

o benchmarks/ : This directory contains specific example runs of calculations, in-
cluding output files and specific timings, illustrating how FHI-aims should perform
and scale on a current high-performance computer. They also include some es-
sential practices to get high performance and memory efficiency in FHI-aims for
large runs on very large computers. We highly recommend trying to run these
benchmarks after successfully building FHI-aims on a parallel machine with suf-
ficiently many CPUs. These benchmarks will give you an indication of whether
you are achieving the expected performance of the code. This depends not only
on building FHI-aims correctly, but also on the correct setup of the computing
environment itself (not trivial). Running actual benchmarks is the best way to find
out.

A READUME file in that directory contains some of the quickstart information given here
in condensed format.

14 Chapter 1. Getting started with FHI-aims

1.2 Prerequisites (libraries and software) you’ll need

Since FHI-aims is distributed in source code form, the first task is to compile an exe-
cutable program. For this, the following mandatory prerequisites are needed:

A working Fortran 2003 (or later) compiler. A good example for x86 type com-
puters is Intel's ifort compiler. A free but significantly slower compiler for all
platforms is gf ortran from the GNU compiler collection (http://gcc.gnu.org/
fortran) or the g95 compiler (http://www.g95.0rg). Do not underestimate
this slowdown, though — a factor of three or so is possible.

o A compiled version of the lapack library, and a library providing optimized basic
linear algebra subroutines (BLAS). Standard commercial libraries such as Intel's
mkl or IBM's essl provide both lapack and BLAS support. lapack can also be
found at http://www.netlib.org/lapack/.

Having an optimized BLAS library for YOUR specific computer system(s) is critical
for the performance of FHI-aims. Very good free implementations include ATLAS
(http://math-atlas.sourceforge.net/).

You should also have a version of GNU Make and CMake for compiling FHI-aims. If
CMake is not present, it is also possible to work with just GNU Make, but it is worth the
effort to obtain CMake. Typically, GNU Make will already be present on your system,
either as make, or possibly as gmake. CMake should be available in the official repository
of your Linux distribution.

The next two prerequisites are optional, but absolutely essential for any current use of
FHI-aims: Support for parallel architectures, and (separately) support for fully parallel
linear algebra. Thus, you will also need:

o A version of MPI libraries for parallel execution, often already present on a par-
allel system (if not, http://www.open-mpi.org/ provides one of several free
implementations). Our experience is that Intel's MPI library is a very worthwhile
investment on x86 platforms (better performance).

o Compiled versions of the scalapack library, and basic linear algebra communi-
cation subroutines (BLACS). Capable implementations can be found at http:
//www.netlib.org/, but are often provided already in the numerical libraries of
many vendors (e.g., Intel MKL on Linux).

Finally, the default compilation builds an executable which includes some parts of the
code that are written in C. This may be turned off (see below), but we highly recommend
compiling with C support as it introduces a number of useful features. You need:

e A C compiler — available on every Unix platform.

The creation of a complete, MPI-, scalapack-, and C-enabled binary is effort
well spent. This should be the goal when compiling FHI-aims for any produc-
tion purposes. This means that you should ultimately aim to build FHI-aims
with the USE_MPI and USE_SCALAPACK CMake options enabled (see below).

http://gcc.gnu.org/fortran
http://gcc.gnu.org/fortran
http://www.g95.org
http://www.netlib.org/lapack/
http://math-atlas.sourceforge.net/
http://www.open-mpi.org/
http://www.netlib.org/
http://www.netlib.org/

1.3. Managing the build process with CMake 15

To create an actually working FHI-aims build, please read sections 1.3, 1.4 and (for much
more information) perhaps appendix H. Please also ask and consider helping out others
by sharing settings that work on a given platform. This can be done via the FHI-aims
slack channel, via the “aimsclub”, via the FHI-aims gitlab server — please see Section
1.7 below for ways to reach us.

1.3 Managing the build process with CMake

Building of FHI-aims is managed by CMake, which is a free and open-source build
system generator. A build system generator is a tool that does not build anything by
itself. Instead, it generates build scripts for a particular build system, e.g., Make, which
are then used for the actual building. The build scripts, e.g., makefiles, are generated
based on the user’'s environment and it is the job of CMake to ensure that the generation
stage is as straightforward and failsafe as possible. In principle, CMake is completely
platform agnostic (the C stands for cross-platform). The focus of the present is on
supporting FHI-aims in a Linux or Unix environment.

CMake was released in 2000 and is currently used in a large number of projects (including
some big ones like HDF5, KDE, mySQL, and Netflix). One of the motivators for FHI-
aims was a push from the ESL (Electronic Structure Library) project to adopt CMake
as the build management standard. ESL is a collection of electronic structure codes
with the aim of avoiding duplication of functionality by connecting different electronic
structure codes with each other with minimal effort. That is one of the reasons to use
CMake as it makes it relatively easy to include other CMake projects into a given project.

1.3.1 Example CMake usage
Here is a typical example to get started with CMake.

1. Go to the root directory of FHI-aims (the top-level directory of the FHI-aims git
repository or the distributed version of FHI-aims - i.e., one level above src/) and
create a build directory:

mkdir build && cd build

2. Create a file called initial cache.cmake in the build directory or make a copy
of initial cache.example.cmake which is in the root directory. The following
is example contents for that file,

HIHHEE S

Fortran Flags

HIHHEHE

set (CMAKE_Fortran_COMPILER "mpif90" CACHE STRING "" FORCE)

set (CMAKE_Fortran_FLAGS "-03 -ip -fp-model precise" CACHE STRING ""FORCE)
set (Fortran_MIN_FLAGS "-00 -fp-model precise" CACHE STRING "" FORCE)

16

Chapter 1. Getting started with FHI-aims

HHHEEEEE

C Flags

HIHHH

set (CMAKE_C_COMPILER "icc" CACHE STRING "" FORCE)

set (CMAKE_C_FLAGS "-03 -ip -fp-model precise -std=gnu99" CACHE STRING "" FORCE)

HEHHSH A H AR HY

Libraries

HEHHSH S H AR SR

set (LIB_PATHS "/opt/intel/mkl/1ib/intel64" CACHE STRING "" FORCE)
set (LIBS "mkl_intel_1p64 mkl_sequential mkl_core
mkl_blacs_intelmpi_lp64 mkl_scalapack_lp64" CACHE STRING "" FORCE)

HIHHH
Optional Flags
HIHHH

Switch on/off use of mpi; default: ON

set (USE_MPI ON CACHE BOOL "" FORCE)

Switch on/off use of scalapack; default: ON
set (USE_SCALAPACK ON CACHE BOOL "" FORCE)

set (USE_HDF5 OFF CACHE BOOL "" FORCE)

which you can edit to reflect your environment. The FORCE flag at the end of
the set command tells CMake to overwrite existing entries. We recommend it as
default. If you remove it, CMake will not change entries, once they have been ini-
tialized. When using the Intel C compiler, the ~std=gnu99 flag (CMAKE_C_FLAGS
flags) is currently needed for the C sources of ELPA and i-PI (this would not be
the case with gcc, which also works fine together with Intel Fortran).

As is evident, setting the correct values for these flags requires knowledge of several
things: The Fortran and C compilers to be used, the Fortran and C compiler
optimizations (or, correspondingly, flags for parts of the code that should not be
optimized), the mathematical and MPI libraries to be used and their locations.
Note that these are few items, but their choice is important for the performance
of the code on a given computer. There are many different setups and automated
tools do not always get these choices right. In the file above, we here identify
those specific pieces where we feel that a user decision is necessary. Please ask for
assistance (FHI-aims forums or slack channel) if needed.

. Issue

cmake -C initial_cache.cmake

from the build directory to configure. In this example, the “." directory is used. In
general, the directory given in this command should point to the directory where
the "CMakelLists.txt" file provided with FHI-aims is located.

And yes — it has to be “~C" (capital C). “~c" (lowercase) will NOT work but will
produce an error message that is not, unfortunately, helpful. So, if cmake refuses

1.4. CMake variables 17

to get to work at all, double-check the exact spelling of the above line first (and

make sure that the “initial_cache.cmake” file is in place and that “.." indeed points
to the correct directory).

If you encounter any other errors during this step, we recommend correcting your
initial_ cache.cmake file, saving it, then deleting the build directory and restart-
ing from the first step.

4. lIssue
make -j [number]

to build. An executable whose name starts with aims is created in the same
directory.

The value of [number] should be the same or less than the number of physical
CPU cores available on your computer. Choosing sufficiently many cores speeds up
the build process but on shared computers with multiple users (e.g., the login node
of a cluster) it is typically nice to use only as many as you need, not necessarily
the full node.

5. Move the newly generated FHI-aims binary to a directory where your binary files
are typically collected. For example, if your FHI-aims top level directory contains
a subdirectory bin/, use:

mv aims.<version> ../bin

In that command, replace the placeholder <version> with the actual completion
of the name of the FHI-aims binary that you had just created.

For more details on how to use CMake, see Sec. H.

1.4 CMake variables

Here are some of the commonly used CMake variables.

e CMAKE Fortran_ COMPILER — Name of the Fortran compiler executable. Use a
full path if location not automatically detected.

e CMAKE Fortran_ FLAGS — Compilation flags that control the optimization level
and other features that the compiler will use.

o LIB_PATHS — List of directories to search in when linking against external libraries
(e.g., “/opt/intel/mkl/lib/intel64")

e Fortran MIN FLAGS — Compilation flags only for files that should not be opti-
mized because optimization is not needed. For example, the source file “read_control.f90"
only controls how the input file control.in is read - but some compilers spend
excessive amounts of time compiling this file if a different optimization level than
“-00" is specified.

18 Chapter 1. Getting started with FHI-aims

o LIBS — List of libraries to link against
(e.g., "mkl_blacs_intelmpi_lp64 mkl_scalapack_lp64")

e USE_MPI — Whether to use MPI parallelization when building FHI-aims. This
should always be enabled except for rare debugging purposes. (Default: automat-
ically determined by the compiler)

o USE_SCALAPACK — Whether to use Scalapack’s parallel linear algebra subroutines
and the basic linear algebra communications (BLACS) subroutines. It is recom-
mended to always use this option. In particular, large production runs are not pos-
sible without it. The Scalapack libraries themselves should be set in LIB_PATHS
and LIBS. (Default: automatically determined by LIBS)

e CMAKE C_COMPILER — C compiler.
e CMAKE C_FLAGS — C compiler flags.

e USE_LIBXC — Whether additional subroutines for exchange correlation function-
als, provided in the LibXC library, should be used. By default, this is ON, i.e. LibXC
will be compiled into the executable. It is advised to always use this. Please respect
the open-source license of this tool and cite the authors if you use it.

o USE_SPGLIB — Whether the Spglib library for symmetry handling will be used.
By deafult, this is ON, i.e. Spglib will be compiled into the executable. Please
respect the open-source license of this tool and cite the authors if you use it.

For all CMake variables, see Sec. H.2.

For a detailed step-by-step cmake tutorial, please visit: https://aims-git.rz-berlin.
mpg.de/aims/FHIaims/-/wikis/CMake20Tutorial

1.4.1 MPI parallelization
On current computers, there is never a reason to compile FHI-aims without support for
MPI in productions. Nevertheless, for testing purposes, it may sometimes be useful to

compile without MPI support. We therefore cover this possibility here, also exemplifying
how to manipulate CMake in a slightly more refined way.

In order to force MPI to be disabled, put

set (USE_MPI OFF CACHE BOOL "")

into the initial cache file. In order to force MPI to be enabled, use

set (USE_MPI ON CACHE BOOL "")

instead. If you want to enable/disable MPI support after the first configuration, issue

ccmake ~build

https://aims-git.rz-berlin.mpg.de/aims/FHIaims/-/wikis/CMake%20Tutorial
https://aims-git.rz-berlin.mpg.de/aims/FHIaims/-/wikis/CMake%20Tutorial

1.5. Running FHI-aims 19

where ~build is the build directory. Move cursor to the field USE_MPI and hit enter.
This toggles its state between ON/OFF. Hit 'c’ to configure, 'g' to generate the build
files, and rebuild the project.

1.5 Running FHI-aims

As a simple test run to establish the correct functioning of FHI-aims and also to familiarize
yourself with the basic structure of the input and output files, we suggest you change
directories to the testcases/H20-relaxation/ directory. The test run provided there
relaxes a simple HoO molecule from an initial (distorted) structure to the stable one,
and computes total energies, eigenvalues etc. along the way. Notice that the key
convergence settings (basis sets and grids) in this example are chosen to be fast. The
results (particularly the relaxed geometry) are still trustworthy, but we encourage you
already here to explore more stringent convergence settings later. In fact, always explore
the impact of critical convergence settings on the accuracy of key results in your own
project.

In the testcases/H20-relaxation/ directory, type
../../bin/aims.version < /dev/null | tee H20 test.own

at the command line. For “version”, you must insert the code version stamp that was
actually downloaded and built (for example, 171221 or whichever code version you are
building).! For faster execution, you should use the appropriate binary including the
necessary mpi command instead. On many (but not all) platforms, that command will
be mpirun, and will also require you to specify the number of processors to be used by
a flag. For 20 CPU cores, this could look like

mpirun -np 20 ../../src/aims.version < /dev/null | tee H20_test.own

The result will be an output stream on your computer screen (created by “tee”) which
is also captured in an output file H20_test.own. Any critical information regarding
computational settings, results (total energies, forces, geometries, ...), errors etc. should
be contained in this file, which we encourage you to look at (yes, it is meant to contain
human-readable and useful explanations). Any other output files are only written if
requested, and will be covered in the later sections of this text.

The standard output stream or file contains any and all output that
FHI-aims writes by default. For later use, you must save this output
stream to disk in some way, using standard Unix redirections such as
the tee command above or a simple redirect.

Apart from the first expression given above, such redirections might look like this:

mpirun ../../bin/aims.version.scalapack.mpi.x < /dev/null > H20_test.own

!The FHI-aims version stamp can be modified to whatever you wish in version_stamp.txt in
the sre/ directory.

20 Chapter 1. Getting started with FHI-aims

or even like this:
nohup mpirun ../../src/aims.version < /dev/null > H20 test.own 2>&1 &

The latter version decouples the FHI-aims run completely from your current login shell
and additionally saves any system error messages to the standard output file as well. With
the above command sequence, you may safely log out from the computer in question,
the code should keep running in the background.

Take care to monitor your running processes using the ps Unix command. For instance,
it is highly unadvisable to run ten instances of FHI-aims at once in the background
on a single CPU and expect any reasonable performance of the computer at all. The
above hints are just examples of general Unix command-line sequences. For a complete
treatment, we recommend that beginners read a separate Unix textbook, or—often
feasible—learn by doing and Google.

If successful (otherwise, consider the warnings three paragraphs below), you may wish
to compare your results to those contained in our own output from this run, which is
contained in the file H20.reference.out. You should obtain exactly the same total
energies, forces, and geometries as given in this file. Any information regarding timing
is, of course, specific to your computer environment, and not necessarily the same.

The directory testcases/H2O-relaxation/ contains two more files, control.in and
geometry.in. These are the sole two input files required by FHI-aims, and are the most
important files to learn about in the rest of this documentation. In brief, geometry.in
contains any information related directly to a system’s geometry — normally, this will
be atomic positions (in A) and perhaps lattice vectors for periodic calculations, but no
more. Any other, method-related, input information is part of control.in.

In practice, we attempt to strike a balance between the information needed by
control.in, and information set to safe defaults unless specified explicitly. For exam-
ple, you must specify the level of theory (e.g., the fact that PBE exchange-correlation
is used) and also the basis set and other numerical settings employed. While it is highly
useful to have this relevant information openly accessible, this would also create the need
to personally edit a large amount of input before ever tackling the first run. For any
information tied to the actual element (or “species”; arguably the most complex informa-
tion required), we therefore provide ready-made template files for all elements (1-102) in
the species_defaults directory. They are ready for copy-paste into control.in. These
files will still benefit from some adjustment to your personal needs (for instance, the
provided integration grids are set rather on the safe side, at the expense of more CPU
time), but should greatly simplify the task.

Two final, important warnings regarding the execution of FHI-aims that are beyond our
direct control:

o FHI-aims requires that the execution stack size available to you be large enough
for some initial internal operations. Spare us the details (ample explanation of
the meaning of the “stack” in Unix can be found elsewhere), but for reasons
unbeknownst to us, some vendors limit the default user stack size to =5 MB at
a time when the typical available system memory per processor is 2 GB or more.
If too little stack is available, your FHI-aims run will segfault shortly after the

1.5. Running FHI-aims 21

command was launched. To avoid this, always type:

ulimit -s unlimited

(when using the bash shell or similar), or

limit stacksize unlimited

(when using the tcsh or similar).

echo $SHELL

will tell you which shell you are using. ldeally, this same setting should be specified
in your .profile, .bashrc, or .cshrc login profiles. If “unlimited” is prohibited by
your computer (e.g., on MacOS), try setting a large value instead, e.g., ulimit
-s 500000.

e An important system settings for parallel execution is the environment variable

export OMP_NUM_THREADS=1

(the syntax is correct for the bash shell). When using Intel's mkl, you should
additionally set MKL._NUM_THREADS to 1 and MKL_DYNAMIC to FALSE.

e Do not try to use OpenMP with FHI-aims unless you know exactly why you are
doing this. FHI-aims is very efficiently MPIl-parallelized and large portions of the
code do not support OpenMP at all. (And they do not need to — MPI is simple
as effective or more effective on practically all platforms in our experience.)

After startup, the first messages contain information about your computer’s environment:
Code version, compiler information, host names, environment variables which turned out
to be useful and which should be set on your system (e.g. OMP_NUM_THREADS), etc. The
complete input files control.in and geometry.in are also repeated verbatim. Any
FHI-aims run should thus be completely reproducible based on the standard output
stream alone.

Should you encounter further issues, consider also the troubleshooting information doc-
umented in Appendix A.

All this said, after successfully running the test run, you should now be ready to go with
FHI-aims. The remainder of this document is about the details — available options, how
to run aims most efficiently, etc. Happy computing!

22 Chapter 1. Getting started with FHI-aims

1.6 Compiling faster versions of FHI-aims on
specific platforms

FHI-aims is intended to be a Fortran-only code, which — for most of the code — means
that building the “fastest” version of FHI-aims on a given computer architecture is “only”
a matter of finding the right Fortran compiler and compiler options for that processor.
For some architectures, specific compiler options are collected in the FHI-aims club wiki
— please check there and please add any useful information that you may find.

That said, one particular performance-critical area for large systems is the Kohn-Sham
eigenvalue solver. In FHI-aims and on parallel computers, this problem is solved by
the ELSI infrastructure and the ELPA library. ELPA, in fact, allows its users to specify
specific, platform-optimized so-called linear algebra “kernels.” By default, FHI-aims uses
a generic kernel which will compile with any Fortran compiler and will give reasonable
speed. However, if one knows which specific computer chip one is using, it is possible
to substitute this kernel with an architecture specific kernel and compile a faster version
of ELPA into FHI-aims. This is possible, for example, for the BlueGene/P, BlueGene/Q,
Intel AVX and several other Intel architectures. For standard Intel x86 chips, there is
even an “assembler” based kernel that will get fast performance regardless of the Fortran
compiler above.

Note that this choice can matter. For example, the “generic” ELPA kernel will produce
fast code for the Intel Fortran compiler, but much slower code with certain versions of
the PGI Fortran compiler (often found on Cray machines).

At this time, please ask (see below) about the most effective strategy to link against
the “best” ELSI and ELPA libraries. Ideally, this will require a user to build a separate
(standalone) instance of ELPA and of ELSI first. This can be very worthwhile.

1.7 Finding the other FHI-aims developers and
users (talk to us!)

It can be surprisingly useful (and more fun) to find others who work with FHI-aims — to
help find out who might already have solved a specific problem, how a given problem
might be solved, exchange experiences, devise new and cool functionality that could take
electronic structure theory to the next level, and so on. Some of us also simply like to
have a cup of coffee with others (see below). FHI-aims only functions as a code and
science tool because of the community around it, and we're always happy to meet new
users, developers, and generally find out how to do better science together.

At the time of writing, we have a number of active communication channels. Anyone
using or developing with FHI-aims is encouraged to frequent one or all of them:

e The forums and wiki at aimsclub, https://aimsclub.fhi-berlin.mpg.de/ .
This is a place where questions can be asked, answered, and looked up, and
anyone is welcome and encouraged to share their experiences there. Additionally,

https://aimsclub.fhi-berlin.mpg.de/

1.7. Finding the other FHI-aims developers and users (talk to us!) 23

wiki entries are also encouraged. If nothing else, the wiki is a place to let the rest
of the world know of successful build settings for FHI-aims on different platforms.

o An active slack channel (chat) at https://fhi-aims.slack.com/ . This is a
place where a number of developers and users hang out and can be easily reached
for questions in public semi-private and private conversations. Pretty effective. To
join, you'll need an invitation from one of the slack channel owners, which we'll hap-
pily provide. Just ask, for example via aimsclub or by email (volker.blum@duke.edu
is one of the owners, and there are several others as well).

o Monthly FHI-aims video meetings for anyone with an interest, usually announced
on aimsclub and on the slack channel.

e FHI-aims Users’ and Developers’ meetings, which we hold roughly every two years.

o For those who use the FHI-aims mainline (development) version — everyone with an
FHI-aims license is welcome and encouraged to ask for access to this usually very
stable version — there is a “buildbot” that shows the current status of FHI-aims'
regression tests for a variety of platforms, compilers, and other choices at any given
time. The buildbot can be accessed at http://www.theo.ch.tum.de/bbot/#/

 Finally, for those who are shy, you are also welcome to email us:
At aims-coordinators@fhi-berlin.mpg.de or (for those who are even more shy) email
Volker, the lead developer, at volker.blum@duke.edu . Email is a productive avenue
and Volker answers to the best of his abilities and available human time. However,
bear in mind that one of the above channels will also reach Volker and, in addition,
the many others who make FHI-aims happen and who might already have solved
a problem and have an answer ... although you'd never have thought anyone did.

In short — please feel welcome and encouraged to talk to us if useful. FHI-aims is about
science, and we're accessible. And if you're new to all this and someone helped you out
especially, feel free to send them a Starbucks gift card (no one has ever done that, but
hey, you could be the first :) or, even better, to cite their contribution to FHI-aims.

https://fhi-aims.slack.com/
http://www.theo.ch.tum.de/bbot/#/

24

Chapter 2

Input Files: Basic Handling

2.1. The mandatory input files: control.in and geometry.in 25

Geometry for water -- needs to be relaxed as the water molecule
described here has a 90degree bond angle and a

1 Angstrom bond distance ...

atom 0.00000000 0.00000000 0.00000000 0

atom 0.70700000 -0.70700000 0.00000000
atom -0.70700000 -0.70700000 0.00000000 H

ja s

Figure 2.1: Example input file geometry. in, provided with the simple test case (relaxation
of Ho0O) described in Sec. 1.5.

2.1 The mandatory input files: control.in and
geometry.in

As discussed in Sec. 1.5, FHI-aims requires exactly two input files—control.in and
geometry.in—Ilocated in the same directory from which the FHI-aims binary is invoked.
To start FHI-aims, no further input should be needed.!

Figures 2.1 and 2.2 show as examples the geometry.in and control.in files used
for the simple test case (relaxation of a water molecule) described in Sec. 1.5. The
philosophy of their separation is simple:

e geometry.in contains only information directly related to the atomic structure for
a given calculation. This obviously includes atomic positions, with a description of
the particulars of each element (or species) expected in control.in. In addition,
lattice vectors may be defined if a periodic calculation is required. Any other
information is only given here if it is directly tied to the atom in question, such as
an initial charge, initial spin moment, relaxation constraint etc. The order of lines
is irrelevant, except that information specific to a given atom must follow after
the line specifying that atom, and before any following atom is specified.

e control.in contains all other runtime-specific information. Typically, this file
consists of a general part, where, again, the particular order of lines is unimportant.
In addition, this file contains species subtags that are references by geometry. in.
Within the description of a given species, the order of lines is again unimportant,
but all information concerning the same species must follow the initial species tag
in one block.

In both files, the choice of units is A for length parameters, and €V for energies; derived
quantities are handled accordingly. Lines beginning with a # symbol are treated as com-
ments, and empty lines are ignored. Finally, each non-comment line has the following,
free-format structure:

keyword value <value> <value>

LA few specific keywords (e.g., a restart of an existing calculation from an earlier wave function
or density matrix) may require additional input that simply can not be included in user-edited file.
Such input files will be described with the appropriate tasks.

26 Chapter 2. Input Files: Basic Handling

g
#

Volker Blum, 2017 : Test run input file control.in for simple H20

#

g g i s s
#

Physical model

#
XC pbe
spin none
relativistic none
charge 0.
#
Relaxation
#
relax_geometry bfgs 1.e-2
#

HERSFHH AR HBRFHHAFH B R HRA SRR H RS R AR R R R R R R RS

FHI-aims code project
VB, Fritz-Haber Institut, 2009

Suggested "light" defaults for H atom (to be pasted into control.in file)
Be sure to double-check any results obtained with these settings for post-processin
e.g., with the "tight" defaults and larger basis sets.

H OH H OH H H OH H

g s s
species H
global species definitions
nucleus 1
mass 1.00794

Figure 2.2: Excerpts from the example input file control.in, provided with the simple
test case (relaxation of HoO) described in Sec. 1.5. A section of general (system-wide)
run-time settings is separate from individual sections that describe settings specific to
certain species (chemical elements).

2.1. The mandatory input files: control.in and geometry.in 27

Generally, all keywords and values are case sensitive: Do not expect FHI-aims to under-
stand an “XC" keyword if the specified syntax is “xc”.

It is the objective of the next chapter, Chapter 3, to list all legitimate keywords in
FHI-aims, and to describe their function.

28 Chapter 2. Input Files: Basic Handling

2.2 Defaults for chemical elements:
species__defaults

FHI-aims requires exactly two input files, located in the same directory where a calcula-
tion is started: control.in and geometry.in. Both files can in principle be specified
from scratch for every new calculation, using the keywords listed in Chapter 3. However,
choosing the central computational settings consistently for series of calculations greatly
enhances the accuracy of any resulting energy differences (error cancellation).

In FHI-aims, the key parameters regarding computational accuracy are actually subkey-
words of the species keyword of control.in, controlling the basis set, all integration
grids, and the accuracy of the Hartree potential. These settings should of course not be
retyped from scratch for every single calculation; on the other hand, they should remain
obvious to the user, since these are the central handles to determine the accuracy and
efficiency of a given calculation.

FHI-aims therefore provides preconstructed default definitions for the important subkey-
words associated with different species (chemical elements) from Z=1-102 (H-Md).
These can be found in the species_ defaults subdirectory of the distribution, and are built
for inclusion into a control.in file by simple copy-paste.

For all elements, FHI-aims offers three or four different levels of species_defaults:

o light : Out-of-the-box settings for fast prerelaxations, structure searches, etc.
In our own work, no obvious geometry / convergence errors resulted from these
settings, and we now recommend them for many household tasks. For “final”
results (meV-level converged energy differences between large molecular structures
etc), any results from the light level should be verified with more accurate post-
processing calculations, e.g. tight.

o intermediate : This level is presently only available for a few elements, but can
play an important role for large and expensive calculations, especially for hybrid
functionals. Intermediate settings use most of the numerical settings from tight,
but includes basis functions between light and tight. The cost of hybrid functionals
scales heavily with the number of basis functions found on a given atom. Full tight
settings, which were designed with the much cheaper semilocal functionals in mind,
can be prohibitively expensive for large structures and hybrid density functionals.
Hybrid DFT results from intermediate settings are typically completely sufficient for
production results, much cheaper, and we hope to produce intermediate defaults
for a wider range of elements in coming years.

 tight : Regarding the integration grids, Hartree potential, and basis cutoff po-
tentials, the settings specified here are rather safe, intended to provide meV-level
accurate energy differences also for large structures. In the tight settings, the basis
set level is set to tier 2 for the light elements 1-10, a modified tier 1 for the slightly
heavier Al, Si, P, S, Cl (the first spdfgd radial functions are enabled by default),
and tier 1 for all other elements. This reflects the fact that, for heavy elements,
tier 1 is sufficient for tightly converged ground state properties in DFT-LDA/GGA,

2.2. Defaults for chemical elements: species_defaults 29

but for the light elements (H-Ne), tier 2 is, e.g., required for meV-level converged
energy differences. For convergence purposes, the specification of the basis set
itself (tier 1, tier 2, etc.) may still be decreased / increased as needed. Note that
especially for hybrid functionals, tight can already be very expensive and specific
reductions of the number of radial functions may still provide essentially converged
results at a much more affordable cost (see intermediate settings).

o really_tight : Same basis sets (radial functions and cutoff radii) as in the tight
settings, but for the other numerical aspects (grids, Hartree potential), settings
that are strongly overconverged settings for most purposes. The idea is that re-
ally_tight can be used for very specific, manual convergence tests of the basis set
and other settings — if really needed.

Note that the “tight” settings are intended to provide reliably accurate results
for most DFT production purposes; and they are not cheap. The absolute total
energies for tight and DFT are in practice converged to some tens of meV/atom
for most elements. To go beyond, take the really_tight settings and increase the
basis set or other numerical aspects step by step. (Radial function by radial func-
tion may often be a good strategy to go.) We emphasize that the really_tight
settings should only ever be needed for individual, specific tests. They should not
be needed for any standard production tasks unless you have seriously too much
CPU time to spend.

Specific differences between tight and the unmodified really_tight settings: The
basis_dep_cutoff keyword is set to zero, a prerequisite to approach the con-
verged basis limit. Regarding the Hartree potential, 1 hartree is set to 8,
and the maximum number of angular grid points per radial integration shell is
increased to 590.

Note that there can still be corner cases where you may want to test some nu-
merical setting beyond really_tight. Mostly, these are custom scenarios or things
beyond standard FHI-aims calculations of DFT total energies. Examples include:
The confinement radius for surface work functions (should be checked), use of very
extended or extremely tight Gaussian-type orbital basis functions (e.g., from very
large Dunning-type basis sets — the density of the radial and angular grids should
be checked), or RPA and MP2 calculations, which can need very different and
often much larger basis sets (again, radial and angular grids should be checked).

The FHI-aims species defaults light, tight, intermdiate, tight, and really tight are
shipped in two versions in the folder species_defaults:

e defaults_2010
e defaults_2020

We recommend to use the re-worked defaults_2020. The updates of the light, tight,
and really_tight defaults compared to the defaults_2010 version are the results of a
careful analysis of the Delta-Code DFT (DCDFT) Test (71 solids). So the updates
should improve the accuracy of an element for the material class (insulator or metal)
that is present in the DCDFT Test (e.g., the Be crystal is metallic in the test, but may
be an ion for some other systems).

30 Chapter 2. Input Files: Basic Handling

These are the current updates for the version defaults_2020:

o light_spd: The former light species defaults of default_2010 for the elements 13-
17, 31-35, and 49-53. These settings are of use for simulations, where the former
defaults were sufficient and very light computational settings are needed (e.g. MD
simulations).

o light: Be(+3p), Al-Cl(+4f), K(radial_base,cut_pot), Co-Ni(+ionic 4p), Ga-Br(+4f),
Kr-Sr(radial_base,cut_pot), In-1(4-4f), Xe-Ba, Rn(radial_base,cut_pot)

e intermediate: now, complete set of elements 1-86.

e tight: Mn(4-3d function), Zn-Kr(+5g function), In-Xe(+5g function)

really_tight: Zn-Kr(+5g function), In-Xe(+5g function)

A separate group of species defaults for light elements (H-Ar) is available especially for
calculations involving explictly correlated methods (methods other than semilocal and
hybrid density functionals):

o NAO-VCC-nZ : NAO type basis sets for H-Ar by Igor Ying Zhang and coworkers
[232]. These basis sets are constructed according to Dunning's “correlation consis-
tent” recipe. Their intended application is for methods that invoke the continuum
of unoccupied orbitals explicitly, for instance MP2, RPA or GWW. Note that they
were constructed for valence-only correlation (hence “VCC", valence correlation
consistent), i.e., they work best in frozen-core correlated approaches following a full
s.c.f. cycle (core and valence) to generate the orbitals. While NAO-VCC-nZ can
be used for “normal” density functional theory (LDA, GGA, or hybrid functionals),
the normal “light”, “intermediate”, “tight” and “really_tight" species defaults are
more effective in those cases. The advantage of NAO-VCC-nZ over GTO basis
sets such as the Dunning “cc” basis sets is that with NAOs, both the behaviour
near the nucleus as well as that for the tails of orbitals far away from atoms is
much more physical. This means that we can use more efficient integration grids
than for GTO basis sets to obtain systematic convergence of the unoccupied state

space.

The NAO-J-n basis sets are designed for the calculation of indirect spin-spin coupling
constants (J-couplings):

o NAO-J-n: The basis sets are available for most light elements from H to Cl. Since
these are more expensive (tighter grids) than other basis sets, they should only be
used for J-couplings. Even then, they should only be placed on atoms of interest,
while cheaper basis sets can be used on other atoms. They are constructed by
adding tight Gaussian orbitals to the NAO-VCC-nZ basis sets. In order to describe
the Gaussian orbitals correctly near the nucleus, tighter grids than normally are
required (with radial multiplier 8 and 1 hartree 8, among other
parameters). Other stages of the calculation, such as geometry relaxation, should
be performed with basis sets more suitable for the particular task (using, e.g., the
default tight settings).

2.2. Defaults for chemical elements: species_defaults 31

In addition, the species_defaults directory contains a few more sets of species defaults
for special purposes. These can be found in the non-standard subdirectory and include:

o gaussian_tight_770 : Species defaults that allow to perform calculation with
some standard published Gaussian-type orbital (GTO) basis sets for elements H-Ar
(including basis sets due to Pople, Dunning, Ahlrichs and their coworkers). These
species defaults are meant to allow for exact benchmarks against GTO codes
such as NWChem. The other numerical settings (especially grids) are thus much
tighter than needed for “normal” NAO-type calculations. Note that FHI-aims is
not optimized for GTO basis sets. We recommend NAO-type basis sets, not GTO
basis sets, for production calculations — NAO-type basis sets are much easier to
handle with our techniques and give better accuracy at lower cost. That said — the
grid settings in the gaussian_tight_770 species defaults are rather overconverged
for benchmark purposes. One could create much more efficient species defaults
for GTO basis sets — but GTOs still would not be as efficient as NAO basis sets
(at the same level of accuracy).

o Tier2_aug?2 : Example, pioneered by Jan Kloppenburg, of basis sets that merge
FHI-aims’ tier2 basis sets with a very reduced set of Gaussian augmentation func-
tions taken from Dunning's augmented correlation-consistent basis sets. This
prescription appears to provide a remarkably accurate but affordable foundation to
compute neutral (optical) vertical molecular excitation energies by linear-response
time-dependent density functional theory, as well as (thanks to Chi (Garnett) Liu)
the Bethe-Salpeter Equation.

o light_194 : This is just an example of how to tune down the normal “light” basis
sets of FHI-aims by reducing the integration grid even further. For things like fast
molecular-dynamics type screening of many structures, this is a perfectly viable
approach. Examples are provided for H-Ne. Obviously, do test the impact of such
modifications for your own purposes.

For calculations that involve the excited state spectrum directly (this includes GW,
MP2, or RPA, among others), the numerical settings from tight still perform rather well
if a counterpoise correction is performed (i.e., for energy differences). Still, the basis
set size and/or cutoff radii must be converged and carefully verified beyond the settings
specified in tight.

To extrapolate the absolute total energy of methods which rely on the unoccupied state
continuum explicitly, e.g., RPA or MP2, we recommend using the NAO-VCC-nZ basis
sets. These basis sets are presently available for light elements (H-Ar). A popular
completeness-basis-set extrapolation scheme is two-point extrapolation:

where “n;"” and “ny" are the indicies of NAO-VCC-nZ. This 1/n? formula was originally
proposed for the correlation energy, but was also used directly for the total energy.

32 Chapter 2. Input Files: Basic Handling

2.3 A very quick guide to ensuring numerical
convergence with FHI-aims

FHI-aims is programmed and set up to allow efficient all-electron calculations for any type
of system. During the writing of FHI-aims, a key goal was to always ensure that such
efficiency does not come at the price of some irretrievable accuracy loss. Results obtained
by FHI-aims should be the answer to the physical question that you asked (provided that
the functionality is there in FHI-aims) - not some arbitrary approximation.

The species_default levels provided by FHI-aims, light, intermediate, tight, and (if ever
needed!) really_tight, should provide such reliable accuracy as they come. The NAO-
VCC-nZ basis sets provide additional functionality specifically for correlated methods
(MP2, RPA, GW, etc.) and light elements. However, in all species_default files, all
important accuracy choices are deliberately kept out in the open and available: They
can—and sometimes should!— be explicitly tested by the user to check the convergence
of a given calculation.

Such a convergence test may sometimes be geared at simply ensuring numerical conver-
gence explicitly, but equally, it is possible that some default settings are too tight for a
specific purpose, and can be relaxed in a controlled way to ensure faster calculations for
some large problem.

In the following, we explain the most important species default settings explicitly, and
comment on how to choose them. We use the light defaults for Oxygen as an example.

2.3.1 Basis set

The key physical choice to ensure converged results in FHI-aims is the list of radial
functions (and their angular momenta) that are used in FHI-aims. Beyond the minimal
basis of free-atom like radial functions, we always recommend to add at least a single
set of further radial functions that are optimized to describe a chemical bond efficiently.
These basis functions can be found as a list (line by line) at the end of each species
defaults file. For Oxygen / light, the list reads like this:

'"First tier" - improvements: -699.05 meV to -159.38 meV
hydro 2 p 1.8
hydro 3 d 7.6
hydro 3 s 6.4
"Second tier" - improvements: -49.91 meV to -5.39 meV
hydro 4 £ 11.6
hydro 3 p 6.2
hydro 3 d 5.6
hydro 5 g 17.6
hydro 1 s 0.75
"Third tier" - improvements: -2.83 meV to -0.50 meV
ionic 2 p auto
hydro 4 £ 10.8

H OH O H OH OH OH H H

2.3. A very quick guide to ensuring numerical convergence with FHI-aims 33

hydro 4 d 4.7
hydro 2 s 6.8
[...]

Obviously, only a single set of radial functions (one for each angular momentum s, p, d)
is active (not commented!) beyond the minimal basis. Since the minimal basis already
contains one additional valence s and p function, this choice is often called “double
numeric plus polarization” basis set in the literature (where d is a so-called polarization
function as it does not appear as a valence angular momentum of the free atom). We
call this level “tier 1",

In order to increase the accuracy of the basis, further radial functions may be added,
simply by uncommenting more lines in order! We recommend to normally proceed in
order of full “tiers”, not function by function, but adding specific individual functions on
their own can sometimes capture the essence of a problem at lower cost. For example,
tier 2 may be added by uncommenting:

'"First tier" - improvements: -699.05 meV to -159.38 meV
hydro 2 p 1.8
hydro 3 d 7.6
hydro 3 s 6.4
'"Second tier" - improvements: -49.91 meV to -5.39 meV
hydro 4 £ 11.6
hydro 3 p 6.2
hydro 3 d 5.6
hydro 56 g 17.6
hydro 1 s 0.75
"Third tier" - improvements: -2.83 meV to -0.50 meV
ionic 2 p auto
hydro 4 £ 10.8
hydro 4 d 4.7
hydro 2 s 6.8
[...]

H O H H H

tier 2 is the default choice of our tight settings for O, but may be very expensive for
hybrid functionals. Look to the intermediate settings for a more economical choice in
that case.

Beyond the choice of the radial functions itself, a critical parameter is the choice of
the confinement radius that all basis functions experience. Ensuring that each radial
function goes to zero in a controlled way beyond a certain, given value is critical for
numerical efficiency, but on the other hand, you do not want to reduce this confinement
radius too much in order to preserve the accuracy of your basis set.

By default, the confinement radius of each potential is specified by the following line:
cut_pot 3.5 1.5 1.0

This means (see also the CPC publication on FHI-aims, Ref. [26]) that each radial
function is constructed with a confinement potential that begins 3.5 A away from the

34 Chapter 2. Input Files: Basic Handling

nucleus, and smoothly pushes the radial function to zero over a width of 1.5 A. The full
extent of each radial function is thus 5 A.

Of course, this setting is chosen to give good total energy accuracy at the light level, but
the convergence of the confinement potential must still be tested, especially in situations
where a strong confinement may be unphysical. Such questions include:

o Accurate free atom calculations for reference purposes: choose 8 A or higher for
the onset of the confinement, or something similarly high—for a single free atom,
the CPU time will not matter, and you will get all the tails of your radial functions
right without much thinking.

o Surfaces— e.g., low electron densities above the surface for STM simulations must
not be abbreviated by the onset of the confinement potential—even if the total
energy is not affected by this confinement any more.

o Neutral alkali atoms, or any negatively charged ions. Those are tricky—the out-
ermost electon shell may decay very slowly to zero with distance, and explicit
convergence tests are required.

As the corresponding tight setting, we use:
cut_pot 4.0 2.0 1.0

Although the modification does not seem large, CPU times for periodic systems are
significantly affected by this change of the full extent of each radial function from 5 A
to 6 A. For example, in a densely packed solid, the density of basis functions per volume
increases as R3 with the full extent of each radial function, and thus the time to set
up the Hamiltonian matrix should increase as R®. Very often, the effect on the total
energy is completely negligible, but again, explicit convergence tests are always possible
to make sure.

Finally, there is the line
basis_dep_cutoff le-4

If this criterion is set above zero (10™* in our light settings), all radial functions are
individually checked, and their tails are cut off at a point where they are already near
zero.

You should note that the basis_dep_cutoff criterion usually does not matter at all,
but for very large systematic basis set convergence studies (going to tier 3, tier 4, etc,
and/or testing the cutoff potential explicitly), this value should be set to zero—as is
done in the really_tight settings, for example.

2.3.2 Hartree potential

The Hartree potential in FHI-aims is determined by a multipole decomposition of the
electron density. The critical parameter here is the order (highest angular momentum)
used in the expansion (all higher components are neglected). This value is chosen by:

2.3. A very quick guide to ensuring numerical convergence with FHI-aims 35

1 hartree 4

Energy differences with this choice are usually sub-meV converged also for large systems,
but total energy differences, vibrational frequencies at the cm™! level etc may require
more. Our tight settings,

1 hartree 6

provide sub-meV/atom converged total energies in all our tests, but you may simply
wish to test for yourself ...

2.3.3 Integration grid

FHI-aims integrates its Hamiltonian matrix elements numerically, on a grid. However,
this is an all-electron code: Performing integrations on an even-spaced grid (as is done in
many pseudopotential codes) would provide terrible integration accuracy near the nucleus
(sharply peaked, deep Coulomb potential and strongly oscillating basis functions).

Instead, we use what is a standard choice also in other codes: Each atom gets a series
of radial spheres (shells) around it, and we distribute a certain number of actual grid
points on each shell. Obviously, increasing the number of grid points (“angular” points)
on each shell will improve the integration accuracy, but at the price of a linear increase
in computational cost.

The fact that the integration spheres will overlap does not matter—we remedy this fact
automatically by choosing appropriate integration weights (partitioning of unity, see CPC

paper).

The number and basic location of radial shells is chosen by

radial_base 36 5.0
radial multiplier 1

which means that we here choose 36 grid shells, and the outermost shell is located at
5 A (this happens to be the outermost radius of each basis function, as dictated by the
confinement potential).

The radial base tag allows to increase the radial grid density systematically by
adding shells inbetween those specified in the radial_base line. For example, we choose

radial multiplier 2

in our tight species defaults (for all practical purposes, this is converged), which means
that we add one shell between the zero and the (former) first shell, one between the
first and second, etc., and finally one between the (former) outermost shell and infinity
... two times 36 plus one shells total.

For an illustration of the effect of the radial multiplier keyword on the density
of the radial grid shells, go to Ref. [232] (http://iopscience.iop.org/1367-2630/

http://iopscience.iop.org/1367-2630/15/12/123033/article
http://iopscience.iop.org/1367-2630/15/12/123033/article

36 Chapter 2. Input Files: Basic Handling

15/12/123033/article, open access) and look at Figure A.1 and the accompanying
explanation.

The distribution of actual grid points on these shells is done using so-called Lebedev
grids, which are designed to integrate all angular momenta up to a certain order [
exactly. They come with fixed numbers of grid points (50, 110, 194, etc). As a rule,
fewer grid points will be needed in the inner grid shells, and more will be needed at the
(more extended) faraway grid shells. We specify the increase the number of grid points
per radial shell in steps, by writing:

angular grids specified
division 0.2659 50
division 0.4451 110
division 0.6052 194

division 0.7543 302
division 0.8014 434
division 0.8507 590
division 0.8762 770
division 0.9023 974
division 1.2339 1202
outer_grid 974

outer_grid 194

This example pertains to the light_194 settings (and very light elements), and means
that only 50 points will be used on all grid shells inside a radius of 0.2659 A, 110 grid
points are used on all shells within 0.4451 A, 194 grid points will be used on all shells
inside 0.6052 A—and that’s it! No more division tags are uncommented, and all shells
outside 0.6052 A also get 194 grid shells, as given by the uncommented outer grid
tag.

We note that the form of the increase of the number of points per radial shell near the
nucleus, as well as the maximum number of angular grid points used outside a given
radius are critical for the numerical accuracy in FHI-aims. When suspecting numerical
noise anywhere in the calculations, the specification of the angular grid points should
be checked first. This can be done by uncommenting further division tags with larger
numbers of grid points, as well as a suitably increased outer_grid value. In particular,
the choice of only 194 grid points max. per radial shell (only for the lightest elements!)
is a rather aggressive choice, but in our experience still enables very reasonable geometry
relaxations, structure searches or molecular dynamics for most purposes. However, the
first thing to check in order to provide better convergence would be to set outer_grid
to 302 (regular light settings). If this produces a noticeable change of the quantity you
are calculating, be careful.

Of course, one can always introduce the denser grids provided in the tight settings,
which (for reference) are

angular grids specified
division 0.1817 50
division 0.3417 110

http://iopscience.iop.org/1367-2630/15/12/123033/article
http://iopscience.iop.org/1367-2630/15/12/123033/article

2.3. A very quick guide to ensuring numerical convergence with FHI-aims 37

division 0.4949 194
division 0.6251 302
division 0.8014 434
division 0.8507 590
division 0.8762 770
division 0.9023 974
division 1.2339 1202
outer_grid 974
outer_grid 434

H OH H O H R

These grids alone are roughly twice as expensive as the light_194 ones above, and should
provide reasonable accuracy for pretty much any purpose. Nonetheless, of course one
can still go and check explicitly, simply by increasing the number of grid points per shell
by hand.

38 Chapter 2. Input Files: Basic Handling

2.4 Why does my calculation take too long?

This is, indeed, an excellent question to ask. Understanding what the code spends its
time on, and why, is often the best first approach to understanding what is actually being
calculated — and thus, to learn something about the scientific problem to be solved.

Many calculations take as long as they do, simply because getting an accurate result for
many atoms can take some time.

That said, if calculations that seemed simple start taking excessive amounts of time, it
may be a very good idea to question your input settings. It may also be a very good
idea to actually read the output of the code. It tells you a lot about what the code does.
Some suggestions for different scenarios:

e Do invest the time to compile a scalapack enabled binary and actually use scala-
pack. Most architectures today are parallel, and using those efficiently is perhaps
the single biggest technical strength of FHI-aims. Never ask for the use of a la-
pack eigenvalue solver (the serial version, i.e., the eigenvalue solver that only uses
a single CPU) explicitly unless you are testing. The code sets the correct default
automatically if needed. But if you ask for the serial eigenvalue solver explic-
itly, you may find 999 of your 1000 CPU cores doing nothing. (See the keyword
KS_method . Most importantly, never set this keyword explicitly if there is no
reason to do so.)

o Look at the timing output at the end of each s.c.f. iteration — not(!) just the final
timings. These timings summarize the time spent for each of the physical steps
of your calculation, and can tell you a great deal about what is going on. Here's
an example where something went wrong:

End self-consistency iteration # 1 : max(cpu_time) wall_clock(cpul)
| Time for this iteration : 219.302 s 219.900 s
| Charge density update : 16.121 s 16.162 s
| Density mixing & preconditioning : 1.084 s 1.099 s
| Hartree multipole update : 0.088 s 0.090 s
| Hartree multipole summation : 4.440 s 4.489 s
| Integration : 0.980 s 0.986 s
| Solution of K.-S. eqns. : 196.568 s 197.023 s
| Total energy evaluation : 0.004 s 0.016 s

The key times to look for here are the wall clock times. This is the physical time spent
by the code on each task. The individual sub-timings of each task should roughly add
up to the total time, which is given first.

The “CPU time", on the other hand, is measured internally, without accounting for times
when the CPU is in fact idle. The CPU time is only given here since large deviations
between wall clock time and internally measured CPU time are a good way to indicate
an inefficient computer system setup. In case of doubt, however, wall clock time is the
relevant measure for the real cost of the calculation

2.4. Why does my calculation take too long? 39

Typically, the time for the density update should be approximately the same (within a
single-digit factor) as for the creation of the Hamiltonian integrals. (All these numerical
steps are explained in the FHI-aims CPC paper, Ref. [26].) The fact that this is not the
case indicates some kind of a problem.

However, the bulk of the time is spent in what is called “Solution of K.-S. eqns.”, which
here means the simple solution of a matrix eigenvalue problem. This is simple linear
algebra. This step scales formally as O(N?3) with system size N, while all other steps
scale roughly as O(N).

This means that the eigenvalue problem should become the dominant part of the calcu-
lation time only for rather large systems (100s or 1,000s of atoms, depending on whether
heavy or light elements are used, whether the system is non-periodic or periodic, etc.).
The fact that the eigenvalue problem takes up so much time above warrants at least a
question.

In the case shown above, a periodic calculation was conducted, with a total of 64 k-
points, i.e., a total of 64 independent eigenvalue problems to be solved. Asking for
many k-points is obviously a good reason why the solution of eigenvalue problems could
dominate.

In the case considered here, however, the number of basis functions (the matrix di-
mension) was only a few thousand.? As a rule of thumb, this should not have been a
problematic matrix size yet. (Several ten thousand basis functions or, perhaps, a few
thousand k-points are typically what is needed to make a single eigenvalue solution
become relevant, even on a large number of CPU cores.)

What happened above is that the calculation was in fact conducted in parallel on ~500
CPU cores, but erroneously enforced a serial eigenvalue solver in the control.in file.
This means that about 450 CPU cores idled while the eigenvalue problem was solved on
only a few others.

The point of this example is: It helps to check and question the timing output. Another
common problem is the fact that the calculation of forces costs far more than just the
calculation of the electron density. Thus, the FHI-aims code by default only computes
forces once the s.c.f. cycle is otherwise converged. If, however, your s.c.f. convergence
criteria are set inadequately, you might see ten s.c.f. iterations per geometry step com-
puting forces. The code has no way to foresee this, but as a user, you may be able to
check after the fact, and prevent this behavior for the future.

e Mixing factor and occupation broadening. These are again values that decid-
edly depend on the system type to be computed, which is difficult to foresee
from the perspective of the code. The default values for charge mix_param
and occupation_type are set somewhat automatically by the adjust_scf
keyword, according to whether or not the system is estimated to have a HOMO-

2Tt is truly a system-dependent question what constitutes “many” k-points. For example, a
metallic system with a single atom per unit cell should not have much trouble with, say, 243
k-points. On the other hand, a 1,000 atom supercell should probably not use more than a single-
digit number of k-points. In the specific case considered above, 64 k-points did not happen to be
a particularly large number.

40

Chapter 2. Input Files: Basic Handling

LUMO gap. However, tweaking these values is possible. For instance, for metals,
occupation_type 0.1 eV is often very reasonable.

There are (obviously) the numerical convergence parameters of the preceding sec-
tion that should be heeded. For example, “tight” settings can be much more
costly than “light” settings. Obviously, “tight” settings are needed for accurately
converged final numerical results in many cases. However, this does not mean
that, e.g., a long pre-relaxation has to be done with “tight” settings — prerelaxing
with “light” settings and switching to “tight” settings only then is usually the way
to go. Also, consider the “intermediate” settings where available, especially for
hybrid density functionals.

Exchange-correlation methods beyond LDA and GGA typically take much more
time. Here, the key bottleneck is the evaluation of the two-electron Coulomb
Operator and its manipulations later. Even then, it pays to spend time learning
about the respective settings, for instance, the ~ RI_method to be used, the
internal thresholds that go with it, or whether it is possible to reduce the number
of s.c.f. steps in some other way.

2.5. Stopping a run: Files abort_scf and abort_opt 41

2.5 Stopping a run: Files abort_scf and abort_opt

Sometimes, you may wish to stop a running FHI-aims calculation prematurely, but in an
organized way.

Of course, with any running instance of FHI-aims, there is always the option to stop a
run by invoking the Unix 'kill' command on every single running 'aims’ process, and this
will normally end the run right where it is.

To obtain a slightly more civilized stop (to allow the code to finish in a defined location
and stop after writing some more output), you may instead create one of two specific
files:

1. abort_scf

2. abort_opt

The code simply checks for the existence of either of these files periodically. No input
is needed. Thus, simply change to the directory in which the code is running, and type
(at the command line)

touch abort_scf
or
touch abort_opt

After a while, the run will stop.

The existence of abort_scf will stop the code after the current s.c.f. iteration is
finished, i.e., the solution of the Kohn-Sham equations will not be self-consistent even
for the present geometry.

The existence of abort_opt will stop the code after the current s.c.f. cycle is
converged during a geometry relaxation, i.e., the electronic structure will be converged
for the present geometry, but the forces will not be zero.

In either case, the stop of FHI-aims will not happen immediately. Depending on the
nature of the run, it may take quite some time until the 'abort’ takes effect, since the
code needs to reach the appropriate state first. If you are interested in an immediate
stop, the Unix 'kill' command is still your best bet.

One can also envision numerous refinements or alternative scenarios where an "abort’ file
could be useful. If you really need such a case, please create the appropriate check where
you need it. If it does the trick for you, we will be happy to incorporate the change into
the mainline version of FHI-aims.

42

Chapter 3

The Full Monty: All Keywords and
Capabilities

The present chapter aims to give a comprehensive overview and summary of all input
options (keywords) that are available in FHI-aims: a full listing of keywords according
to their intended use. In each of the following sections, keywords related to a given
class of tasks are grouped together, and then listed according to whether they belong
into geometry.in, the general section of control.in, or the species subsection(s) of
control.in.

FHI-aims is a computer code under active development. Aside from established, stable
and well-tested features, you may also find features that someone is still working on.
Such features are marked as “experimental”. If you are interested in using one or more
of those features, contact us, and we will try to be of assistance as much as we can.

For the truly curious: All input and output options are managed by the subroutines
read_control.f90, read_geo.f90, and read_species_data.f90. In cases of doubt,
those subroutines are the ultimate place to determine a keyword's exact invocation and
function.

3.1. Usability (convenience) 43

3.1 Usability (convenience)

This section is only intended for functionality that fits none of the other categories (which
are all scientifically / technically motivated). These files and keywords affect the general
user convenience / experience for FHI-aims.

As an exception, this section also lists any files which may be used to interact with a
running instance of FHI-aims. Currently, only two such files exist, but in principle, more
could be envisioned.

Files that interacting with the running code:

Tag: abort_scf

Usage: At the command line, use the Unix command touch abort_scf in
the current working directory of a running instance of FHI-aims to trigger a
controlled stop of the run later.

Purpose: If the file abort_scf is found in the current working directory
of FHI-aims, the present run will be aborted after the next s.c.f. iteration is
complete (but importantly without achieving self-consistency).

This functionality allows FHI-aims to stop in a controlled fashion, but not instantly. If
you are interested in an instant stop, the Unix 'kill" command (or its equivalent in the
queueing system of a production machine) is the best way to proceed. See Sec. 2.5 for
some further remarks.

Tag: abort_opt

Usage: At the command line, use the Unix command touch abort_opt in
the current working directory of a running instance of FHI-aims to trigger a
controlled stop of the run later.

Purpose: If the file abort_opt is found during a geometry relaxation in the
current working directory of FHI-aims, the present run will be aborted after the
next s.c.f. cycle is complete (i.e., afer achieving self-consistency for the present
geometry, but without fully optimizing the structure).

This functionality allows FHI-aims to stop in a controlled fashion, but not instantly. If
you are interested in an instant stop, the Unix 'kill' command (or its equivalent in the
queueing system of a production machine) is the best way to proceed. See Sec. 2.5 for
some further remarks.

Tag: control.update.in

44 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: Allowed content of this file is a fairly limited subset of what is allowed
and parsed in control.in . Details below.

Purpose: FHI-aims checks for presence of this file in the current working directory
at the end of each individual iteration of the SCF cycle. If the file is found, it
is parsed, and found settings are updated. Note that if you do not remove the
file manually, it will be parsed after each iteration. But with the current limited
functionality, this should not pose any problems.

This file allows to modify some of the parameters of a calculation during runtime of
FHI-aims. At present, this is limited to the settings of the convergence of the SCF
cycle, namely: sc_accuracy_rho, sc_accuracy_eev, sc_accuracy_etot,
sc_accuracy_potjump, sc_accuracy_forces, sc_accuracy_stress .

3.1. Usability (convenience) 45

Tags for general section of control.in:

Tag: check_cpu_consistency

Usage: check_cpu_consistency flag

Purpose: In parallel runs, determines whether the consistency of geometry-related
arrays is verified explicitly between different MPI tasks.

flag is a logical string, either .false. or .true. Default: .true.

This flag is introduced as default purely to monitor and possibly undo errors that should
not happen. Theoretically, all MPI tasks of a given FHI-aims run should have the same
atomic coordinates and lattice vectors. In practice, it appears that certain hardware
and/or compilers/libraries introduce bit flips between different instances of what is for-
mally the same variable on different CPUs.

If check_cpu_consistency is .true., the code checks for deviations.

If the discrepancy is numerically negligible (below the value set by the tolerance param-
eter cpu_consistency_threshold , the code will work based on the assumption
that the observed discrepancy is a platform-dependent artifact, will set all instances of
the geometry to that stored on MPI task myid=0, and continue the run. Nonetheless,
a warning will be printed in the output file and near the end of the output.

If the discrepancy is larger than the tolerance parameter cpu_consistency_threshold
, the code will stop and inform the user.

Tag: cpu_consistency_threshold

Usage: cpu_consistency_threshold tolerance

Purpose: In parallel runs, determines the degree to which inconsistencies of
geometry-related arrays will be tolerated between different MPI tasks.

tolerance : A small real numerical value, positive or zero. Default: 10711
See keyword check_cpu_consistency . If check_cpu_consistency is .true.,

then keyword cpu_consistency_threshold determines the maximum value to
which discrepancies of geometry-related quantities between different MPI tasks will be
tolerated (they will, however, be set to identical values even if the run continues).

Tag: check_stacksize

Usage: check_stacksize flag
Purpose: Determines whether a check of stack size is performed.

flag is a logical string, either .false. or .true. Default: .true.

By default, FHI-aims checks that unlimited allocation on stack are allowed by the oper-
ating system. This option allows to disable this check.

46 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: dry_run
Usage: dry_run

Purpose: If set in control.in, the FHI-aims run will only pass through all
preparatory work to ensure the basic consistency of all input files, but will stop
before any real work is done.

This keyword is useful to check the consistency of input files with the same exact binary
that may later be used in a series of (perhaps queued) production runs. If there are trivial
errors in the input files, no need to wait for the queue. The same effect can be achieved
by building a 'parser’ binary, but this version saves the recompilation. The price is that
one must not forget to comment out the dry_run option in the actual, queued input
files.

Subtags for species tag in control.in:

species sub-tag: cite_reference

Usage: cite_reference string

Purpose: Triggers the addition of a specific citation to the end of the FHI-aims
standard output for a given run.

string is a string that identifies the reference in question.

This feature is useful, e.g., to make sure that the literature reference for a given basis
set (encoded in the species_defaults input file) is available at the end of an FHI-aims
run.

Each citation must, however, be coded into the FHI-aims source code in module applicable_citatio:
to ensure that the requested output is actually available. Note that the practical format

for such references can vary widely — from a simple string (explanation who did the work)

all the way to the more usual case of a journal reference.

At the time of writing, species-related legitimate values of string are:

» NAQO-VCC-2013 for reference [232], describing the NAO-VCC-nZ basis sets for
valence-correlated calculations of elements H-Ar (useful for basis set extrapolation
for many-body perturbation methods, e.g., MP2, RPA, RPT2, or GW).

3.2. Physical model: Geometry, charge, spin, etc. 47

3.2 Physical model: Geometry, charge, spin, etc.

The present section summarizes all keywords in FHI-aims that are directly concerned
with the physical model of the problem to be tackled. Importantly, this includes some
specific subtags that you cannot ignore, because they define the physical question that
you are trying to address — and no one else but you can do that. The present section
thus includes such things as atomic positions or unit cells, but also the level of theory
to be used (exchange-correlation, relativistic treatment), or a potential charge of the
system.

Tags for geometry.in:

Tag: atom

Usage: atom X y z species_name
Purpose: Specifies the initial location and type of an atom.

X, y, z are real-valued numbers (in A) which specify the atomic position.
species_name is a string descriptor which specifies the chemical element (or,
more broadly, atomic species type) at this atomic position; it must match one of
the species descriptions defined in control.in.

Tag: atom_frac

Usage: atom_frac f; fo f3 species_name

Purpose: Specifies the initial location and type of an atom in fractional
coordinates.

fi is a real-valued multiplier to lattice_vector i. species_name is a string
descriptor which specifies the chemical element (or, more broadly, the atomic
species type) at this atomic position; it must match one of the species
descriptions defined in control.in.

Fractional coordinates are only meaningful in periodic calculations.

Conversion of fractional atomic positions into cartesian coordinates, Ry, is achieved by
3

R; :Zfi'aiy (3-1)
i=1

where a; is a unit cell vector specified by the lattice_vector keyword.

Tag: lattice_vector

48 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: lattice_vector xy z
Purpose: Specifies one lattice vector for periodic boundary conditions.
x, y, z are real numbers (in A) which specify the direction and length of a unit

cell vector.

If up to three lattice vectors are specified, FHI-aims automatically assumes periodic
boundary conditions in those directions. Note that the order of lattice vectors matters,
as the order of k space divisions (given in control.in) depends on it!

3.2. Physical model: Geometry, charge, spin, etc. 49

Tags for general section of control.in:

Tag: charge

Usage: charge q

Purpose: If set, specifies an overall charge in the system.

q is a real number that specifies a positive or negative total charge in the system.
For most normal systems, this definition is unambiguous (sum of all nuclear charges in
geometry.in minus number of electrons in the system). Note specifically that the same
definition continues to hold also in systems with external embedding charges (specified

by keyword multipole in geometry.in). The charges of the external embedding
charges are in addition to the charge keyword in control.in, and not included.

Tag: fixed_spin_moment
Usage: fixed spin moment value

Purpose: If set, allows to enforce a fixed overall spin moment throughout the
calculation.

value : real-valued number, specifies the difference of electrons between spin
channels, 25 = Ny, — Nyown-

Meaningful only in the spin-polarized case (spin collinear in control.in).

This keyword replaces the earlier keyword multiplicity . Note that the value that
must be given for fixed_spin_moment is 2S5, which correspondstoa multiplicity
(25 + 1) —i.e., the values are not the same. Keyword fixed spin_moment works
for periodic and cluster systems alike, and uses two different chemical potentials (Fermi
levels) for the spin channels.

Tag: species
Usage: species species_name

Purpose: Defines the name of a species (element) for possible use with atoms in
geometry.in

species_name is a string descriptor (e.g. C, N, O, Cu, Zn, Zn_tight, ...).

Every species_name used in an atom descriptor in geometry.in must correspond to
a species given in control.in. Following the species tag, all sub-tags
describing that species must follow in one block. (No particular order is enforced within
that block). For example, the choice of the basis set, the atom-centered integration grid,
or the multipole decomposition of the atom-centered Hartree potential are all specified
per species .

Tag: spin

50 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: spin type
Purpose: Specifies whether or not spin-polarization is used.

type is a string, either none or collinear, depending on whether an unpolarized
(spin-restricted) or spin-polarized (unrestricted) calculation is performed.

In the collinear case, defining the moments used to create the initial spin density
is required (see the beginning of Sec. 3.10 for an explanation). This means that
an overall default_initial moment (in control.in), or at least one individ-
ual initial moment tag in geometry.in, or both, must be set. Else, the code will
stop with a warning. (It is not necessary to specify initial moment for every atom
in geometry.in. A single one will do.) Choosing the right initial spin density can be
performance-critical, and critical for the resulting physics. FHIl-aims should not make
this choice for you.

Warning: 1t is not a good idea to run each and every calculation with spin collinear
just because that seems to be the more general case. In a system that will safely be non-
magnetic, using something other than spin none will roughly double the CPU time
needed in the best case, and it will most likely lead to much worse s.c.f. convergence
(i.e., more iterations needed to find the self-consistent electronic solution). There is no
fundamental problem with running spin collinear, but again: just doing this out
of some sense of impartiality may not be a wise use of resources.

This keyword is completely independent of spin-orbit coupling, which is applied as a
post-processed correction after the SCF cycle has converged. The two keywords can be
used together, e.g., to obtain spin-orbit coupled versions of the energy band structure
of an open-shell system (see the supporting material of Ref. [109] for an example of the
spin-polarized band structure of fcc Ni). For more information on spin-orbit coupling,
please see the include_spin_orbit keyword and the discussion in the associated
chapter.

3.2. Physical model: Geometry, charge, spin, etc. 51

Subtags for species tag in control.in:

species sub-tag: mass

Usage: mass M

Purpose: Atomic mass

M is a real number that specifies the atomic mass in atomic mass units (amu).
This tag is used only for molecular dynamics. The preconstructed species_defaults

files supplied with FHI-aims contain the mass average over the different isotopes of each
natural element.

species sub-tag: nucleus

Usage: nucleus Z

Purpose: Via the nuclear charge defines the chemical element associated with
the present species.

Z is a real number (the nuclear charge).

Z is usually an integer number. However, partial (non-integer) charges are also possible.

Fractional Z can be useful, for example, for a stoichiometric hydrogen-like termination of
a compound semiconductor slab (e.g., in a lll-V compound, the valence of the connecting
element would be mimicked by a fractionally charged H of charge 0.75 or 1.25).

If the difference between the specified nuclear charge and the nearest integer is greater
than 0.34, keyword element may be needed to be set explicitly in the species definition
to designate an unambiguous chemical identity.

Fractional Z can also be useful to distribute a compensating charge for an electronically
charged periodic supercell calculation. In electronic charged periodic systems, a compen-
sating background charge is always implicit. This is often accomplished by introducing
an implicit homegeneous charged background density. However, the choice of such a
jellium background is often anything but ideal. For instance, in a surface slab calculation,
part of this compensating charge will be located in the vacuum. In such cases, it may
be better to place the compensating charge in the system explicitly and “by hand”. One
good way to do this is to place the compensating charges on certain nuclei.[191]

If you add a fractional Z to a species_default, you will have to take care to modify the
valence tags to reflect the exact opposite charge, creating an overall neutral spherical
free atom as far as the valence occupation numbers in the species definition go.

species sub-tag: element

52 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: element symb
Purpose: Chemical element associated with the species.

symb is a string (max. 2 characters) that corresponds to the symbol of the
chemical element. Default: see below.

The purpose of this tag is to specify the chemical identity of a species in the rare cases
when it cannot be determined from Z because it has been set to a non-integer value.
In particular, when Z is more than 0.34 from the nearest integer number, the species
element must be set with the element tag. Currently, this value is used only by the
van der Waals routines, but the requirement above must be satisfied for any calculation.

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 53

3.3 Electronic structure: Exchange, correlation
(incl. DFT+4U), and excited states

A key choice required in every electronic structure calculation is the treatment of the re-
quired electronic structure: Exchange, correlation, and potentially quasiparticle energies,
e.g., after a GW correction.

We here summarize the general options available regarding the choice of the electronic
structure method. In addition, an important question is which electrons in the structure
are treated at which level. For most practical purposes, FHI-aims treats all electrons in
an equivalent way, but for some special cases, frozen-core treatments may be useful: at
present, one may compute the correlation energy of only the valence but not the core
electrons in second-order Mgller-Plessett (MP2) perturbation theory.

For any method requiring the two-electron Coulomb operator explicitly (these include
hybrid functionals, Hartree-Fock, MP2 or RPA perturbation theory, GW corrections,
etc.) we note that an auxiliary basis is required to expand the Coulomb matrix (four
basis functions = O(N*) matrix elements) into a two-center Coulomb matrix, leading
instead to O(NN?) additional overlap matrix elements. The choice of this auxiliary basis
(“product basis") is described in more detail in Sec. 3.22 and Ref. [187].

A note on “post-s.c.f” RPA-based methods

The algorithms for post-DF T methodologies as implemented in FHI-aims are detailed in
Ref. [187]. Here we only briefly recapitulate the key ingredients behind the increasingly
popular “RPA and beyond” methods as implemented in FHI-aims. The standard RPA
total energy is computed as follows:
ERPA _ pDFT _ pDFT | pEX | pRPA (3.2)
XC X C ° :

tot tot

Et'?)'t:T is a pre-computed self-consistent DFT total energy obtained from LDA, GGA, or

hybrid functional calculations. E2FT is the corresponding exchange-correlation contribu-
tion. X and ERPA are the exact-exchange energy, and the RPA non-local correlation
evaluated using the pre-determined Kohn-Sham or generalized Kohn-Sham eigenorbitals
and eigenenergies.

Recently, several correction schemes to RPA have been proposed. FHI-aims currently
provides the (renormalized) single excitation (SE) correction [189] and the second-order
screened exchange (SOSEX) correction [82]. The renormalized SE (rSE) and SOSEX
corrections can be combined. The combined scheme is called “renormalized 2nd-order
perturbation theory” (rPT2) [188],

ErPT2 — ERPA 4 ECSOSEX 4 E:;SE ' (33)

tot tot

The “RPA+SE”, "RPA+rSE", and “"RPA+SOSEX" total energies can be computed
similarly by combining the corresponding terms.

A note on “DFT plus U”

In the DFT method with local or semi-local approximations of the XC-functional, (LDA,
GGA, etc.) strongly correlated systems like transition metal oxides are poorly described.

54 Chapter 3. The Full Monty: All Keywords and Capabilities

The “DFT plus U" method offers an ad hoc correction for strongly correlated systems
at negligible computation cost [8].

The present implementation of “DFT plus U" in FHI-aims should be considered exper-
imental, and is not complete in some respects. Please keep this in mind when using
the method. That said, it should give physically sensible results. Simply take some care
when using it, and please give us feedback if the method works for you (obviously, also
if it does not for some reason).

o DFT+U total energies can be obtained in combination with any functional (typ-
ically LDA or GGA), by simply adding appropriate plus_u tags to the corre-
sponding species.

« Total energy gradients (“forces”) are not provided.

o The implementation does not yet offer self-consistent determination of the U pa-
rameter, so this needs to be supplied by hand.

 Finally, the orbitals on which we project are the somewhat extended free-atom like
orbitals, defined with the usual cutoff potential of the remaining calculation. While
somewhat arbitrary, it would be useful to be able to project onto more localized
orbitals, but this option is not implemented yet.

Tags for general section of control.in:

Tag: frozen_core

Usage: frozen_core first_orbital

Purpose: Allows to compute the MP2 correlation energy without the contribution
arising from low-lying occupied orbitals.

first_orbital is the integer number of the first molecular orbital that is
included in the computation of the MP2 correlation energy.

This keyword applies only to the calculation of the MP2 correlation energy (if
requested). It does not imply a frozen-core treatment anywhere else.

In a nutshell, this is a simple way to exclude the large contribution from certain core
electrons to the MP2 correlation energy. This contribution is mostly systematic, and
therefore tends to cancel in energy differences. However, it is also the hardest to compute
unless specialized basis sets are invoked that “know” about core correlation; it may thus
be the source of a large systematic error that also cancels if excluded from the beginning.
For consistency between different calculations, the number of excluded “core” orbitals
must be readjusted between calculations with different numbers of atoms.

Tag: frozen_core_postsct

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 55

Usage: frozen_core_postscf valence_shell number

Purpose: Alternative way to specify the valence shells in the frozen-core
algorithm for MP2, RPA and rPT2 methods. This keyword is valid for elements
from H (1) to Rn (86).

valence_shell number is the number of valence shells which are taken into
account in the frozen-core MP2, RPA or rPT2 calculations.

Compared to the keyword frozen core, frozen core_postscf is more friendly,
especially for large systems, as you don’t need to count by hand which is the first valence
orbital in the frozen-core algorithm.

For example, valence_shell_number=2 means that at most two outer shells are taken
as valence shells in the frozen-core calculations:

element core shells valence shells

H, He - 1s
Li-Ne - 152s2p
Na-Ar 1s 252p3s3p

K-Kr 152s2p 3s3p3dasdp

Tag: hybrid_xc_coeff
Usage: hybrid_xc_coeff value
Purpose: If set, will modify the (Hartree-Fock) exact exchange mixing parameter
in a given hybrid XC functional. No effect if specified with a simple LDA / GGA
type functional.

value is a real number (usually between zero and one) that specifies the degree
of exact exchange admixture.

If (and only if) a hybrid functional is specified using the xc keyword, hybrid_xc_coeff
allows to change the Hartree-Fock mixing parameter to a different, given value. For
example, the mixing parameter in pbeO could be specified away from its literature value,
a=0.25. No effect for xc functionals that do not have any Hartree-Fock exchange

admixed in the first place.

Obviously, this option is only useful for test purposes and does change the definition of
any functional away from its literature value. Handle with care.

Tag: hse_unit
Usage: hse_unit character
Purpose: Required clarification of units for the hse06 xc functional.

value is a character, either 'a’ or 'A’ (for A=1) or 'b’ or 'B’ (for [bohr radius]~!).

The hse06 functional comes with a screening parameter w which must be specified

56 Chapter 3. The Full Monty: All Keywords and Capabilities

explicitly (see the xc keyword for a detailed explanation). Unfortunately, different
codes and authors appear to have adopted different conventions for w — either A=! or
[bohr radius] ™. To avoid any possible confusion when using HSE06 in FHI-aims, we
therefore only run hseO6 if the unit has been explicitly specified, using the above keyword.
We apologize for the inconvenience, but the risk of an innocent misunderstanding is
rather high in the present case.

Tag: 1c_dielectric_constant

Usage: lc_dielectric_constant value

Purpose: If set, will modify the amount of exact exchange in the hybrid XC
functional LC-wPBEh.

value is a real number (larger or equal to one) that specifies the degree of exact
exchange admixture in the long-range part. default=1.0

Tag: plus_u_petukhov_mixing
Usage: plus_u_petukhov_mixing mixing factor

Purpose: Experimental—only for DFT+U. Allows to fix the mixing factor
between AMF and FLL contribution of the double counting correction [180].

mixing factor is a floating point value, specifying the mixing ratio between
0.0 and 1.0. A value of 0.0 selects the Around Mean Field (AMF) contribution.
A value of 1.0 selects the Fully Localized Limit (FLL). If unspecified, the value
is determined self-consistently according to Ref. [180].

There are two common schemes for dealing with the double counting problem in DFT+U:
The AMF method assumes that the effect of the DFT4U term on the actual occupations
remains small, so that the occupations can be assumed to be equal within each shell for
the purpose of the double counting correction. The FLL method, on the other hand,
assums a maximal effect of the DFT+4U term on the occupation numbers, handling
double counting correctly in the case that all orbitals with in the shell are either fully
occupied or empty. The self consistent mixing of both limits improves the handling of
the intermediate range (see Ref. [180]).

Tag: gpe_calc
Usage: gpe_calc selfenergy-type

Purpose: If set, specifies which self-energy should be used for a quasiparticle
correction of single-particle eigenvalues.

selfenergy-type is a keyword (string) which specifies the selfenergy approxi-
mation used.

Note that quasiparticle corrections (GW, MP2) are currently possible only for cluster

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 57

geometries (no periodic boundary conditions).

After the normal self-consistency cycle for a given exchange-correlation functional (set
using the xc keyword) is complete, qpe_calc can be used to specify a perturbative
quasiparticle correction to be applied as a post-processing step. Valid self-energy options
selfenergy-type are:

o gw : Perturbative GoWy-type self-energy, where both the Green's function Gy
and the screened Coulomb interaction W}, are computed only once, based on the
self-consistent DFT or Hartree-Fock ground state eigenvalues and eigenfunctions.

o ev_scgw Perturbative GoIW-type self-energy, where self-energy is evaluated with
partial self-consistency in the eigenvalues. The eigenvalues are iterated in G and
W. Molecular orbitals are kept unchanged from the preliminary calculation. This
scheme is often abbreviated as evGW in literature. For true self-consistent GV,
see the sc_self_energy further below.

o ev_scgw0 Perturbative GyW-type self-energy, where self-energy is evaluated with
partial self-consistency in the eigenvalues. The eigenvalues are iterated only in
G, but not in W. Molecular orbitals are kept unchanged from the preliminary
calculation as in ev_scgw. This scheme is often abbreviated as evG'W) in literature.
For true self-consistent GW, see the sc_self energy further below.

o mp2 : Perturbative MP2-type self-energy, based on the self-consistent DFT or
Hartree-Fock ground state eigenvalues and eigenfunctions.

For more details on different GW flavors (GoWj, partially and fully-selfconsistent schemes)
see review article [75].

Tag: sc_self_energy

Usage: sc_self _energy self-consistent-scheme

Purpose: If set, specifies the scheme adopted for the self-consistent calculation
of the many-body self-energy.

selfenergy-type is a keyword (string) which specified the self-consistent
approach used in the calculation.

Note that self-consistent GW calculation (sc-GW, sc-GW)) are currently possible only
for cluster geometries (no periodic boundary conditions).

After the normal self-consistency cycle for a given exchange-correlation functional (set
using the xc keyword) is complete, sc_self energy can be used to spec-
ify a self-consistent scheme for the calculation of the GW self-energy. The output
consists of the total energy calculated from the Galitskii-Migdal formula, an output file
(spectrum_sc.dat for spin unpolarized, spectrum_sc_up.dat and spectrum_sc_do.dat
for spin up and down respectively in the case of spin polarized calculation) containing
the spectral function calculated from the self-consistent Green's function. At the end of
the calculation, the output include the dipole moment evaluated from the self-consistent
density.

58

Chapter 3. The Full Monty: All Keywords and Capabilities

Currently implemented self-consistent methods are:

scgw : Calculate the Green's function by solving until full self-consistency the
Dyson'’s equation by using a self-energy in the GW approximation.

scgw0 : Solve self-consistently the Dyson’s equation with the self-energy in the
GW, approximation. Differently from fully self-consistent GW, in this case the
screened Coulomb interaction is kept fixed at the RPA level.

Tag:

scgw_mix_param
Usage: scgw_mix_param «

Purpose: Define the linear mixing coefficient «, for the mixing of the Green
function at each iteration of the self-consistent GW calculation. This keyword
only produces an effect if sc_self energy is set.

Tag:

scgw_it_limit
Usage: scgw_it_limit N

Purpose: Set the maximum number N of iteration of the Dyson equation in
a self-consistent GW calculation. The default value is set to N = 30. This
keyword only produces an effect if sc_self energy is set.

Tag:

scgw_print_all_spectrum
Usage: scgw_print_all_spectrum

Purpose: Enables the print out of the spectral function each iteration of the self-
consistent GW calculation. The spectrum is printed to the file sp_ImG<N>.dat,
where <N> is number of iteration of the Dyson equation. This keyword only
produces an effect if sc_self energy is set.

Tag:

rpa_along_ac_path
Usage: rpa_along ac_path rpa_along_ac_path_grid

Purpose: Calculate the RPA-approximated potentials along the adiabatic-
connection path.

rpa_along ac_path_grid is the number of potentials you want to sampling
along the adiabatic-connection path.

The standard RPA method is a adiabatic-connection advanced DFT method, which in-
tegrates the contribution along the adiabatic-connection path analytically. This keyword
rpa_along ac_path allows you to unpack the adiabatic-connection path in the RPA
approximation in detail.

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 59

Tag: printout_dft_components

Usage: printout_dft_component given_dft_method

Purpose: Evaluate the XC contributions of a given DFT method based on SCF
converged KS (or HF) orbitals.

given_dft_method is the name of the DFT method you want to investigate.
At present, only two GGA methods (PBE and BLYP) are avaiable.

This keyword printout_dft_components is repeatable in the contril.in allowing to
inspect several DFT methods in one task.

Tag: scs_mp2_parameters
Usage: scs_mp2_parameters pT pS

Purpose: For MP2 correlation energies, allows to perform spin-component scaled
MP2.

pT is the scaling parameter for the spin-up-spin-up (triplet) contribution.
pS is the scaling parameter for the spin-up-spin-down (singlet) contribution.

The MP2 correlation energy (total_energy method mp2 or xc mp2) can be
separated into a sum of triplet (spin-up-spin-up) and singlet (spin-up-spin-down) two-
electron terms:

Ecorr,MPZ = Ebr + ES . (34)

Grimme [81] pointed out that empirical scaling factors pr and pg can be introduced and
fitted to improve the accuracy of MP2 results compared to quantum-chemical benchmark
methods:

Escsmp2 = prEr + psEs . (3.5)

For example, pr=1/3 and ps=6/5 are employed to obtain the reaction energies of Table
| in Ref. [81].

Tag: total_energy_method

Usage: total_energy_method type

Purpose: If set, specifies an exchange-correlation method for post-processing
only, after the scf cycle is complete.

type is a keyword (string) which specifies the chosen post-processing exchange-
correlation method.

After the regular scf cycle is complete for a given exchange-correlation method as given
by the xc tag, the resulting Kohn-Sham orbitals and eigenvalues are used to recalculate
only the exchange-correlation energy, and only once (i.e., perturbative post-processing).

All LDA, GGA and meta-GGA DFT functionals listed under xc can be used with
total_energy_method , including those implemented through LibXC and dfauto; See

60 Chapter 3. The Full Monty: All Keywords and Capabilities

the relevant section of xc options for more detail. Hybrid-DFT functionals are also
available, with the exception of range-separated or long-range corrected approaches.

Other valid post-processing options type are:

o C6_coef : Molecular Cg dispersion coefficients at the MP2 / RPA level will be cal-
culated after the s.c.f. calculation. (This functionality is somewhat experimental,
be sure to check for consistency.)

o hf or HF: Calculate Hartree-Fock exchange on the given orbitals.

e 11 vdwdf : The nonlocal part of correlation energy is calculated using the van der
Waals density functional proposed by M. Dion et al. [55] and the total correlation
energy will be re-evaluated as proposed in their paper. For details about additional
Tags needed for the calculation, please visit Sec. 3.21. Note that an alternative
implementation by the Helsinki group is available as well, the present keyword is
not your only option.

e mp2 : The correlation energy is calculated in second-order Mgller-Plesset pertur-
bation theory (MP2), with Hartree-Fock added for the exchange part. Note added
in March 2016: A periodic implementation of MP2 is available but, at the time of
writing, computationally extremely expensive. If you decide to use it, please keep
in mind that the periodic version is included here as a matter of protocol but is
not yet optimized to be fully usable in production calculations.

e pbe_vdw : Evaluates the van der Waals density functional proposed by M. Dion
et al. [55] with the methodology of Sec. 3.21.2. (Uses PBE exchange.) This is
not the Tkatchenko-Scheffler correction [215]. If you are looking for Tkatchenko-
Scheffler, please use the keyword wvdw_correction_hirshfeld instead.

o revpbe_vdw : As pbe_vdw but uses revpbe instead of pbe for the exchange.
This is also not the Tkatchenko-Scheffler correction [215]. If you are looking for
Tkatchenko-Scheffler, please use the keyword — wdw_correction_hirshfeld
instead.

e nlcorr : Only the non-local correlation term of the pbe_vdw or revpbe_vdw is
calculated and added to the total energy. And this is still not the Tkatchenko-
Scheffler correction [215]. If you are looking for Tkatchenko-Scheffler, please use
the keyword vdw_correction_hirshfeld instead.

o rpa : The RPA total energy as defined in Eq. (3.2) will be calculated. When
this option is specified, the SE and rSE corrections to RPA are also evaluated.
The total enegies computed with the RPA, RPA+SE, and RPA+rSE schemes are
listed in items "RPA total energy", "PRA+SE total energy", and "RPA+rSE
(full) total energy" respectively in the output file.

« rpa+2ox : Just RPA plus second-order exchange (not screened). Likely only useful
for testing / benchmarking, use rpt2 for completeness.

o rpat+sosex : Just RPA plus second-order screened exchange. Likely only useful
for testing / benchmarking, use rpt2 for completeness.

3.3.

Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 61

rpt2: The rPT2 total energy as defined in Eq. (3.3) will be calculated. When this
option is specified, the “RPA+SOSEX" total energy without the rSE correction
will also be printed out in the output file.

xyg3 : “XYG3" double-hybrid functional[?], which is defined only for a self-
consistent B3LYP reference, i.e., xc b3lyp is mandatory. Note that double-
hybrid functionals include MP2 components. When using the tier basis sets, you
must use a counterpoise correction of energy differences to get reliable results.

xdh-pbe0 : “xDH-PBEQ" double-hybrid functional[233], which is defined only for
a self-consistent PBEQ reference, i.e., xc pbe0 is mandatory. Note that double-
hybrid functionals include MP2 components. When using the tier basis sets, you
must use a counterpoise correction of energy differences to get reliable results.

Note that some of the correlation methods available here are only supported for cluster
geometries at this time. Note also that when advanced correlation methods (e.g. rpa,

rpt2,

xyg3, xdh-pbe0 and mp2) are used for binding energy calculations, a counterpoise

correction should always be performed with the default NAO basis sets in FHI-aims to
get reliable results, since the basis set superposition error (BSSE) for these correlation
methods is significant. For these advanced correlation methods, the sequence of NAO
valence-correlation consistent basis sets (NAO-VCC-nZ[232]) is a better choice, which
reduces the basis set incompleteness error, including BSSE, with increasing the basis

size,

and especially enables to approach the completeness-basis-set limit with the aid of

extrapolation scheme.

Tag:

use_2d_corr

Usage: use_2d_corr bool

Purpose: Specifies whether to use the efficient 2D distribution of the MO based
three index arrays where possible. Otherwise, stick to the old 1D distribution in
all cases.

Default: .true.

Tag:

XC

Usage: xc xc-type [value]

Purpose: Specifies the exchange-correlation approach used for self-consistent
DFT / Hartree-Fock. See also xc_pre .

Default: pw-1da

xc-type is a keyword (string) which specifies the chosen exchange-correlation
functional.
value is a real parameter needed only for some functionals (e.g., hse06).

FHI-aims provides a wide range of current exchange-correlation options, ranging from
local-density and generalized-gradient approximations (LDAs and GGAs) via hybrid func-
tionals and Hartree-Fock to two-electron treatments of the correlated many-body system,

62

Chapter 3. The Full Monty: All Keywords and Capabilities

such as second-order Mgller-Plesset (MP2) theory and the random-phase approximation
(RPA). The following choices for the xc-type option are currently available:

o Local-density approximation (different parameterizations):

pw-1lda : Homogeneous electron gas based on Ceperley and Alder [38] as
parameterized by Perdew and Wang 1992 [174]. Recommended LDA param-
eterization.

pz-1da : Homogeneous electron gas based on Ceperley and Alder [38], as
parameterized by Perdew and Zunger 1981 [175].

vwn : LDA of Vosko, Wilk, and Nusair 1980 [224].

vwn-gauss : LDA of Vosko, Wilk, and Nusair 1980, but based on the random
phase approximation [201]. Do not use this LDA unless for one specific
reason: In the B3LYP implementation of the Gaussian code, this functional
is allegedly used instead of the correct VWN functional. It is therefore now
present in many reference results in the literature, and also available here for
comparison.

o Generalized-gradient approximations:

am05 : GGA functional designed to include surface effects in self-consistent
density functional theory, according to Armiento and Mattsson [10]

blyp : The BLYP functional: Becke (1988) exchange [19] and Lee-Yang-Parr
correlation [141].

pbe : GGA of Perdew, Burke and Ernzerhof 1997 [172].

pbeint : PBEint functional of Ref. [63]

pbesol : Modified PBE GGA according to Ref. [178].

rpbe : The RPBE modified PBE functional according to Ref. [88].
revpbe : The revPBE modified PBE GGA suggested in Ref. [235].

r48pbe : The mixed functional containing 0.52*pbe and 0.48*rpbe according
to Ref. [165]

pw9l_gga : GGA according to Perdew and Wang, usually referred to as
“Perdew-Wang 1991 GGA". This GGA is most accessibly described in Refer-
ences 26 and 27 of Ref. [173]. Note that the often mis-quoted reference [174]
does not(!) describe the Perdew-Wang GGA but instead only the correlation
part of the local-density approximation described above.

o Meta-generalized gradient approximations:

m06-1 : Truhlar's optimized meta-GGA of the “M06" suite of functionals.
[238]

m11-1 : Truhlar's optimized range-separated local meta-GGA of the “M11"
suite of functionals. [182]

revtpss : Meta-GGA revTPSS functional of Ref. [176, 177].

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 63

— tpss : Meta-GGA TPSS functional of Ref. [214]

— tpssloc: Meta-GGA TPSSloc functional, thanks to E. Fabiano and F. Della
Sala. L.A. Constantin, E. Fabiano, F.Della Sala, Ref. [47].

— scan or SCAN: “Strongly Constrained and Appropriately Normed Semilocal
Density Functional,” i.e., the SCAN meta-GGA functional by Sun, Ruzsinszky,
and Perdew.[210]

 Hartree-Fock and hybrid functionals (including non-local exchange): Please also
see Secs. 3.22 and 3.23 for related keywords and technical hints.

— b3lyp : “B3LYP" hybrid functional as allegedly implemented in the Gaus-
sian code (i.e., using the RPA version of the Vosk-Wilk-Nusair local-density
approximation, see Refs. [224, 201] for details). Note that this is therefore
not exactly the same B3LYP as originally described by Becke in 1993.

— hf : Hartree-Fock exchange only.

— hse03: Hybrid functional as used in Heyd, Scuseria and Ernzerhof [100, 101].
In this functional, 25 % of the exchange energy is split into a short-ranged,
screened Hartree-Fock part, and a PBE GGA-like functional for the long-
range part of exchange. The remaining 75 % exchange and full correlation
energy are treated as in PBE. As clarified in Refs. [132, 101], two different
screening parameters were used in the short-range exchange part and long-
range exchange part of the original HSE functional, respectively:

Screened Hartree-Fock exchange: wyr = 0.15/\/§

Screened PBE-like exchange: wpge = 0.15 x 21/3

Following the notation of Ref. [132], the 'hse03" functional in FHI-aims
reproduces these original values exactly.

— hse06 : Hybrid functional according to Heyd, Scuseria and Ernzerhof [100],
following the naming convention suggested in Ref. [132]. In this case, the ad-
ditional option value is needed, representing the single real, positive screen-
ing parameter omega (w) as clarified in Ref. [132]. In this functional, 25 %
of the exchange energy is split into a short-ranged, screened Hartree-Fock
part, and a PBE GGA-like functional for the long-range part of exchange.
The remaining 75 % exchange and full correlation energy are treated as in
PBE.

In the literature, the unit for w is either A= or (bohr radius)_l, depending on
the code, authors, and their favorite convention. To avoid any confusion, a
separate keyword hse_unit must be specified in control. in, specifying
either A=* ("A’) or bohr™' ('b’). The code will no longer run without this
explicit clarification. A correct calling syntax example is therefore:

xc hse06 0.11

hse unit bohr-1!

or similar.

A few comments on typical choices for w in the earlier literature:

The original value of 0.15 bohr~! by Heyd, Scuseria and Ernzerhoff 2003

!The hse_unit flag reads only the first character. Thus this is equivalent to hse_unit b (case
insensitive).

64

Chapter 3. The Full Monty: All Keywords and Capabilities

[100] was never true - see their 2006 erratum. In FHI-aims, the 'hse03" func-
tional implements their actual choice.

Krukau, Vydrov, Izmaylov and Scuseria 2006 [132] clarify the distinction be-
tween 'hse03' and 'hse06’ (in addition to the Erratum mentioned above).
Their conclusion is that omega=0.11 bohr~! is a reasonable choice.
Vydrov, Heyd, Krukau and Scuseria in 2006 [171] appear to favor omega=0.25
bohr~!, but with a mixing parameter (keyword hybrid_xc_coeff) of 0.5
for the short-range exchange. (The default for ~ hybrid_xc_coeff in
FHI-aims is 0.25, i.e., only a quarter of HF-like exchange.)

You get the idea. As much as we would like to, we can not specify a single
omega parameter for hse06 by default — the choice is up to you. Apologies
for the inconvenience.

— pbe0 : PBEO hybrid functional [1], mixing 75 % GGA exchange with 25 %
Hartree-Fock exchange.

— pbesol0 : Hybrid functional in analogy to PBEO [1], except that the PBEsol
[178] GGA functionals are used, mixing 75 % GGA exchange with 25 %
Hartree-Fock exchange.

— 1c_wpbeh : Range separated hybrid functional LC-wPBEh using 100 %
Hartree-Fock exchange in the long-range part and wPBE [171] in the short-
range part. The full correlation energy is treated as in PBE. The hse_unit
must be specified as in hse06!

Syntax:
xc lc_wpbeh w «

1 1
PR — BSR4 (1 - a)ESR o+ (=) B+ (1) ELfoe + Epue
(3.6)

% € can be the dielectric constant. The default value is 1. One might
change this parameter with the keyword 1c_dielectric_constant

« If a = 0 the functional is also known as LC-wPBE [71]

* o = 1 would correspond to a PBEO calcuation with 100 % Hartree-Fock
exchange

o Hybrid Meta-generalized gradient functionals (including non-local exchange): Please
also see Secs. 3.22 and 3.23 for related keywords and technical hints. Currently
the non-local exchange contribution is fixed in all implementations due to the
parameterised nature of these density functionals.

— mO6 : Truhlar's optimized hybrid meta-GGA of the “M06" suite of functionals;
with 27% exact exchange. [237]

— m06-2x : Truhlar’'s optimized hybrid meta-GGA of the “M06" suite of func-
tionals, with double contribution (54%) from the hartree-fock exact ex-
change. [237]

— m06-hf : Truhlar's optimized hybrid meta-GGA of the “M06" suite of func-
tionals, with 100% exact exchage contribution. [236]

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 65

— m08-hx : Truhlar's optimized hybrid meta-GGA of the “M08" suite of func-
tionals, with 52.23% contribution from the hartree-fock exact exchange.
[239]

— m08-so : Truhlar's optimized hybrid meta-GGA of the “M08" suite of func-
tionals, with 56.79% contribution from the hartree-fock exact exchange.
[239]

— ml11 : Truhlar's optimized range-separated local meta-GGA of the “M11"
suite of functionals [181]. The range-separation variable is also hardcoded in
this implementation with w = 0.25 bohr™!.

o A substantial further range of functionals is available through the LibXC library
[142], of which v4.0.2 is distributed with FHI-aims. The implementation covers
spin paired and polarised calculations for LDA, GGA and meta-GGA approaches
(excluding those meta-GGAs on the laplacian of the density), as well as hybrid-
DFT, in equivalence to functionality with canonical functionals (energy, forces and
stress). The general syntax is xc libxc <name> where <name> is using the LibXC
nomenclature (available at https://www.tddft.org/programs/libxc/functionals/),
and exchange and correlation density functionals can be combined using a "+" sign.
As an example, the LibXC call for PBE would be xc 1ibxc GGA_C_PBE+GGA_X_ PBE.

« Alternative implementations of some XC functionals via the dfauto program [208].
These implementations are generated automatically from Maple definitions that
are located in xc_dfauto/. The general syntax is xc dfauto <name> where
<name> can be one of (case-insensitive):

— dfauto pw-1lda|pbe|pbeO|tpss : This is practically identical to specifying
directly xc <name>, and essentially provides alternative implementations of
those functionals for testing purposes.

— dfauto scan : This is the meta-GGA functional SCAN [210].

— dfauto rscan : This is a Revision of the meta-GGA functional SCAN
(rSCAN) [16].

— dfauto scan0: This is the meta-GGA hybrid functional SCANO [110], which
mixes SCAN with 25% of exact exchange.

« Double-hybrid functionals (including non-local exchange and correlation): Double-
hybrid functionals are emerging quickly in the last decade. “double-hybrid™ here
means that the exchange functional mixes LDA(and/or GGA) exchange with “Hartree-
Fock like exact exchange”. Meanwhile, the correlation functional is composed of
both conventional LDA(and/or GGA) correlation and second-order perturbation
energy. Doubly-hybrid functionals are “semi-empirical”, generally including several
empirical parameters determined by optimizing against one or several well-chosen
databases. Double-hybrid functionals show a remarkable improvement over con-
ventional (hybrid-)GGAs in the description of heats of formation, bond dissociation
enthalpies, reaction barrier heights and weak interactions of the main group ele-
ments. Doulbe-hybrid functionals have become new leading actors in the field of
computational chemistry.

Chapter 3. The Full Monty: All Keywords and Capabilities

— xyg3 : Double-hybrid functional XYG3, containing 80.33% Hartree-Fock
exchange and 32.11% second-order perturbation energy [234].

— xdh-pbe0 : Double-hybrid functional xDH-PBEQ, containing 83.51% Hartree-
Fock exchange and 52.42% opposite-spin second-order perturbation correla-
tion [233].

» Some specific correlated methods: Only a subset. For many correlated methods
that can be used as non-selfconsistent perturbative post-processing methods after
an initial s.c.f. calculation, see the total_energy_method keyword. Most of
these are not available for periodic geometries, or, if at all, in a very experimental
state.

— mp2 : Self-consistent Hartree-Fock, followed by a second-order Mgller-Plesset
perturbative addition of the correlation energy. Note that the frozen core
keyword can be used to specify if and which low-lying states should be ex-
cluded from the correlation energy. For spin-component scaled MP2 [81], see
keyword scs_mp2 parameters .

Note that when mp2 is used for binding energy calculations, a counterpoise
correction should always be performed to get reliable results, since the basis
set superposition error (BSSE) for these correlation methods is significant.
Note added in March 2016: A periodic implementation of MP2 is available
but, at the time of writing, computationally extremely expensive. If you de-
cide to use it, please keep in mind that the periodic version is included here as
a matter of protocol but is not yet optimized to be fully usable in production
calculations.

— screx : experimental! Self-consistent, screened Hartree-Fock exchange only.
The Coulomb operator is screened as:
1 1 1

_> .
r—r e(r,r’) r—r

(3.7)

e(r,r") is the non-local microscopic dielectric function, obtained in the w —0
frequency limit of the random-phase approximation (RPA). See Ref. [92] for
details.

— cohsex : experimental! Self-consistent screened exchange plus Coulomb-
hole (COH) correlation. See Ref. [92] for details.

+ Method of non-local correlation using the “van der Waals density functional” (vdw-
DF) as presented by Dion and coworkers in Ref. [55]. Two options are available
for the exchange part:

— pbe_vdw : the functional with pbe exchange

— revpbe_vdw : the functional with revpbe exchange
Note that this keyword is not the correction due to Tkatchenko and Scheffler
2009 [215]. To activate the Tkatchenko-Scheffler correction instead, use the

vdw_correction_hirshfeld keyword. The functional by Dion et al. is a very
different functional. As implemented here, it is also much more expensive than

3.3. Electronic structure: Exchange, correlation (incl. DFT+U), and excited states 67

the Tkatchenko-Scheffler correction. To use the functional by Dion et al., please
review the numerical options described in Sec. 3.21.2.

Note that our version of the Coulomb operator (which is the basis for Hartree-Fock
exchange also in hybrid functionals, as well as MP2 theory) is based on an auxiliary basis
in what is known as resolution of the identity (Refs. [30, 3, 221, 61] and others). While
our default settings should be safe, you may wish to consult Sec. 3.22 for particulars
regarding this auxiliary basis.

Note also that some different perturbative exchange-correlation treatments for post-
processing (after a self-consistent DFT or HF calculation is complete) may be invoked
using the tag total_energy method . Likewise, perturbative postprocessing for
single-quasiparticle energies through a self-energy formalism (e.g., GW) is reached by
specifying the gpe_calc tag and its options.

Right now, the correlated beyond-hybrid and beyond-meta methods are not implemented
on top of the HSE03 or HSEQ6 functionals.

Subtags for species tag in control.in:

species sub-tag: plus_u
Usage: plus u nlU

Purpose: Experimental—only for DFT+U. Adds a +U term to one specific shell
of this species.

n the (integer) radial quantum number of the selected shell.

1 is a character, specifying the angular momentum (s, p, d, f, ...) of the selected
shell.

U the value of the U parameter, specified in €V.

This implementation of DFT+U is based directly on the basis functions available within
FHI-aims. This option selects one specific atomic shell of this species and adds the
a rotationally invariant term with the specified fixed prefactor U to the Hamiltonian.
The implementation follows the prescription in Ref. [90], based on the dual occupation
numbers. The double counting term is handled through the mixed term proposed by
Petukhov (see plus_u_petukhov_mixing).

68 Chapter 3. The Full Monty: All Keywords and Capabilities

3.4 Specifying the basis (functions, empty sites,
k-points, ...)

Among the technical choices in FHI-aims, the choice of the basis set is by far the most
important one, both regarding the efficiency and the desired accuracy of a calculation.
The shape and details of the basis sets used are thus kept as obvious as possible to the
user. At the same time, nobody should be required to type in an entire basis set plus
additional specifications from scratch just to run a production calculation.

As described in Ref. [26], the basis functions of FHI-aims take the format

o(r) = u(r)/r - Yim(0, 0) (3-8)

in spherical coordinates (7,6, ¢) with respect to a given atomic center. Each radial
function u(r) is numerically tabulated on a dense logarithmic radial grid, and evaluated
as a cubic spline function in other parts of the code. Finally, most radial function types
are subject to a cutoff potential of radial with w, ensuring that u(r)=0 for r > re, =
Tonset T W.

In periodic calculations, the full basis specification additionally includes the k-point grid
for Bloch functions in the first Brillouin zone. Unlike in many other implementations, this
is not a performance-critical setting in FHI-aims, and should be set to a well converged
value if possible.

The recommended approach to basis sets in FHI-aims is twofold:

o First, obtain the basic description of each required element by copy-pasting one of
the preconstructed species_default files into your control.in file. The pre-
constructed species_default files address all standard specifications associated
with a single species , including the integration grids, the Hartree potential,
and most importantly the basis set.

o Second, edit the copy-pasted species_defaults file to match your specific
accuracy and efficiency requirements. For the basis set, this is done by adjust-
ing the species-dependent keywords described below. Most importantly, com-
plete basis sets are listed at the end of each species_default file. You can
increase/decrease the basis set accuracy by successively uncommenting / com-
menting tiers of the basis set. Note that each higher tier must only be used if all
lower tiers are active. For example, it does not make sense to use all tier 2 basis
functions if the first tier is not used.

In addition to our own case studies,[26] the accuracy of the “tier” (sometimes called
“FHI-aims-2009"[232]) preconstructed basis sets for semilocal and hybrid DFT calcula-
tions was established in several benchmark assessments.[143, 115]

For beyond-DFT methods like MP2, GW, the random-phase approximation, etc., basis
set convergence is very different and absolute convergence is often not possible. In
the case of beyond-DFT methods, we recommend to ascertain basis set convergence
by performing specific convergence tests for any important results. For total-energy

3.4. Specifying the basis (functions, empty sites, k-points, ...) 69

differences between different structures, a counterpoise correction can often be employed
(using the empty keyword to create sites which have basis functions but no atoms).
For beyond-DFT calculations for light elements (H-Ar), the NAO-VCC-nZ basis sets[232]
are additionally available among the species defaults and provide reliable convergence
for total-energy methods (see Ref. [232] for details).

Finally, we can also use different approaches to create the free-atom-like core and valence
basis functions that are included in the so-called “minimal basis” of the NAO basis sets
provided with FHI-aims (unless explicitly excluded using the include min basis
keyword). If semilocal density functionals are used in the overall calculation, these
atomic radial functions are created for the same exchange-correlation functional as re-
quested by the xc keyword of the control.in file. For hybrid density functionals,
FHI-aims has historically used LDA- or GGA-derived free-atom-like basis functions by
default (still current as of August 2017, but slated to be changed in the future), but the
definition of the “minimal basis” can be changed in a limited way using the keywords
atomic_solver_xc or atomic_solver . See, for instance, Figure 7 in Ref. [187] for
the effect of changing the mimimal basis definition by keyword atomic_solver xc
on total energy convergence for a simple example.

70 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of geometry.in:

Tag: empty
Usage: empty X y z species_name

Purpose: Specifies the initial location and type of a site where only the basis
functions (but not the nucleus) of a given species are placed.

Restriction: Currently not functional with periodic boundary conditions. The use
of this option should be avoided for physical reasons if a structure relaxation is
requested.

x, y, z are real numbers (in A) which specify the atomic position.

species_name is a string descriptor which names the element on this atomic
position; it must match with one of the species descriptions given in control. in.

This allows to place extra basis functions at specified locations outside the actual atoms,
e.g., allowing for a counterpoise correction of basis set superposition errors.

3.4. Specifying the basis (functions, empty sites, k-points, ...) 71

Tags for general section of control.in:

Tag: atomic_solver

Usage: atomic_solver string

Purpose: Changes the atomic solver library that generates the free-atom-like
radial functions (or free-ion-like radial functions) used, e.g., in the minimal basis
part of the NAO basis sets.

string is the name of the solver to be used, either sratom or atom_sphere.
Default: sratom

The definition of free atom radial functions used as the “minimal basis” of FHI-aims
affects the absolute convergence of total energies calculated by FHI-aims. The radial
shape of the free-atom core and valence functions towards the nucleus is nearly exact
also for bonded structures if the same exchange-correlation functional is used and thus,
e.g., using DFT-PBE generated radial functions when using xc pbe will improve the
convergence of total energies. (Other quantities, such as atomization energies or other
energy differences, will often exhibit better convergence than the total energy, since the
effect of the exact shape of the minimal basis functions near the nucleus often cancels to
a reasonable extent. See, e.g., Ref. [115] for a study of these effects for Gaussian-type
and NAO basis sets compared to accurate reference values.)

Options for string:

sratom: FHI-aims' default solver for the electronic structure of spherical free atoms on a
dense logarithmic grid, called “sratom” (for “scalar relativistic atom") is the same solver
as used in the Fritz Haber Institute 1998 pseudopotential generation code by Martin
Fuchs and coworkers, reference [70]. It was modified by Timo Jacob to incorporate
ZORA scalar relativity when needed. This solver can handle semilocal density functionals
but not exact exchange. Thus, for hybrid density functionals in FHI-aims, the “minimal
basis” radial functions produced by sratom are semilocal DFT, not hybrid functional
basis functions. This leads to a slower convergence of absolute total energies with
hybrid functionals in FHI-aims (the error in atomization energies cancels to a good
extent). See Figure 7 in Ref. [187] for the magnitude of this effect for the example of
the convergence of Hartree-Fock calculations for Aus with an LDA-generated minimal
basis compared to the same calculation, but with a minimal basis derived using the
Krieger-Li-lafrate (KLI) approximation [129, 130, 131] to the exact-exchange optimized
effective potential. “sratom” is the current default solver for radial functions in FHI-aims.

atom_sphere: This solver for spherical free atoms was developed in Stefan Goedecker's
group for many years (beginning with Ref. [73]) and includes support for semilocal
and hybrid density functionals. In FHI-aims, “atom_sphere” is used as a library under
the Lesser General Public License (LGPL). As of this writing (August 2017), only non-
relativistic calculations are supported by “atom_sphere”. In this case, the resulting total
energies for hybrid density functionals converge precisely as well as their semilocal DFT
equivalents, as shown, e.g., in Ref. [115]. “atom_sphere” will only work if support for
libxc was compiled into the FHI-aims binary used.

72 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: atomic_solver_xc

Usage: atomic_solver_xc string

Purpose: Changes the exchange-correlation functional used to generate the
free-atom-like radial functions in the minimal basis part of the NAO basis sets.

Restriction: This keyword only has an effect if atomic_solver sratom is
used.

string is the name of the exchange-correlation functional to be used for the
free-atom solution. Default: Internal defaults (no specific option).

There is currently only one specific option for this keyword:
KLI

for the Krieger-Li-lafrate (KLI) approximation [129, 130, 131] to the exact-exchange
optimized effective potential. Figure 7 in Ref. [187] is an example of the effect of the
choice of different minimal basis functions on the convergence of the total energy of a
Hartree-Fock calculation for a heavy element. In that case, the KLI approximation is
closer to the converged result since the radial behavior of the minimal basis functions
towards the nucleus is closer to the Hartree-Fock result, and because the radial function
behavior of the free atom near the nucleus is nearly identical to the near-nuclear behavior
of the Kohn-Sham orbitals in the bonded structures. In other words, for Hartree-Fock,
KLI represents the nuclear cusp better than the local-density approximation (which is
the present default choice of minimal basis radial functions for Hartree-Fock).

In all cases where atomic_solver_xc is not specified, the choice of the exchange-
correlation functional for free atoms varies with the chosen setting for the xc keyword,
but is not necessarily identical. For local and semilocal density functionals, the choice
of functional for the minimal basis is generally identical to keyword xc , but for hybrid
functionals, the choice may vary and is currently “best” documented in the source code
(in subroutine get_free_atoms.f90).

Tag: calculate_atom_bsse

Usage: calculate_atom_bsse flag

Purpose: Allows calculation of the basis set superposition error (BSSE) corrected
atomization energy.

flag is a logical string, either .false. or .true. Default: .false.

This keyword automates a specialized version of the counterpoise correction and should
only be used with great care. A general counterpoise correction for molecules can
be implemented manually and in separate steps using the empty keyword. The
atomization BSSE correction implemented above, if used, must be checked very carefully
to ensure that all single-atom reference calculations carried out in the process reached
the exact same atomic reference state. Many important atoms have more than one self-
consistent solution, and mixing different self-consistent solutions may produce completely

3.4. Specifying the basis (functions, empty sites, k-points, ...) 73

erratic results. Our recommendation therefore to carry out any counterpoise correction
manually instead, by doing separate single-point FHI-aims calculations with different
molecular fragments and different basis definitions.

The atomization BSSE correction for a molecular structure is defined as:

oo = Y[E"(x) — E*(sys)] (3.9)

T

where E*(x) is the energy of the atom x calculated using only its basis set and E*(sys)
is its energy calculated with the basis set of the whole structure. The BSSE corrected
total energy is then

EBE — B3 (sys) + Age (3.10)

The atomization BSSE correction is usually small in the case of the LDA/GGA func-

tionals, but can become significant for methods with explicit correlation like RPA and
MP2.

The BSSE corrected atomization energy implemented here, on the other hand, is

EBSSE — [svs(sys) — Z E*(sys) (3.11)

In the case where relative energies between different conformations of the same molecule
BSSE\ — ([BSSE
are needed, (E°°"),e = (F Vel

If the calculation of the full system is performed without spin polarization, the total
energy of each atom will also be calculated without spin polarization (and vice versa).
In this case, specially when performing the scf cycle with HF, symmetry breaking of
the electronic configuration of certain atoms may occur, which might lead to wrong
conclusions.

The keyword is currently implemented for use with cluster geometries only. Both RPA
and MP2 as the total_energy_method are supported.

Tag: hydro_cut

Usage: hydro_cut flag

Purpose: Determines whether or not hydrogenic functions are subject to a
numerical cutoff potential.

flag is a logical expression, either .true. or .false. Default: .true.

This tag should be kept at the default value unless for testing purposes (e.g., comparing
to other codes).

Tag: k_grid

74 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: k_grid nl n2n3

Purpose: Sets up an evenly split k-points grid along the reciprocal lattice vectors
of a periodic calculation

nl, n2, n3 : integer numbers defining the number of k-point splits along the
first, second and third reciprocal axis of the first Brillouin zone, respectively

Note that the order of n1, n2, n3 must directly correspond to the order in which the
lattice_vector s are listed in geometry.in, through the definition and order of the
reciprocal lattice. By default, the resulting k_grid is centered around the I'-point,
but can be shifted using the k_offset keyword below.

The keyword symmetry_reduced_k_grid now allows to make use of time-reversal
symmetry to reduce the number of k£ points by a factor of nearly two. This option is the
default.

Tag: k_grid_density
Usage: k_grid_density density

Purpose: Sets up an evenly split k-points grid along the reciprocal lattice vectors
of a periodic calculation based on kpoint density.

density : float number in units of 1/A~" defining the density of k-point splits
along the reciprocal axis of the first Brillouin zone

Tag: k_offset

Usage: k_offset f1 f2 £3

Purpose: Defines a possible non-I" offset for the k-point grid in periodic boundary
conditions.

f1, £2, £3 : Fractional coordinates (between zero and one) of a k-point offset ,
in units of the reciprocal lattice vectors. Default: (0., 0., 0.).

Can be used to shift the grid off-I" for better k-space sampling. For example, (0.5, 0.5,
0.5) together with even ni for k_grid defines a Monkhorst-Pack [162] type grid. See
Sec. 4.3 for details.

The k_offset cannot be used with Hartree-Fock or hybrid density functionals as the
current implementation assumes a I'-centered grid.

Tag: k_points_external

Usage: k_points_external

Purpose: Instead of an internally specified k-point grid, allows to specify an
externally read k-grid from a file k_1list.in .

3.4. Specifying the basis (functions, empty sites, k-points, ...) 75

This option is useful to specify an uneven special k-point set [43], etc.

The k_points_external keyword cannot presently be used with Hartree-Fock or
hybrid density functionals as the current implementation the presence of the k_grid
keyword and information in control.in.

If specified, k_points_external expects a separate input file k_list.in to be
provided in the same working directory as all other input files. The format of k_list.in
is as follows:

line 1: nl n2 n3
line 2: Nk
lines 3 - Nk+2: k1 k2 k3 weight

All lines are read as free format.

nl, n2, n3 are integers, specifying the descriptors of a 3D k-point grid. During s.c.f.,
these values are for reference only. However, they may be used for postprocessing after
the s.c.f. cycle is complete, e.g., for keyword output postscf_eigenvalues ,
where the external k-point list k_list.in is not supported.

Nk is the (integer) number of k-points following in the file.

For each k-point, a separate line is expected, including via k1, k2, k3 the coordinates
of this point in units of the reciprocal lattice vectors, and via weight the integration
weight of this k-point in all Brillouin zone integrals.

Tag: onsite_accuracy_threshold

Usage: onsite_accuracy_threshold threshold

Purpose: Issues a warning if the onsite integral of a basis function on the 'radial’
integration grid differs from the same onsite integral on the more accurate
logarithmic grid by more than threshold.

threshold is given in €V. Default: 0.03 eV.

See keyword output onsite_integrands for the integrals that are actually
evaluated.

For “light” settings, you can most likely ignore the associated warning. Possibly, treat
it as a reminder to check final results with “tight” settings or similar, just in case.

FHI-aims writes the respective onsite integral values for all its radial functions side by
side after the setup of all radial functions is complete. Too large deviations between
the calculated values on the radial and logarithmic grids can indicate accuracy problems,
which is a particular concern for high-accuracy benchmark calculations. In particular,
Gaussian-type orbital basis sets of the Dunning type that are used for high-level reference
calculations need grids that are far more accurate than normal NAO basis sets, due to
the unphysical wiggles that contracted Gaussian functions with high exponents introduce
near the nucleus.

If the associated warning strikes, the grid accuracy can be improved either using the
radial keyword or (simpler) the radial multiplier keyword.

76 Chapter 3. The Full Monty: All Keywords and Capabilities

However, if onsite_accuracy_threshold triggers a warning for “light” settings,
most likely you can safely ignore the warning. With light settings, the point may be to
do a reduced-accuracy calculation, which should still be safe for its original purposes.
Just check the radial grid when in doubt.

If the flag override_integration_accuracy is toggled to .false., however, FHI-
aims does stop whenever it encounters a radial function whose onsite integrals are not
deemed accurate enough by the onsite_accuracy_threshold criterion.

Tag: override_integration_accuracy

Usage: override_integration_accuracy flag

Purpose: If set to false, FHI-aims stops calculations for which the onsite
integral of any radial function is less accurate than prescribed by keyword
onsite_accuracy_threshold .

flag can be .true. or .false. Default: .true.

Tag: symmetry_reduced_k_grid

Usage: symmetry_reduced_k_grid flag
Purpose: Determines whether or not to make use of time-reversal symmetry.

flag is a logical expression, either .true. or .false. Default: .true.

Tag: wave_threshold

Usage: wave_threshold threshold

Purpose: Determines the outer radius beyond which a radial function is consid-
ered zero.

threshold is a small positive number. Default: 1075 Lowered to 10~% by
default if output i s requested.

A radial function is considered zero (not evaluated) beyond the radius where u(r) and
its first and second derivatives become smaller than threshold. The default is chosen
such as to not affect any results at all.

For electron densities or orbitals plotted for visualization using cube files (output £
unctionality), a too high value of wave_threshold can sometimes lead to small but
visible discontinuities. Thus, the default threshold is lowered to 1078 if output i
s requested.

3.4. Specifying the basis (functions, empty sites, k-points, ...) 77

Subtags for species tag in control.in:

species sub-tag: basis_acc

Usage: basis_acc threshold

Purpose: Technical cutoff criterion for on-site orthonormalization of radial
functions

threshold is a small positive real threshold. Default: 107*.
Before any calculation, all radial functions for a single species are Gram-Schmidt or-

thonormalized. If the norm of the function after orthonormalization is smaller than
threshold, that function is omitted.

species sub-tag: basis_dep_cutoff

Usage: basis_dep_cutoff threshold

Purpose: Basis function dependent adjustment of the confinement potential for
this species

threshold is either a positive real number, or can be explicitly set .false..
Default: 1074

If not .false., the onset of the basis confining potential (see cut_pot tag below)
is adjusted separately for each basis function, such that the norm of this basis function
outside ronser is sSmaller that threshold. The maximum possible onset radius is still
given by the value explicitly specified by the cut_pot tag.

species sub-tag: confined

Usage: confined n 1 radius
Purpose: Adds a confined free-atom like radial function to the basis set.

n is the (integer) radial quantum number.

1 is a character, specifying the angular momentum (' s, p, d, f, ...).

radius is the onset radius of the confining potential (in atomic units, 1 a.u.
= 0.529177 A). If the word auto is specified instead of a numerical value, the
default onset radius given in the cut_pot tag is used.

The defining potential for this basis function type consists of the non-spinpolarized, self-
consistent spherical free-atom potential (possibly itself confined, using the cut_free_atom
tag), and a confining potential. The shape of the confining potential is the same for all
basis functions of a given species, and set using the cutoff type and cut_pot
subtags.

species sub-tag: core

78 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: core nl
Purpose: Defines the top “core” shell of the species for this angular momentum.

n is the (integer) radial quantum number.
1 is a character, specifying the angular momentum (s, p, d, f, ...).

Currently not needed for production calculations, but listed here because the “core”
infrastructure is currently being reworked and may see useful additions in the near future.
This flag defines which electrons of the species are considered “core” electrons, and which
enter as explicit valence electrons.

species sub-tag: core_states

Usage: core_states number

Purpose: Independent determination of the number of states that are core states
in the current species.

number is an integer number (to be multiplied by 2 for the number of core
electrons). Default: 0.

Experimental at present, not needed for any production purposes. See also the core
keyword. The core_states keyword should interact with the core keyword,
but does not yet, since any associated functionality is still under development. Both
keywords are listed here for future reference only.

species sub-tag: cut_atomic_basis

Usage: cut_atomic_basis flag

Purpose: Only relevant to decide whether the basis_dep_cutoff keyword
also applies to atomic-type (minimal) radial functions.

flag is a logical expression, either .true. or .false. Default: .false.

This keyword applies only to the setting specified by keyword basis_dep_cutoff
. Do not enable it routinely without thorough testing.

By default, the minimal basis functions in FHI-aims are subject to the cutoff potential
with the fixed onset specified by the cut_pot keyword. However, the more restrictive
basis_dep_cutoff keyword does not apply to the minimal basis by default.

This can be changed by setting cut_atomic_basis to .true., but the associated
total energy changes are significantly larger than for other basis functions. By default,
we therefore do not recommend adding a tighter cutoff to the minimal basis functions
at this time. It is, however, possible that this effect is mainly a systematic error between
the core states, and after further testing, we may yet choose to enable this keyword if
we can guaranteed that its use is safe.

species sub-tag: cut_pot

3.4. Specifying the basis (functions, empty sites, k-points, ...) 79

Usage: cut_pot onset width scale

Purpose: Specifies the numerical parameters for the general (default) confine-
ment potential v.(r) for all basis functions of this species.

onset specifies the default onset radius of the cutoff potential, in A (v.(r)=0
for r < ronset)-
width specifies the radial width w of the cutoff potential, in A (v.(r)=occ for

T > Tonset T w)
scale is a scaling parameter to increase or decrease the numerical value of v..

This tag is mandatory, since it specifies onset, a critical parameter that allows to
tune the efficiency of a calculation for a given target accuracy. Unless reduced by the
basis_dep_cutoff tag, onset is the default onset radius used to construct all valence
(minimal) and hydrogen-like basis functions of this species. In addition, any confined
free-atom or free-ion like radial functions use this onset radius if auto is used in their
specification.

Notes: The functional form of v.(r) can be selected using the cutoff_type keyword,
and width and scale apply to this shape. Modifying these latter parameters is usually
not necessary for a production calculation, but the onset value should be verified at
least as a quick numerical check.

species sub-tag: cutoff_type

Usage: cutoff_type identifier

Purpose: Specifies the functional form of the confinement potential associated
with this species.

identifier is a string that selects a given confinement potential shape as
specified in the code. Default: exp(1_x) (1-x)2.

All confinement potentials in FHI-aims are characterized by the rigorous boundaries
Ve(r)=0 for 7 < ropser and v.(r)=00 for r > rey = Tonset + W, Where ropser may depend
on the basis function, and w is the width specified by the cut_pot tag. In addition,
each shape contains a scaling parameter s, also specified via the cut_pot tag.

Available confinement potential shapes (identifier) for ropset < 7' < T'eut = Tonset + W
are:

e exp(1 x) (1-x)2:
w 1

" — Tonset (T - Tcut>2

ve(r) = exp(

(the default in FHI-aims)

e junquera :
1

T — Tonset (T - Tcut)

ve(r) = exp(

(the form originally suggested by Junquera et al. [117])

80 Chapter 3. The Full Monty: All Keywords and Capabilities

e x2 (1-x2)
1

Ve(r) = (1 — Tonset)” - m

species sub-tag: gaussian

Usage: gaussian L N [alpha]
[alpha_1 coeff_1]
[alpha_2 coeff_2 |

[alpha_N coeff_N]

Purpose: Adds a Gaussian-based radial function to the basis set.

Restriction: This basis function type is not subject to a cutoff potential. It may
therefore require a wider radial base integration grid than the standard
NAQ's in FHI-aims.

L is an integer number, specifying the angular momentum

N is an integer number, specifying how many primitive Gaussians comprise the
present radial function

alpha : If N=1, this is the exponent defining a primitive Gaussian function [in
bohr~2].

alpha i coeff i: If N>1,¢=1,..., N additional lines specify exponents «;
and expansion coefficients g; for a non-primitive linear combination of Gaussians.

FHI-aims allows to use Gaussian-based radial functions to compare to existing popular
Gaussian-based implementations of quantum chemistry. These functions can either be
primitive Gaussians,

L rh 2
= : - 3.12
u(r) = o exp(—ar?), (3.12)
or non-primitive linear combinations.
1 i=N
u(r) = NormTLH , ; gi exp(—aur?). (3.13)

In existing quantum chemistry codes, Gaussian basis functions can be defined either as
spherical Gaussians [Eq. (3.12) above], or as cartesian Gaussians,

o(r) = 2"y 2" exp(—ar?), where k+m+n=L. (3.14)
This behavior can be mimicked using the pure_gauss tag (see below). Finally, note

that in order to use an exclusively Gaussian-based basis set, you must prevent the use of
the minimal free-atom like NAO basis functions using the include min basis tag.

species sub-tag: hydro

3.4. Specifying the basis (functions, empty sites, k-points, ...) 81

Usage: hydro n 1l z_eff
Purpose: Adds a hydrogen-like radial function to the basis set.

n is the (integer) radial quantum number.

1 is a character, specifying the angular momentum (' s, p, d, f, ...).

z_eff scales the radial function as an effective nuclear charge in the defining
Coulomb potential zeg/7.

By default, hydrogen-like basis functions in FHI-aims are subject to the numerical
confinement potential given by cutoff type and cut_pot . Optionally,
analytical hydrogen-like functions (no confinement) can be requested using the
global hydro_cut tag.

species sub-tag: include_min_basis
Usage: include_min_basis flag

Purpose: Allows to exclude the minimal basis of numerically tabulated free-atom
basis functions (core and valence) from the basis set.

flag is a logical expression, either .true. or .false. Default: .true.

This flag is normally only useful to compare explicitly with basis sets from other methods,
usually Gaussian basis sets.

With Gaussian basis sets and any other basis sets that should not include any radial func-
tions of the numeric atom-centered orbital spherical free atom, include min basis
must be set to .false.

If include min basis is set to .true., the basis set will additionally include
the numerical spherical free-atom radial functions. For our standard FHI-aims numeric
atom-centered orbital basis sets, this behavior is desired and part of their definition.
However, if these basis functions are added to a standard Gaussian-type basis set, then
total energies and other computed quantities will not be the same as, say, with a pure
Gaussian-type orbital code.

Note that, due to the presence of the free-atom radial functions, our numeric atom-
centered basis sets usually give lower total energies for DFT than standard Gaussian
basis sets, because the description of the region near the nucleus is more precise. This
is demonstrated quantitatively, including figures, in the appendix of Ref. [232].

species sub-tag: ion_occ

82 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: ion_occ n 1 occupation

Purpose: Specifies the shell occupation of a radially symmetric, non-spinpolarized
free ion that defines any ionic basis functions.

Restriction: Only one type of ion can be used to define ionic basis functions for
a given species.

n is the (integer) radial quantum number.

1 is a character, specifying the angular momentum (s, p, d, f, ...).

occupation is the number of electrons in the topmost occupied valence shell of
this ion.

This tag defines an ionic configuration, but does not actually add any ionic functions
to the basis used in the present calculation. Actual basis functions are added by the
ionic keyword.

Only the topmost valence shell of each angular momentum channel of the ion is specified.
All lower-lying shells are assumed to be completely filled for the self-consistent spherical
free-ion calculation.

species sub-tag: ionic
Usage: ionic n 1 radius

Purpose: Adds a free-ion like radial function to the basis set.

n is the (integer) radial quantum number.

1 is a character, specifying the angular momentum (s, p, d, f, ...).

radius is the onset radius of the confining potential (in atomic units, 1 a.u.
= 0.529177 A). If the word auto is specified instead of a numerical value, the
default onset radius given in the cut_pot tag is used.

species sub-tag: pure_gauss

Usage: pure_gauss flag

Purpose: If .true., any gaussian basis functions for this species will be
purely spherical Gaussians.

flag is a logical string, either .false. or .true. Default: .true.

See keyword gaussian for the distinction between spherical and cartesian Gaussian
functions. In short, cartesian and spherical Gaussian functions are equivalent except that
for a given L, cartesian Gaussians add a so-called angular momentum contamination.
If pure_gauss is specified, this angular momentum contamination is mimicked by
FHI-aims.

Consider the simple (textbook!) three-dimensional harmonic oscillator in quantum me-
chanics. This can be solved either in cartesian coordinates, or in spherical coordinates.
If solves in cartesian coordinates, you will find that there are six degenerate solutions
for the principal quantum number 2, five of which correspond to /=2 (d channel), but

3.4. Specifying the basis (functions, empty sites, k-points, ...) 83

one of which corresponds to =0 (s channel). This is the exact angular momentum
contamination exhibited by the cartesian definition of a Gaussian basis function.

species sub-tag: valence

Usage: valence n 1 occupation

Purpose: Specifies the shell occupation of the radially symmetric, non-
spinpolarized free atom that defines the minimal basis.

n is the (integer) radial quantum number.

1 is a character, specifying the angular momentum (s, p, d, f, ...).

occupation is the number of electrons in the topmost occupied valence shell of
this ion.

Only the topmost valence shell of each angular momentum channel of the atom is
specified. All lower-lying shells are assumed to be completely filled for the self-consistent
spherical free-atom calculation. The valence occupation must be defined explicitly for
each species .

The self-consistent free-atom potential generated by this calculation is used to generate
all minimal and confined basis functions used for this species, after the confining
potential is added.

The self-consistent free-atom calculation can itself be confined by a different confining
potential, the onset of which is specified by the cut_free_atom keyword.

For DFT-LDA/GGA, the same xc functional that is used in the full three-dimensional
calculation is also used to define the self-consistent free atom. For any methods involving
Hartree-Fock exchange (e.g., hybrid functionals), the free atom is generated using the
pw-1da LDA functional.

The self-consistent free atom density generated here is also used in the construction of
partition functions for the Hamiltonian integrals and the Hartree potential, as well as to
build the initial charge density (unless otherwise requested!) and the reference charge
density subtracted before constructing the Hartree potential.

species sub-tag: sto
Usage: sto n 1l zeta
Purpose: Adds a Slater-type orbital to the basis set.
Notes: This basis function type is not subject to a cutoff potential.

n is an integer which plays the role of the principal quantum number for the STO
1 is an integer specifying the STO angular momentum

zeta is a double precision number specifying the STO exponent, which plays the
role of the effective nuclear charge

84 Chapter 3. The Full Monty: All Keywords and Capabilities

3.5 Integration, grids, and partitioning

The next single most important set of specifications required for FHI-aims are the settings
regarding the numerical grids used in many contexts. Details regarding the shape and
physical motivation behind these grids are given in Refs. [26, 91], and we do not repeat
them here.

Notice that the actual required grids may depend on the context of the calculation, for
example whether Hartree-Fock, hybrid functionals, and or GW calculations are required.
In these cases, some specific settings may require tightening, and some defaults may
automatically be chosen differently depending on whether or not those techniques are
used.

Specifically, the present section deals with the following topics:

o the 1D logarithmic grid infrastructure required for atomic / free-atom like calcu-
lation

« radial and angular grids for all three-dimensional integrals

» shaping the partition functions used to split the full three-dimensional integrals
into effective atom-per-atom pieces

« Splitting the grids into different batches for localization / parallelization efficiency

While many of the settings below take safe defaults for standard FHI-aims calculations
and need not be modified, it is particularly important to verify the accuracy and effi-
ciency of all three-dimensional integration grids (radial_base, angular_grids
, and associated tags), since these determine the performance of the code. In the
species_defaults files, (very) safe settings for DFT-LDA/GGA are provided, but for
many tasks, may be reduced at very little accuracy loss.

3.5. Integration, grids, and partitioning 85

Tags for general section of control.in:

Tag: batch_size_limit

Usage: batch_size limit value
Purpose: Hard upper bound to the number of points in an integration batch.

Restriction: Applies to the maxmin and octree grid_partitioning_method

value is an integer number. Default: 200.

See grid_partitioning method and Ref. [91] for details regarding integration
batches.

Tag: force_lebedev

Usage: force_lebedev type

Purpose: Allows to switch between Delley's [53] angular grids (17 digits) and
the original angular grids tabulated by Lebedev and Laikov [138, 139, 140] (12
digits). And also, the ESTD and D6h grid are supported here.

type is a keyword (string), either original or Delley or estd or d6hgrid.
Default: Delley.

This option need not be changed (or invoked) in any normal runs, since there is no
quantitative difference between integrals with Delley's and Lebedev's tabulated grids to
our knowledge.

Lebedev's grids may be explicitly invoked when denser angular grids than 1202 points
(already very dense!) per radial integration shell around each species are required. In
detail, grids with the following numbers of grid points are provided:

» Delley : 6, 14, 26, 50, 110, 194, 302, 434, 590, 770, 974, 1202

o Lebedev : 6, 14, 26, 38, 50, 86, 110, 146, 170, 194, 302, 350, 434, 590, 770,
974, 1202, 1454, 1730, 2030, 2354, 2702, 3074, 3470, 3890, 4334, 4802, 5294,
5810

These numbers of grid points can be invoked in the subtags of the angular_ grids
specified description for fixed angular grids (the default in the preconstructed species_defaults
files), and in further tags such as angular or angular_min .

Tag: grid_partitioning_method

86 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: grid_partitioning method method

Purpose: Allows to switch between different methods to partition the full (3D)
integration grids into batches for individual operations.

method is a string, charactrizing one of the different methods outlined below.
Default: serial-maxmin, parallel-parallel_hash+maxmin

Partitioning the integration grid properly can be performance-critical for the expensive
grid-based Hamiltonian integration and charge density update steps. Details on these
methods are given in Ref. [91]. In particular, we support:

o maxmin : The default for serial computations: the “grid-adapted cut-plane”
method described in Ref. [91]

o parallel hash+maxmin : The default for all parallel runs. We first hash the grid
points to tasks by the geometric location and then run a maxmin algorithm locally
in each task.

o parallel maxmin : Memory-parallel implementation of the maxmin method.
However, the exact implementations requires rather much communication, and
has been superseded by parallel hash+maxmin.

» octree : The "octree” method described in Ref. [91]

» parallel_octree Parallel version of the “octree” method described in Ref. [91].
Only useful for research purposes—superseded by parallel hash+maxmin for all
practical applications.

o octant Simple partitioning of the grid into “octants” of each radial integration
shell arround each atom.

Note that additional parameters may be invoked to specify details for these methods,
most importantly batch_size limit and points_in_batch .

We mention for completeness that FHI-aims supports further, experimental grid batching
methods, including the possibility to link to external libraries. The associated method
strings are tetgen+metis, qhull+metis, nearest+metis, and group. As discussed
in Ref. [91], the conceptually simpler maxmin method performs as well or even better
than these “bottom-up” type approaches, and should be preferred.

Tag: min_batch_size
Usage: min_batch_size value
Purpose: Sets the minimum number of points allowed in an integration batch.
Restriction: Affects the octree grid_partitioning method method only.

value is an integer number. Default: 1.

No need to tweak for standard production calculations. See grid_partitioning method
for details regarding integration batches.

3.5. Integration, grids, and partitioning 87

Tag: partition_acc
Usage: partition_acc threshold

Purpose: If the partition function norm for 3D integrals and the Hartree potential
is below threshold, that integration point is ignored.

threshold is a small positive real number. Default: 10717,

See Ref. [26] for details regarding “partitioning of unity” of the charge density in inte-
grations and the Hartree potential. The partition functions p..(r) are only calculated if
their denominator (the norm; e.g. Y, pat/|r — Rat|? is greater than value, else that
integration point is ignored.

Notice that this type of partitioning is strictly rigorous for integrands that extend no
further than the free-atom like densities used to define our partition functions. This is
always true for DFT-LDA/GGA, with NAO's but if you suspect (e.g., with very diffuse
Gaussian basis functions) some kind of integration noise, reducing threshold may be
a good first test.

Tag: partition_type
Usage: partition_type type

Purpose: Specifies which kind of partition table is used for all three-dimensional
integrations.

type : A string that specifies which kind of partition table is used. Default:
stratmann_sparse

Usually, this tag need not be modified from the default. See the Computer Physics
Communications description of FHI-aims for a description of the numerical integration
technique used in FHI-aims.

In brief, each extended three-dimensional integrand is broken down into atom-centered
pieces, using a set of localized, atom-centered partition functions:

pat(r) = Zi]f;(:')(ﬂ (3.15)

where g,:(7) is an atom-centered weight function. The following options for type are
available:

o tho_12: gu(r) = niee(r)/r?
(first suggested by Delley [52]).
e tho_r : gu(r) = nige(r)/r
free

e rho: gat(r) = Nyt (T)

e fermi : Deprecated—do not use. A Fermi-function like approach, requires two
additional parameters.

88 Chapter 3. The Full Monty: All Keywords and Capabilities

o stratmann: The shape suggested by Stratmann et al., Ref. [209]. This saves ~10-
20 % of the numerical effort compared to rho_r2. More importantly, however, our
recent testing shows that stratmann is also significantly accurate in some corner
cases where the effects of integration accuracy even make a difference. Note
the properly bounded “stratmann_smoother” default function below. Straight
“stratmann” should not be used.

o stratmann_smooth: Partial update to guarantee a smooth edge at the “outer
radius” or atoms.

stratmann_smoother: Corrected version of the stratmann partition table. The
following explanation refers to the prescription given in Egs. (8), (11), and (14)
of Ref. [209]. The actual (normalized) partition function is given by Eq. (10). At
each grid point, it depends on a product of cell functions Eq. (9) over potentially all
atoms in the system—unless its cell function is equal to one, a faraway atom may
contribute to the partition function at a given grid point. Through the definition
of wi in Eq. (4) of Ref. [209] and the limitation of the cell function to unity
for pix < a = 0.64 through Egs. (11) / (14), the distance from which an atom
can contribute is restricted, but potentially to a very large radius indeed. This
becomes a problem for periodic systems (in our case, a theoretical radius of 25 A
would have resulted even for light settings and the farthest grid points from each
atom, set to 5 A for light settings).

To avoid an overly large volume of contributing atoms, we restrict the list of
contributing atoms to only those whose free-atom charge density would not be
zero at the integration point in question. To that end, Eq. (8) of Ref. [209]
is additionally multiplied with a function that smoothly interpolates between the
original s of Stratmann and coworkers and unity. The interpolation is done only
for atom distances between 0.8 and 1.0 times their free-atom radius, and uses a
[1—cos(2x)]-like interpolating function. The bottom line is that we get the benefits
of both the Stratmann table and a restricted atom list without any discontinuities
or wiggles as a function of atomic positions or unit cell vectors — which is as it
should be.

e stratmann_sparse: This version of the Stratmann partition table is the same
as stratmann_smoother, but it stores the relevant interatomic distances in a
memory saving form.

Note that the free atom electron density nfT¢(r) still determines the extent of many

partition function types. This is controlled by the cut_free atom keyword. See
also the hartree_partition_type keyword, which presently must have the same
setting as the partition_type keyword.

Tag: points_in_batch

3.5. Integration, grids, and partitioning 89

Usage: points_in_batch value
Purpose: Target number of grid points per integration batch.

Restriction: Applies to the maxmin and octree grid_partitioning method

value is an integer number. Default: 100 for most calculations. When GPU
acceleration is used for tasks involving the batch integration scheme, this value

is raised to 200.

See grid_partitioning method and Ref. [91] for details regarding integration
batches.

90 Chapter 3. The Full Monty: All Keywords and Capabilities

Subtags for species tag in control.in:

species sub-tag: angular
Usage: angular limit

Purpose: For self-adapting angular integration grids, the maximum allowed
number of points per radial shell.

Restriction: This flag has no effect for species where angular_grids s
explicitly specified (the default in our species_default files).

limit is the maximum allowed number of integration points per radial shell.

This option is only meaningful for self-adapting angular grids, which are not the recom-
mended default for production calculations with FHI-aims — (i) because these grids are
often rather dense, and (ii) because they are meaningful only for cluster-type geometries.
In order to specify self-adapting angular grids anyway, you must also set the keywords
angular min and angular_acc .

The available values of integration points in given angular grids are listed with the
keyword force_lebedev .

species sub-tag: angular_acc
Usage: angular_acc threshold

Purpose: For self-adapting angular integration grids, specifies the desired
integration accuracy for the initial Hamiltonian and overlap matrix elements.

Restriction: Use only for cluster-type geometries.

threshold is a small positive real number; if 0., no adaptation is performed.
Default: 0.

If threshold is not zero, this option invokes the self-adaptation of all angular integration
grids, within the limits given by angular _min and angular . The adaption criteria
are the initial Hamiltonian / overlap matrix integrals.

In all preconstructed species_default files, we specify reliable angular integration grids
for all elements for DFT. No adaptation is required. For the curious, our own grids are
adapted for symmetric dimers at a tight bond distance, using threshold = 1075.

species sub-tag: angular_grids

Usage: angular_grids method

Purpose: Indicates how the angular integration grids (in each radial integration
shell) for this species are determined.

method is a string, either auto or specified.

The standard species_default files provided with FHI-aims provide specified angu-

3.5. Integration, grids, and partitioning 91

lar grids (on the safe side, i.e., rather dense) for each radial_base integration shell
around an atom. The line:

angular grids specified
must be immediately followed by a series of lines with

division [..|]
outer_grid [..]

tag(s). These contain the actual grid specification.

If method auto is given, appropriate specifications for self-adapting grids should be
included in control.in (keywords angular, angular _min, angular_acc).

species sub-tag: angular_min

Usage: angular_min value

Purpose: specifies the minimum number of angular grid points per radial
integration shell

value is the minimum number of grid points per shell.

For specified angular_grids, acts as a lower bound for the number of points per
radial shell (specified grids will be increased accordingly).

For self-adapting angular grids, use together with the angular and angular_acc
keywords.

In practice, value will be reduced to the next-highest available Lebedev integration grid
(see force_lebedev tag for possible values).

species sub-tag: cut_free_atom

Usage: cut_free_atom type [radius]

Purpose: Adds a cutoff potential to the initial, non-spinpolarized free-atom
calculation that yields free-atom densities and potentials for many basic tasks.

type : A string, either finite or infinite. Default: finite for DFT-
LDA/GGA and for RI method LVL; infinite for Hartree-Fock, hybrid
functionals, GW, etc. if RI _method V is used.

radius : A real number, in A: Onset radius for the cutoff potential, as defined
in the cut_pot tag. Default: For DFT-LDA/GGA, 7onset as given by the
onset parameter in cut_pot

Although this is a technical parameter (ideally, no influence on self-consistent, converged
results), it has important implications for a variety of numerical tasks in the code:

o It influences (slightly) the basis-defining potential for the minimal basis, and for
confined basis functions.

e It limits the radius of the free-atom density, which in turn limits the extent of the
default integration partition table. For DFT-LDA/GGA, this extent need must not

92 Chapter 3. The Full Monty: All Keywords and Capabilities

be smaller than the radius of the most extended basis function, but it also need
not be larger, since all integrands are zero outside anyway. This is not the case
for the two-electron Coulomb operator, which is needed for Hartree-Fock, hybrid
functionals, G, etc, in which case the default is currently infinite (no cutoff
potential applied).

o It also limits the extent of the partition table used for the Hartree potential.Especially
in periodic calculations, it is vital that the real-space part of the Hartree potential
is kept small. In that case, it is thus critical to keep radius as small as possible.

Usually, the default specified in the code should be accurate for all requirements. If,
however, you suspect some kind of integration noise which is not related to the grid,
increasing the cut_free_atom value may be a good test.

species sub-tag: division
Usage: division radius points

Purpose: For specified angular grids , the number of angular points on
all radial shells that are within radius, but not within another, smaller division.

Restrictions: Meaningful only in a block immediately following an
angular_grids specified line.

radius : Outer radius (in A) of this division.
points : Integer number of angular points requested in this division (see
force_lebedev tag for possible values).

Use the outer_grid tag to specify the number of angular grid points used outside
the outermost division radius.

species sub-tag: innermost_max

Usage: innermost_max number
Purpose: Monitors the quality of the radial integration grid.
number is an integer number, corresponding to a radial grid shell. Default: 4.
If, after on-site orthonormalization, a radial function's innermost extremum is inside the

radial grid shell number, counting from the nucleus, that radial function is rejected in
order to prevent inaccurate integrations.

species sub-tag: logarithmic

3.5. Integration, grids, and partitioning 93

Usage: logarithmic r_min r_max increment

Purpose: Defines the dense one-dimensional “logarithmic” grid for the direct
solution of all radial equations (free atom quantities, Hartree potential).

r_min is a real number (in bohr); the innermost point of the logarithmic grid is
defined as r(1)=r_min/Z, where Z is the atomic number of the nucleus of
the species . Default: 0.0001 bohr.

r_max is a real number (in bohr), the outermost point of the logarithmic grid,
r(N). Default: 100 bohr.

increment is a real number, the increment factor a between successive grid
points, r(i) = a- r(i — 1). Default: 1.0123.

The number of logarithmic grid shells, IV, is uniquely determined by r_min, r_max, and
increment. Specifying a dense logarithmic grid is not performance-critical.

species sub-tag: outer_grid

Usage: outer_grid points

Purpose: For specified angular_grids , the number of angular points on
all radial shells outside the largest division .

Restrictions: Meaningful only in a block immediately following an
angular_grids specified line.

points : Integer number of angular points (see force_lebedev tag for

possible values).

Use the division tag to specify the number of angular grid points used for radial
shells within specified radii.

species sub-tag: radial_base
Usage: radial_base number radius
Purpose: Defines the basic grid of radial integration shells according to Ref. [14]

number is an integer number (the total number of grid points, V).
radius is a positive real number which specifies the outermost shell of the basic
grid, Touter, in A.

The location of the number radial shells is given by

log{1 — [i/(N +]}
log {1~ [N/(N T 1)} (3.16)

T’(Z) = Touter *

With this prescription, shell i=0 would be located exactly at (i) = 0, and shell (=N +1
would be located exactly at (i) = oo, i.e., this provides an exact mapping of the interval
[0,00].

The FHI-aims species_default files provide values for number according to the for-
mula N=1.2x14(nucleus +2)'/3, as determined empirically in Ref. [14]. These
“basic” grids are can then be augmented by adding uniform subdivisions, using the

94 Chapter 3. The Full Monty: All Keywords and Capabilities

radial multiplier keyword described below.

species sub-tag: radial_multiplier
Usage: radial multiplier number
Purpose: Systematically increases the radial integration grid density.

value is an integer, number specifying the number of added subdivisions per
basic grid spacing. Default: value = 2

The basic grid of N radial shells (see radial base definition) is evenly subdivided
number-1 times, to yield number-(N + 1) — 1 shells in the actually used integration grid.
Thus, the radial multiplier tag allows to systematically increase the number
of radial shells (by factors). For example, number=2 (the default) would yield 2N + 1
shells total.

Note that some all-electron Gaussian basis sets contain either very high or very low expo-
nents. If such basis sets are used for test purposes, it may be necessary to test the con-
vergence of the radial integration grid directly by increasing the radial multiplier

The effect of the radial multiplier is explained in Ref. [232] (open access at
http://iopscience.iop.org/1367-2630/15/12/123033/article) Look at Figure
A.1 and the accompanying explanation in that reference.

http://iopscience.iop.org/1367-2630/15/12/123033/article

3.6. Electron density update 95

3.6 Electron density update

In FHI-aims, the first step of a new iteration is the update of the electron density based
on the output Kohn-Sham orbitals produced by a previous step.

The present section covers only the actual density update. Techniques relevant for the
self-consistent convergence of the whole calculation (electron density mixing, precondi-
tioning, etc.) are covered separately in Sec. 3.10.

96 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: density_update_method

Usage: density_update_method type
Purpose: Governs the selection of the density update type.

Restriction: For periodic boundary conditions, only the density-matrix based
electron density update is supported.

Default: Cluster case: automatic. Periodic case: density_matrix

Choices for type:

o orbital : Use Kohn-Sham orbitals based update

o density_matrix : Use density-matrix based update method. Required for peri-
odic systems.

e automatic : Selects the best update method automatically, based on the expected
amount of work.

o split_update_methods : Charge density is updated via Kohn-Sham orbitals and
force is updated via density-matrix

If not specified, default for cluster geometries is the automatic selection of the density
update method.

See Ref. [26] for details regarding density update mechanisms. In general, FHI-aims
offers an electron density update based on Kohn-Sham orbitals [O(N?) with system
size, but faster for finite systems up to ~100-500 atoms depending on basis size], and
an O(N) rewrite based on the density matrix. This should be used for large systems,
and is the default for periodic systems.

For the non-periodic case, the current code version determines the switching point
between the orbital-based update and the density-matrix based update automatically
through some heuristics. This procedure guarantees that accidental O(N?) calcula-
tions will not happen for very large systems, but the optimum cross-over point may not
always be exactly found. If you are planning long runs of essentially the same geome-
try (molecular dynamics trajectories are a good example), you may save some time by
performing some explicit benchmarks first. You can then specify the optimum density
update method for your own case, instead of relying on our heuristics.

3.7. Electrostatic (Hartree) potential 97

3.7 Electrostatic (Hartree) potential

This section describes the method used to compute the electrostatic (Hartree) potential
in FHI-aims. For a more exhaustive description, please refer to Ref. [26].

Some central equations are repeated here in detail since, as a result, the calculation of
the Hartree potential can be heavily customized by many analytically available accuracy
/ cutoff thresholds, given below.

For production calculations, it is important to note that our standard accuracy thresholds
in the Hartree potential are numerically sound, and usually do not require an explicit cus-
tomization. The only parameter which should be explicitly set is the angular momentum
up to which the atom-centered partitioned charge density is expanded, 1 hartree
below.

As pointed out in Ref. [26], our experience is that energy differences are usually well
converged for l,tree=4, and total energy convergence at the level of a few meV is reached
at lhartree=6. Only in exceptional cases should different settings be required.

At the beginning of a calculation, we first compute the electrostatic potential associated
with the initial superposition of free-atom densities, 3", ne¢(|r — R.|):

ves,free(,r) — Z U::,freeﬂ,r _ Rat|> (317)
at

This is the largest part of the Hartree potential, but is always accurately known from
the solution of spherical free atoms on a dense logarithmic grid.

For a given electron density n(r) during the s.c.f. cycle, we then only ever compute the
electrostatic potential associated with the difference to the superposition of free atoms,
0ves(T), based on

on(r) =n(r) — anrteeﬂ'r — R.|) (3.18)
at
on(r) is first split up into a sum of partitioned, atom-centered charge multipoles,

Siatim (1) = / PQapae(r) - 51(r) - Yion () (3.19)
r=|T— R

(the sum of all partition functions at every point is always unity). Due to the finite

extent of dn(r) and p.(r) (both are controlled by the cut_free_atom keyword),

the range of each component 74t 1, (7) is also bounded.

The Hartree potential components 00, (7) are then determined on a dense, one-
dimensional logarithmic grid, using classical electrostatics. The resulting 00, 1, () are
then numerically tabulated, and evaluated elsewhere using cubic spline interpolation.

For cluster systems, it is important to note that the finite extent of 724t ,,,(7) implies
that the numerically tabulated part of dv.: () can also be kept finite. Outside this
“multipole radius”, d7at im (r)=0, and d¥.. 1 (r) falls off analytically as

5ﬁat,lm<r) = 7nat,lm/7nl+1 . (320)

98 Chapter 3. The Full Monty: All Keywords and Capabilities

Instead of a spline evaluation, faraway atoms can thus be analytically accounted for using
tabulated, constant multipole moments mg¢,,,. High-l components can be analytically
cut off as they approach zero at large distances.

In this approach, the effort to create the complete Hartree potential on the entire grid
is determined by tabulating the contribution from every atom on every grid point,

Ves(T) = 0 (P) + 3 0Varim (|7 — Rar) Vi (Qar) (3.21)

at,im

The scaling is thus close to O(N?) with system size, albeit reduced by high-I multipole
components falling off towards large distances.

For periodic systems, essentially the same equations hold, except that the Hartree poten-
tials associated with the atom-centered charge densities 7.t () are here additionally
split into a short-ranged real-space part, and a smooth, long-ranged reciprocal-space
part (Ewald's method), by splitting

L _ erf(r/m) + erfe(r/m) (3.22)

(and similar for components of higher angular momentum). The summation of long-
range tails thus happens in reciprocal space, using Fourier transforms. As a result, the
scaling of this effort is no longer O(N?), but rather approaches O(NInN) in Fourier
transforms.

The parameter ry can be very important to determine the efficiency of the actual eval-
uation of the Hartree potential in periodic systems; it can be set in control.in using
the Ewald radius keyword. The keyword is adaptive to some extent but espe-
cially for slab systems or 2D systems with large vacuum regions, specifying the value of
Ewald_radius by hand can lead to significant performance improvements. (FHI-aims
can accommodate very large vacuum regions, e.g., 100 A, efficiently if this parameter is
set correctly.)

The cutoff reciprocal space momentum for the Fourier part of the electrostatic potential,
|G max|, is estimated using a small threshold parameter 7:

1 r2G? o

G XlemsaX—Z. . . max\) __)
[Gimax e I S R A Ty

(3.23)

Our default choice for n (in atomic units, i.e., those used internally in the code) is
n = 5-1077, but this is somewhat overconverged, and a larger threshold value is probably
sufficient for most situations. Note that Eq. (3.23) is slightly modified compared to the
version given in Ref. [26].

3.7.1 Non-periodic Ewald method

For large, finite systems (more than 200 atoms) it is possible to use the so-called ‘non-
periodic Ewald method’ in aims (keyword use_hartree_non_periodic_ewald).
The basic idea of this method is to use interpolation to reduce the effort for calculting

3.7. Electrostatic (Hartree) potential 99

the Hartree term. Specifically, the method consists in computing the electrostatic po-
tential not on the fine interpolation grid points but firstly on a coarse Cartesian grid.
Subsequently, the values of the potential on the coarse grid are interpolated to the fine
integration grid. If the Cartesian grid is suffiently coarse, time is saved because of the
reduced number of potential computations.

We use an envenly spaced, Cartesian grid with a certain grid width. Due to this fixed
grid width, special attention has to be paid to the near-atom regions where the electron
density and hence also the potential oscillates strongly. This problem can be solved
by using the Ewald decomposition which was originally developed for periodic systems.
Ewald’'s method aims at separating large and small scales by adding and subtracting
charge spheres with Gaussian radial shape to a lattice of monopoles. In terms of the
potential, this yields q/r = [q/r —Q(r)] +€(r) for each monopole, where g := ¢/(4mep)
and ¢ is the monopole charge. The function Q(r) = gerf(r/rq)/r is the potential of a
Gaussian charge sphere with width parameter 5. The first part of the decomposition
q/r — S(r) decays quickly with increasing r so that this part is calculated in real space,
while the second part Q(r) decays quickly in Fourier space so that it is calculated there.
The two parts are often referred to as ‘short range’ and ‘long range’ part. However, this
is somewhat misleading because the second part is actually defined in whole space. For
this reason, we call the first part ‘localized’ and the second part ‘extended’.

We can translate the classical Ewald decomposition to our case of a finite system by
calculating the smooth extended part €2(r) on the coarse Cartesian grid, with subsequent
interpolation to the fine integration grid points. In addition, we have to calculate the
localized part in the vicinity of the nuclei where we cannot save any computational time
[actually some time is lost since we have to compute €(r) there, too].

In the classical Ewald method, Gaussian spheres are an excellent choice as auxiliary
charges due to the quick convergence of both the localized part in real space and the
extended part in Fourier space. However in our case, where we interpolate in real
space, Gaussian spheres are not necessarily a proper choice. Therefore optimized charge
distributions obtained from a variational method by W. Jiirgens are used.

In order to reduce the number of grid points, we allow the Cartesian grid to have arbitrary
orientation. More specifically, we are looking for a rectangular cuboid that covers all
integration grid points but with minimum volume. This problem is solved approximately
by using a common procedure that is based on principle component analysis.

100 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: adaptive_hartree_radius_th

Usage: adaptive_hartree_radius_th threshold

Purpose: Determines the distance beyond which an analytical component
OVatm (1) of the periodic (Ewald!) real-space Hartree potential for a given atom
is considered zero.

threshold is a small positive real number. Default: 1075.

Usually, this tag need not be modified from the default. Long-range multipole com-
ponents 00, () of the real-space (Ewald!) Hartree potential are not evaluated for
distances where §U,t,,(r) <threshold. This tag provides similar functionality as the
multipole_threshold tag for the cluster case (numerically different due to the ab-
sence of erf(r/rg) in the cluster case).

Tag: compensate_multipole_errors

Usage: compensate _multipole_errors flag

Purpose: If true, introduces a compensating normalization and density to
eliminate the effects of small charge integration errors in the long-range Hartree
potential.

flag is either .true. or .false.. Default: .true.. .false. only if a DFPT
calculation (thisincludes: calculate_friction and magnetic_response
) is requested.

This keyword is especially useful when assessing the electrostatic potential far away from
a structure, e.g., when calculating a surface dipole correction (for asymmetric slabs) or
work function. See use_dipole_correction or evaluate work_function for
details on these methods.

In general, keyword compensate _multipole_errors makes sure that the long-
range charge components of the Hartree potential are exactly those expected from the
calculated (and normalized) electron density. Any small spurious non-zero components
that are solely due to integration errors on a finite integration grid.

Tag: Ewald_radius

Usage: Ewald _radius value

Purpose: Governs the Ewald-type short-range / long-range splitting of the
Coulomb potential in Eq. (3.22).

value : Either a string automatic, or the range separation parameter rg in Eq.
(3.22) (in bohr). Default: automatic.

May also be specified as hartree_convergence_parameter or ewald_radius .

3.7. Electrostatic (Hartree) potential 101

Necessary for periodic boundary conditions only. May be changed from the default, but
should not be set too small or too large (the compensating Gaussian charge density of
the Ewald method must cancel the actual charge outside a radius that is still inside the
partition table / integration grid for every atom.)

This parameter is performance critical especially for slab calculations (2D material or
surface) with a large vacuum region.

If the string automatic is chosen, then the parameter 1 is set according to an empirically
determined function as follows:

o = AO : (’U - A1)1/3 s (324)

subject to the limiting conditions 2.5 bohr< ry <5.0 bohr. Here, v is the specific volume
(unit cell volume divided by number of atoms), and Ay=1.47941 bohr and A,;=1.85873
A% are empirically determined parameters.

The chosen empirical form was tested and adapted for a slab model of a 2D material with
a vacuum region up to 50 A. For such systems, this choice entails a significant perfor-
mance improvement; and for larger vacuum regions, even larger choices than ry=5.0 bohr
are possible. However, the same empirical relation may not be optimal for moderately
dense solids (such as GaAs), where smaller choices of 7y can perform better. Overall,
the optimum choice of rq would be to adapt it on the fly over the course of a given
calculation, but implementing such an adaptive algorithm has not yet been done.

For a yet more refined choice, further testing would be necessary, as well as a dependence
on hartree_fourier_part_th (which is not yet incorporated).

Tag: ewald_radius

Usage: ewald _radius value

Purpose: Governs the Ewald-type short-range / long-range splitting of the
Coulomb potential in Eq. (3.22).

value : Either a string automatic, or the range separation parameter 7 in Eq.
(3.22) (in bohr). Default: automatic.

This keyword has exactly the same meaning as the Ewald_radius kewyord.

Tag: hartree_convergence_parameter

Usage: hartree_convergence_parameter value

Purpose: Governs the Ewald-type short-range / long-range splitting of the
Coulomb potential in Eq. (3.22).

value : Either a string automatic, or the range separation parameter r(in Eq.
(3.22) (in bohr). Default: automatic.

This keyword has exactly the same meaning as the Ewald_radius kewyord.

Tag: hartree_fp_function_splines

102 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: hartree fp function_splines .true. / .false.

Purpose: Switches on the splining of the Greens functions for the long-range
Hartree multipole decomposition in periodic boundary conditions. This acceler-
ates the calculation of the Hartree potential in large unit cells.

Default: .true.

Tag: hartree_fourier_part_th

Usage: hartree fourier_ part_th threshold

Purpose: Implicitly determines the required reciprocal space cutoff momentum
|Gmax| for the Fourier summation of the long-range electrostatic potential
(Ewald).

threshold is a real positive small number [r) in Eq. (3.23)]. Default: 5-1077 (in
atomic units) .

See Eq. (3.23). Usually, this tag need not be modified from the default. Necessary for
periodic boundary conditions only.

Tag: hartree_partition_type

Usage: hartree_partition_type type

Purpose: Specifies which kind of partition function p, () is used to split dn(r)
into atom-centered pieces.

Restriction: Presently, type should have the same value as specified for
integration using the partition_type keyword.

type : A string that specifies which kind of partition table is used. Default:
stratmann_sparse

Usually, this tag need not be modified from the default. The same options are avail-
able as for the partition_type keyword (partition functions for three-dimensional
integrands). See partition_type for details.

Tag: hartree_radius_threshold

Usage: hartree_radius_threshold threshold

Purpose: Technical criterion to ensure the inclusion of atoms with a potentially
finite real-space Hartree potential component in periodic boundary conditions.

threshold is a small positive real number. Default: 1071°.

Usually, this tag need not be modified from the default. Necessary for periodic boundary
conditions only. For each atom, determines a safe real space outer radius based on
erf(rouer/70) < threshold. This is then used to determine which atoms need be
included in the second term (sum over atoms) of Eq. (3.21).

3.7. Electrostatic (Hartree) potential 103

Tag: legacy_monopole_extrapolation

Usage: legacy_monopole_extrapolation flag

Purpose: Specifies how the monopole (I = 0) part of the partitioned charge
density is extrapolated to » = 0 before transforming to a logarithmic grid to
integrate the radial Hartree potential. If .true., use the legacy variant, and an
improved extrapolation otherwise.

flag is a Boolean. Default: .false..

The effect is generally very small, but for 1ight grids, this can have some impact on
total energies.

Tag: 1_hartree_far_distance

Usage: 1 hartree_far_distance value

Purpose: Sets a maximum angular momentum beyond which the components of
the analytic long-range Hartree potential will not be computed.

value is an integer number. Default: 10.

Usually, this tag need not be modified from the default. In Eq. (3.20), the multipole
moments M. ;,,, are determined by an explicit integration of the finite real-space density
component 07 1, (7). However, for very high [, even spuriously small density compo-
nents (1071 or lower) may be artificially weighted up in m,¢m; on a finite integration
grid, mat 1, becomes prone to numerical noise. Capping the evaluation of such high-I
components increases stability, but can be undone through 1 hartree far distance
if required.

Tag: multip_moments_threshold

Usage: multip_moments_threshold threshold

Purpose: Implicitly defines the maximum angular momentum for which the
analytical multipole components are non-zero at all.

threshold is a small positive real number. Default: 10710,

Usually, this tag need not be modified from the default. Used only in the periodic case.
If Matim/Tmp <threshold for all I > Iy, all analytical components beyond I, are
considered zero in the real-space and Fourier parts of the long-range potential. 7, is
the radius determined by multip_radius_threshold .

Tag: multip_moments_rad_threshold

104 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: multip_moments_rad_threshold threshold

Purpose: Defines the outer radius of the density components 7.t 5 () for the
purpose of determining the far-field moments Mgt iy,

threshold is a small positive real number. Default: 10719
Usually, this tag need not be modified from the default. The outer radius is set where

|07t 1m ()| <threshold. The actual ma¢y, are then determined by inward integration
from this point, using the standard relations of classical electrostatics.

Tag: multip_radius_free_threshold

Usage: multip_radius_free_threshold threshold

Purpose: Technical criterion to define the outermost charge radius of the

spherical free atom density nfre

threshold is a small non-negative real number. Default: 0.0

Usually, this tag need not be modified from the default.

free

The free-atom radius inside the code is set to the radius where n}¢(r) becomes smaller
than threshold. Note that the actual extent of the free-atom charge can be influenced
by the cut_free_atom keyword, and has ramifications not just for the electro-
static potential, but also for the initial charge density, and the partition functions for all
integrals.

Tag: multip_radius_threshold

Usage: multip_radius_threshold threshold

Purpose: Determines the (per-atom) radius outside of which the analytical
multipoles Mgt 1, are used to construct the Hartree potential ves(7)

threshold is a small positive real number. Default: 10712,

Usually, this tag need not be modified from the default. The outer radius is set where all
OMatum(r) <threshold for a given atom. At a given integration point 7, ves(7) is assem-
bled by evaluating Eq. (3.21). The second part (sum over atoms) is evaluated separately
for each atom, and atoms outside the radius defined by multip radius_threshold
, the Im summation is performed using the analytical expression.

Tag: multipole_threshold

Usage: multipole_threshold threshold

Purpose: Cluster case only — determines the distance beyond which an analytical
component §¥. ;m (1) of the real-space Hartree potential is considered zero.

threshold is a small positive real number. Default: 10719,

Usually, this tag need not be modified from the default. Long-range Hartree potential
components U, () are not evaluated for distances where 60, ,, () <threshold.

3.7. Electrostatic (Hartree) potential 105

This tag provides similar functionality as the adaptive_hartree_radius_th tag
for the periodic case (numerically different due to the absence of erf(r/rg) in the cluster
case).

Tag: normalize_initial_density
Usage: normalize_initial_density flag

Purpose: If true, normalizes the initial electron density to reproduce the
exact intended number of electrons when integrated on the three-dimensional,
overlapping atom-centered integration grid of FHI-aims.

flag is either .true. or .false.. Default: .true.

This keyword only normalizes the initial density. It should always be an exact subset of
the functionality provided by compensate multipole_errors. If used in conjunction
with collinear spin and a geometry optimization (or sc_init_iter), no subsequent
renormalizations are performed, except for runs which use a fixed spin_moment .

The default for normalize initial_density was set to .false. before August,
2017.

Tag: set_vacuum_level

Usage: set_vacuum_level z-coordinate

Purpose: Surface slab calculations only — defines a z-axis value that is deeply
within the vacuum layer.

z-coordinate is a z coordinate value in the vacuum layer.

In the case of periodic surface slab calculations, this value defines the reference z coor-
dinate that is used to define the work function (keyword evaluate_work_function)
and/or the location of a dipole correction (electrostatic potential step) to offset a poten-

tial electrostatic dipole formed by a non-symmetric slab (keyword use_dipole_correction
). As a requirement, the surface must be parallel to the xy plane. The chosen
z-coordinate must be located deep in the vacuum, as far away as possible from any
surface.

set_vacuum_level auto can be used instead to determine the vacuum level on its
own.

If use_dipole_correction or evaluate work function are specified, omitting
the keyword set_vacuum_level causes FHI-aims to automatically determine a
suitable z.

However, a vacuum plane will only be determined if the nearest atom is more than 6 A
away from the vacuum level. Determining a surface dipole for distances for which basis
functions or charge densities could overlap might lead to errors. Since FHI-aims does
allow one to use rather large vacuum spacings at low (if any) computational overhead,
the calculation will stop for too small vacuum spacings and alert the user.

106 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: use_dipole_correction

Usage: use_dipole_correction

Purpose: Surface slab calculations only — compensates a potential dipole field of
non-symmetric slabs by an electrostatic potential step in the vacuum region.

Restriction: When specified for a charged periodic system, this keyword is
currently disabled (see below).

If set, this option introduces an electrostatic potential step in the vacuum region of
a surface slab calculation, to compensate for a potential surface dipole. The surface
must be parallel to the zy plane (perpendicular to the z direction). The z location of
the surface dipole must be provided by hand, by specifying the set_vacuum_level
keyword.

In practice, the dipole correction calculates the gradient of only the long-range Hartree
potential term of the Ewald sum (which is evaluated in reciprocal space). If the gradients
on both sides of the vacuum level do not agree to better than 10 % (i.e., the potential is
not linear in this range), the dipole correction is not computed, and a warning is issued
instead.

However, it must be possible to find a vacuum plane z, where the surface dipole is
compensated, that is further than 6 A away from the nearest atom. Otherwise, the
calculation will stop and alert the user.

The reason is that a surface dipole cannot be safely determined for vacuum spacings
for which basis functions or charge densities could overlap. This can lead to errors.
Note that FHI-aims does allow one to use rather large vacuum spacings at low (if any)
computational overhead.

Attention: This keyword is currently disabled for charged periodic systems. The Coulomb
potential of a charged surface slab will reach far into the vacuum, apparently leading to
a completely arbitrary dipole correction as a result. (The dipole correction will simply
flatten out the potential wherever it is asked to do so, but for a charged surface, the
residual Coulomb potential should not be flat.)

In order to alert user to the problem, the code presently stops with a warning. If you
know what you are doing, the pertinent stop (one line) can always be commented out—if
the code is recompiled, the method will be applied, even though the physical relevance of
the result is uncertain. Charged periodic calculations with a vacuum region are physically
questionable for very different reasons in any case; we recommend to find a different
workaround with explicit charges whenever that is possible.

Note that for very large surface slabs, this keyword might cause instabilities in the SCF
cycle. If you suspect this to be the case and remove use_dipole_correction from
your control.in

Tag: use_hartree_non_periodic_ewald

3.7. Electrostatic (Hartree) potential 107

Usage: use_hartree_non_periodic_ewald .true.
or: use_hartree_non_periodic_ewald gridspacing value
or: use_hartree_non_periodic_ewald .false.

Purpose: This option is experimental and applies only to non-periodic calcula-
tions. In this case, the Hartree potential is decomposed according to Ewald's

method.

This method accelerates the calculation of the Hartree term in case of large systems
(more than 200 atoms) by using Ewald’'s decomposition combined with spatial interpo-
lation, see section 3.7.1. The method can be switched on by using option “.true.".
In this case, a default grid spacing of 0.6 A (= 60pm) is used for the Cartesian grid.
Other values for the grid spacing can be chosen with option “gridspacing value”. If
this option is used, the method is switched on and the grid spacing is set to value in A
(= 100 pm). Finally, the method can be switched off with option “.false.”. However,
since this is the default behaviour, it is not necessary to switch off the method explicitely.

108 Chapter 3. The Full Monty: All Keywords and Capabilities

Subtags for species tag in control.in:

species sub-tag: 1_hartree

Usage: 1 hartree value

Purpose: For a given species, specifies the angular momentum expansion of the
atom-centered charge density multipole for the electrostatic potential.

value is an integer number which gives the highest angular momentum com-
ponent used in the multipole expansion of dn(r) into 07 m(r) for the present
species. Must be specified.

As pointed out in Ref. [26], our experience is that energy differences are usually well
converged for lpairee=4, and total energy convergence at the level of a few meV is reached
at lharree=6. Only in exceptional cases should different settings be required.

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 109

3.8 Kinetic energy, scalar relativity, spin-orbit
coupling, and full relativity

For elements beyond approximately Z=30, relativistic effects near the nucleus cannot
be neglected in an all-electron treatment—both for core, and for valence electrons. For
the purposes of “everyday” matter, the full theory is given by Dirac’s four-component
Equation, but in the “practice” of materials physics and chemistry, we still tend to think
in terms of Schrodinger-like objects. The following standard levels of approximation are
available:

 Non-relativistic kinetic energy (one or two collinear ~ spin components of the
Kohn-Sham orbitals)

o Scalar-relativistic kinetic energy expression (one or two collinear spin components).

 Perturbative spin-orbit coupling, a single correction step to the Kohn-Sham eigen-
values based on the Kohn-Sham orbitals from a non-relativistic or scalar-relativistic
s.c.f. cycle. Perturbative spin-orbit coupling in FHI-aims is primarily intended to
obtain qualitatively accurate relativistic corrections for energy band structures and
eigenfunctions. A detailed benchmark of the accuracy of the approach is given in
Ref. [109]. Importantly, changes to the total energy beyond the sum-of-eigenvalues
are not included, and total energy gradients (forces) are also unavailable.

o An essentially fully relativistic treatment of the Kohn-Sham kinetic energy — specif-
ically, the so-called quasi-four-component (Q4C) approximation — is nearing com-
pletion. In physical terms, this includes self-consistent spin-orbit coupling as well
as the so-called “small component” of the Dirac eigenfunctions, where the small
component is based on a free-atom-like approximation. At the time of writing
(March 2020), the Q4C approach is still restricted to total energies and Kohn-
Sham eigenvalues for closed-shell systems at the level of semilocal DFT. The
Q4C implementation is still considered highly experimental and therefore not yet
fully documented. In particular, parallelization is not yet complete, forces are not
available and support for hybrid DFT is not yet available. Please do not use the
approach without contacting Rundong Zhao and Volker Blum.

Scalar relativity and spin-orbit coupling

While the non-relativistic level of theory is exactly defined and will be the same in
any first-principles implementation (at a complete basis set, all-electron level anyway),
there are many different versions of scalar-relativistic approximations which can yield
considerably different total energies for different systems. Their unifying feature is that
any two scalar-relativistic methods should still yield the same energy differences for
properties that concern valence electrons: Binding energies, valence eigenvalues, etc.

The recommended level of scalar relativity in FHI-aims is the so-called “atomic ZORA"
approximation, as defined specifically in Equations (55) and (56) of Ref. [26]. It is

110 Chapter 3. The Full Monty: All Keywords and Capabilities

important to refer to this specific definition since there are other variants of ZORA (*zero-
order regular approximation™) in the literature and in other codes, including variants also
called “atomic ZORA" but following a different mathematical definition.

The keyword needed to use this level of theory is
relativistic atomic_zora scalar
That's it.

The “atomic ZORA" level of theory as implemented in FHI-aims has held up extremely
well in large, high-accuracy benchmarks of scalar-relativistic total-energy based properties
[143] as well as energy band structures [109]. It works for the right mathematical reasons.
It can, in principle, be used across the entire periodic table (there should be no need to
resort to non-relativistic calculations except for benchmarking purposes).

In addition, a non-selfconsistent treatment of spin-orbit coupling for band structures,
densities of states, absorption properties and for the independent-particle dielectric re-
sponse is also available and can be used in addition to (on top of) scalar relativistic
calculations using the atomic ZORA. This is described in detail in Ref. [109], including
a simple discussion of relativistic treatments in general and of how the “atomic ZORA"
and the spin-orbit coupling formalism on top of it are related.

The keyword to add post-scf spin-orbit coupling is
include_spin_orbit

That's it. Note that this keyword can be used as a followup to both non-spinpolarized
and spin-polarized scalar-relativistic calculations.

An important fact to keep in mind is that a scalar-relativistic calculation yields two
distinct spin sets of spin states, one for each spin channel. However, after the perturba-
tive spin-orbit coupling treatment, only a single set of states emerges as output, since
spin-orbit coupling mixes the scalar-relativistic spin states and the spin channels are no
longer distinct. Thus, the output files for any quantities derived from spin-orbit coupled
calculations (densities of states, band structures, etc.) are not and cannot be printed as
separate spin channels - only one set of files is written that includes states derived fron
both former spin channels.

More details follow below, but here are three additional important point:

o Never mix results from different scalar relativistic treatments in total-energy differ-
ences. Absolute total-energy differences between different relativistic treatments
can be very large because the deep core state energies change.

o The absolute core level energies in the “atomic ZORA" approximation are far
away from measured core level energies that would appear in experiment or in the
actual Dirac equation. However, the relative core level shifts (differences) between
different chemical systems are still reliable.

e FHI-aims also includes another relativistic treatment called “scaled ZORA" but
this seems to be slightly less accurate and does not have support for forces or

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 111

stresses or any other use cases. We do not recommend to use “scaled ZORA" any
more (“atomic ZORA" simply seems to do the better job).

More details on spin-orbit coupling

Spin-orbit coupling (SOC) is a simple consequence of transforming Dirac’s equation to
a (two-component) Schrodinger-like form. This leads to an approximate “spin-orbit-
coupled” Hamiltonian of the form

H =igp + 9+ dsoc, (3.25)

where tgp is the usual scalar relativistic kinetic energy operator (e.g., atomic ZORA), ¥
is the local or non-local potential, and Uso¢ is the spin-orbit coupling operator,

1

129 PV X P. (3.26)

Vsoc =

FHI-aims currently implements a treatment of spin-orbit coupling which adds spin-orbit
coupling corrections to the Kohn-Sham eigenvalues, band structures, and densities of
states in a single evaluation after the scalar-relativistic s.c.f. cycle has converged. This
means that it is a post-processed implementation of spin-orbit coupling. It works in the
Hilbert space of calculated scalar-relativistic eigenstates, as opposed to the “full” space
spanned by the computational basis set, to dramatically reduce the problem size. This is
known as the “second-variational” method. It only calculates and diagonalizes the spin-
orbit-coupled Hamiltonian once; therefore, the resulting spin-orbit-coupled eigenstates
are non-self-consistent.

Full details on the implementation of spin-orbit coupling in FHI-aims, as well as a deriva-
tion of the spin-orbit-coupled Hamiltonian from the Dirac equation and a detailed bench-
mark of the effect of spin-orbit coupling on band structures, may be found in Ref. [109]
When publishing results using spin-orbit coupling in FHI-aims, please remember to cite
this reference.

Applying the SOC operator as a correction to scalar-relativistic eigenvectors is quanti-
tatively accurate (to a few 0.01 eV for valence band structures) for elements below Xe
(Z=54) when combined with atomic ZORA. For heavy elements (approximately Au and
beyond) this level of theory is only qualitatively accurate. It captures the majority of
the SOC effect, but quantitative deviations above 0.1 eV for band structures must be
expected. Similarly, the corrections for any core levels would require one to go beyond
non-self-consistent SOC.

Since this implementation of spin-orbit coupling operates in the Hilbert space spanned by
the calculated scalar-relativistic eigenvectors, for accurate high-lying bands one must in-
clude sufficiently many unoccupied states. This may be done by setting empty_states
to a higher value or, if you are feeling particularly paranoid, setting the
calculate_all eigenstates keyword to include all possible eigenstates. It is the
opinion of the authors that this is only relevant for materials containing Au and heavier
elements.

112 Chapter 3. The Full Monty: All Keywords and Capabilities

Which Parts of FHI-aims Support Spin-Orbit Coupling?

The current spin-orbit coupling implementation started in 2014. FHI-aims has been in
development since 2004. While we are actively working on enhancing support for spin-
orbit coupling and relativistic schemes beyond throughout FHI-aims , due to the sheer
size of the code base some of the functionality in FHI-aims does not have spin-orbit
coupling support. Enabling the SOC keyword will do nothing for functionality that has
not been modified to support SOC, and the code will return scalar-relativistic values.
A partial list of functionality that does support SOC and will output spin-orbit-coupled
values is

o Band structure calculations

o Densities of state calculations, both interpolated and non-interpolated
e Mulliken analyses

o Atom/species-projected densities of state

« Dielectric functions and absorption coefficients

 Orbital cube plotting

In general, spin-orbit coupling can be applied both for non-spinpolarized and spin-
polarized scalar-relativistic input. However, after spin-orbit coupling is applied, only
one set of states remains since the spin channels are no longer separated (spin-orbit
coupling mixes the formerly separate spin channels).

The best way to determine whether a particular method supports spin-orbit coupling is
to look at its manual entry.

One advantage of post-processed SOC is that one still has access to scalar-relativistic
values, as the spin-orbit-coupled values are generated from the scalar-relativistic values.
Physical insight may be gained by comparing scalar-relativistic and spin-orbit-coupled
values against one another. For example, strong spin-orbit splitting of eigenstate is a
dead giveaway that it contains p-orbitals for a heavy species. When spin-orbit coupling
is enabled, FHI-aims will output both scalar-relativistic and spin-orbit-coupled values
whenever this is computationally feasible. For methods supporting spin-orbit coupling
that output results to files, the files containing the scalar-relativistic values will have an
additional suffix ".no_soc" to distinguish them from the spin-orbit-coupled values.

Another advantage of post-processed SOC is, simply, computational efficiency. Particu-
larly hybrid DFT calculations are already extremely demanding at the non-spin-polarized,
scalar-relativistic level of theory. The ability to pursue SOC corrections after, rather than
during a self-consistent scalar-relativistic allows us to access significantly larger problem
sizes than would otherwise be possible.

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 113

Tags for general section of control.in:

Tag: include_spin_orbit
Usage: include_spin_orbit method

Purpose: Include the effects of spin-orbit coupling, when supported, in
post-processed features of FHI-aims. When using spin-orbit coupling in your
calculation, please cite Ref. [109]

method The method for including spin-orbit coupling. At present, only type
non_self consistent is suitable for production-level calculations.

Note: While FHI-aims also prints out a corrected total-energy expression based on the
SOC-corrected eigenvalues, do not use this value. It is experimental.

Tag: compute_kinetic

Usage: compute_kinetic

Purpose: Experimental - for test purposes, allows to compute the kinetic energy
via the product of the kinetic energy matrix and the density matrix

This flag is presently kept for test purposes only (the electronic kinetic energy is separately
computed and printed for each scf iteration anyway) but may be useful for some future
modifications.

Tag: override_relativity

Usage: override_relativity flag

Purpose: If explicitly set, allows to override the stop enforced by the code when
physically questionable relativistic settings are used.

flag is a logical expression, either .true. or .false. Default: .false.

For example, this will allow you to run a physically incorrect calculation of heavy ele-
ments (think Au) with Schrédinger’s expression for the kinetic energy, instead of a scalar
relativistic treatment. The results will be wrong, so this flag should only be set for test
purposes. When set, the code assumes that the user must know what they are doing.

Tag: relativistic

114 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: relativistic r-type s-type [threshold]
Purpose: Specifies the level of relativistic treatment in the calculation.

r-type is a string, specifying the basic approximation made.

s-type is a string, specifying whether a scalar treatment is desired (currently,
only the scalar option is supported).

threshold is a small positive real number, allowing to reduce some integration
effort.

Detailed expressions for the scalar relativistic treatments available here are given in Ref.
[26]. We here only repeat the salient options and expressions. Possible options for
r-type are:

« none : Non-relativistic kinetic energy. In this case, s-type and threshold need
not be provided.

» atomic_zora: Atomic ZORA approximation as described in Ref. [26]. threshold
need not be provided. This is the currently recommended option for energy differ-
ences and valence and unoccupied eigenvalues.

o zora The ZORA approximation is used throughout the s.c.f. cycle, followed by a
“scaled ZORA" [222] post-processing step (rescaling of all eigenvalues). WARN-
ING: Do not rely on intermediate, simple ZORA total energies, but only on the
final, rescaled total energies instead! ZORA (unscaled) is not the same as “atomic
ZORA" and cannot be trusted. We also no longer recommend scaled ZORA values
since there is no clear advantage. Just use atomic_zora unless there is need to
do otherwise.

Forces are only provided for none and atomic_zora.

Remember to never take energy differences between calculations performed
with different “relativistic” settings.

We recommend to simply use atomic_zora for all calculations, unless there is a partic-
ular need to stay with relativistic none.

If you really do want to use scaled ZORA (the case of zora keyword), the threshold
option is required. It specifies the threshold value above which the difference between
the sum-of-free-atoms ZORA expression and that for the actual potential during the
s.c.f. cycle will be calculated. In areas of shallow potentials, where both expressions are
substantially similar, this saves the extra integration effort associated with ZORA. For
(very!) safe settings, threshold may be set to 107'2; in our experience, also 1079 does
not lead to any noticeable accuracy loss.

Default is none if all elements in the structure have Z <20 (no heavier than Ca). For all
heavier elements, an explicit relativistic setting is required. For 11< Z <20, the
setting none will be accepted, but a warning will be issued. For Z>20, choosing none
will cause the code to stop with an error message in order to avoid accidental calculations
with incorrect relativity. If a non-relativistic calculation is still desired, for example for
test purposes, this “stop” can be disabled by setting the flag override relativity
—but use this only if you know what you are doing.

3.8. Kinetic energy, scalar relativity, spin-orbit coupling, and full relativity 115

Future version of FHI-aims will simply employ atomic_zora as the default level of
relativity.

Tag: use_spin_texture

Usage: use_spin_texture Estart Eend

Purpose: Calculate the spin texture of the bands fall in the designated energy
range.

This flag is presently based on the perturbative spin-orbit coupling method. Therefore,
you should in the same time set:

relativistic atomic_zora scalar
include_spin_orbit

Spin texture is defined as the expectation value of the vector of Pauli matrices. By
triggering on this flag, the code will calculate the expectation values for three components
(%, y, and z), which can help understand the spin polarization behaviour of individual
bands. The values are printed out in separate files named spin_texture.out and
spin_texture.dat which contain the same kind of data but simply in different formats.

116 Chapter 3. The Full Monty: All Keywords and Capabilities

3.9 Eigenvalue solver and (fractional) occupation
numbers

With an updated Hamiltonian matrix h;; and overlap matrix s;; available at the end of
an s.c.f. iteration (4, j run over all basis functions), or in the post-processing step of the
calculation, FHI-aims updates the Kohn-Sham orbitals [(wave function coefficients c;;)
by solving the following eigenvalue problem:

> hijep = sici (3.27)
j j

In periodic boundary conditions, this eigenvalue problem is solved at every k-point, and
k is implictly included in the eigenstate index [above.

FHI-aims now uses the open-source ELSI infrastructure http://elsi-interchange.
org — and most often the efficient, massively parallel ELPA eigensolver (http://elpa.
mpcdf .mpg.de) — to handle all aspects of this problem.

Since the basis size needed even for meV-converged accuracy in FHI-aims is rather
small, and this size determines the dimension of h;; and s;;, the recommended eigen-
value solver(s) in FHI-aims are customized conventional solvers (publicly available as
the ELPA library since 2011), employing the same basic algorithms as LAPACK or the
parallel ScaLAPACK implementation, but with significant scalability enhancements. Al-
though these solvers scale strictly as O(N?3) with system size, their application becomes
dominant only for systems above 21000 atoms (light elements) or ~~500 atoms (heavy
elements, e.g. Au) in our experience. For large systems, there are alternative methods
available through the ELSI library, including the orbital minimization method (libOMM),
the pole expansion and selected inversion method (PEXSI), the shift-and-invert parallel
spectral transformation eigensolver (SLEPc-SIPs), and the density matrix purification
algorithms using sparse matrix linear algebra from the NTPoly library. Note that PEXSI
and SLEPc-SIPs are not installed with FHI-aims by default.

The present section describes the available eigensolvers and density matrix solvers and
relevant options in FHI-aims, including the determination of a Fermi level and occupation
numbers for all orbitals following the process. Keywords starting with a prefix elsi_
are ELSI-specific. The key ideas of using ELSI and its supported solvers are briefly
introduced here. For more information, please refer to the ELSI documentation available
at http://elsi-interchange.org.

FHI-aims also offers the possibility to solve a constrained eigenvalue problem, e.g., in
order to restrict the number of spin-up or spin-down electrons in the basis functions of
a given set of atoms. Since this functionality is experimental and for experienced users
only, it is documented separately in Sec. 3.14.

Finally, we emphasize that the basis set in FHI-aims is non-orthogonal. For all practical
production settings, this is not a problem, and in fact taken care of through the overlap
matrix s;; in Eq. (3.27) above. It is, however, still possible to generate an overcomplete,
nearly ill-conditioned basis set in practical calculations, usually by specific, deliberate user
action. The signature of such ill-conditioning are near-zero eigenvalues of s;; (e.g., 107°
and below). Possible reasons include: systematically constructed, deliberately overcon-

http://elsi-interchange.org
http://elsi-interchange.org
http://elpa.mpcdf.mpg.de
http://elpa.mpcdf.mpg.de
http://elsi-interchange.org

3.9. Eigenvalue solver and (fractional) occupation numbers 117

verged basis sets for non-periodic calculations (not easy); excessively large cutoff radii in
dense periodic structures together with very large basis sets (the density of non-zero basis
functions per volume element increases as 72 ,); or, badly integrated, very extended basis
functions (diffuse Gaussian basis functions without increasing radial_multiplier

appropriately).

FHI-aims does include a number of safeguards against an ill-conditioned overlap matrix,
most importantly the basis_threshold keyword that projects out the eigenvectors
of the overlap matrix that correspond to its smallest eigenvalues, usually enabling a
meaningful calculation anyway. However, to alert every user to the fact that their chosen
basis set may be ill-conditioned, the code now stops when it encounters an overlap
matrix with too low eigenvalues— unless the keyword override_illconditioning
is deliberately set, indicating that the user knows what they are doing and wishes to
continue regardless.

118 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: basis_threshold

Usage: basis_threshold threshold
Purpose: Threshold to prevent any accidental ill-conditioning of the basis set.

threshold is a small positive threshold for the eigenvalues of the overlap matrix.
Default: 107°.

Since NAO basis functions are situated at different atomic centers in a structure, they
form a non-orthogonal basis set by construction. Usually, this is not a problem, since
the non-orthogonality is naturally accounted for by inserting the overlap matrix s;; into
the Kohn-Sham eigenvalue problem, Eq. (3.27). For very large basis sets, this can lead
to accidental ill-conditioning (some basis functions may be exactly expressable as linear
combinations of some others).

This behavior is detected by directly inverting the overlap matrix, and computing its
eigenvalues. If one or more eigenvalues are smaller than threshold, the corresponding
eigenvectors are projected out of the basis before solving the Kohn-Sham eigenvalue
problem, and the latter is solved after transforming to the reduced eigenbasis-set of the
overlap matrix.

Important change: Even when basis_threshold is set, FHIl-aims will automatically
stop when a near-singular overlap matrix is detected. The user can still override this
safeguard by setting the override_illconditioning keyword in control.in
explicitly, but we do now do our best to alert the user to this condition.

Tag: elpa_settings
Usage: elpa_settings setting

Purpose: Allows to determine the exact algorithm used in the ELPA eigensolver
by hand.

setting is a descriptor (string) that selects certain aspects of ELPA. Default:
auto

If the parallel ELPA eigensolver is used (see keyword KS_method), a number of choices
are made automatically by default. The elpa_settings keyword allows to set some
of these aspects by hand. Allowed choices for setting are:

o auto : The default. ELPA makes all its choices on the fly.

» one_step_solver : Only the one-step tridiagonalization (and corresponding back
transformation) are used. This is usually the slower choice, but not always ...

» two_step_solver : Only the two-step tridiagonalization (and corresponding back
transformation) are used. This is usually the faster choice, but not always ...

3.9. Eigenvalue solver and (fractional) occupation numbers 119

The elpa_settings keyword is particularly useful

(i) if you already know what the faster choice is, and you wish to eliminate the extra
test of the slower solver from your calculations, or

(ii) if you suspect that one of the two solvers links to a buggy external(!) library. LAPACK
and BLAS implementations (still used in ELPA) come from many vendors, they are often
precompiled, and of course they always work—the computer vendor hopes so, after all.
We have seen our share of bugs in external libraries (outside the control of FHI-aims),
and sometimes, switching the algorithm to change the exact subroutines used can be a
helpful backup check.

Tag: empty_states

Usage: empty_states number

Purpose: Specifies how many Kohn-Sham states beyond the occupied levels are
computed by the eigensolver.

number is the integer number of empty Kohn-Sham states per atom to be
computed beyond the occupied levels.

For DFT-LDA/GGA, typically only a small (but non-zero) number of empty states is
required to allow a complete determination of the Fermi level.

By default, (l—|—1)2—|—2 states are added for each atom in the structure, where [is the
maximum valence angular momentum in the valence of that atom (/=0 for hydrogen,
but =3 for f-electron atoms and beyond).

For correlated methods including excited states (MP2, RPA, GW, ...), all available
states should be included. To achieve this, set empty_states to a large number
(safely larger than your basis set) or use the calculate_all eigenstates keyword.

Tag: calculate_all_eigenstates

Usage: calculate_all_eigenstates

Purpose: Specifies that all possible eigenstates obtainable from the basis set
used (after ill-conditioning has been accounted for) should be calculated and
stored.

This keyword instructs FHI-aims to calculate and store all possible eigenstates obtainable
from the solution of the Kohn-Sham eigenvalue problem. It functions identically to
setting the empty_states value to a large number, but makes the input file prettier.

Only users that know exactly what they're doing should use this option alongside an
ill-conditioned basis set. Strange output may occur in this case, which may either be
spurious or a symptom of a deeper problem. (This is true of ill-conditioning in general;
this keyword only exposes it more openly.)

Tag: fermi_acc

120 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: fermi_acc tolerance

Purpose: The precision with which the Fermi level for occupation numbers will
be determined.

tolerance : Tolerance parameter for the zero point search of the equation
S foccl€r](€5) — net = 0. Default: 1072,

Usually, this tag need not be modified from the default. Within the (standard) Brent's
method search for the Fermi level, tolerance has more than one function. Leave
untouched unless problems arise.

Tag: initial_ev_solutions
Usage: initial_ev_solutions number

Purpose: Experimental! Number of initial eigenvalue solutions using direct
methods before switching on the lopcg-solver. Applies for both LAPACK and
ScalLAPACK variants of the solver.

number is a positive integer. Default: 5.

Tag: KS_method

Usage: KS_method KS_type
Purpose: Algorithm used to solve the generalized eigenvalue problem Eq. (3.27).

KS_type is a keyword (string) which specifies the update method used for the
Kohn-Sham eigenvectors or density matrix in each s.c.f. iteration. Default:
serial or parallel, depending on available number of CPUs.

Important change : The naming scheme of the supported options has changed. Notably,
the lapack and scalapack keywords are superseded by serial and parallel, respec-
tively. The reason is that lapack and scalapack have indicated other linear algebra
than custom (Sca)LAPACK in FHI-aims for a long time. For example, the scalapack
option actually employed the ELPA eigenvalue solver, currently called through the ELSI
infrastructure. The new naming scheme indicates linear algebra default options that may
develop further over time, but these default options will not necessarily be tied to one
and the same library going forward.

Available options for the eigensolver, KS_type, are:

o serial : Default serial eigensolver implementation. Currently the serial
eigensolver in ELSI, based on LAPACK and ELPA, will be employed.

o lapack_fast : Synonymous with serial.

o lapack_2010: LAPACK-based, and similar to the divide&conquer based standard
solver provided by LAPACK itself.

o lapack_old : Expert solver provided by standard LAPACK. This is stable and not

3.9. Eigenvalue solver and (fractional) occupation numbers 121

a bottleneck in most standard situations.
e lapack : Disabled now.

o parallel : Default parallel eigensolver implementation. Currently the ELPA
eigensolver will be called through the ELSI interface.

e elsi: Synonymous with parallel.
e elpa : Synonymous with parallel.

e elpa_2013: Same functionality as scalapack_old, however, substantially rewrit-
ten for an overall speedup and much improved scalability. See the elpa_settings
keyword for some ELPA internals (usually determined automatically, but who
knows).

Note that you must set the shell variable OMP_NUM_THREADS=1 prior to running
FHI-aims on some platforms. (see Appendix A)

o scalapack_fast : Synonymous with parallel.

e scalapack_old : Fully memory-parallel implementation of the eigenvalue solver
based on ScaLAPACK itself, scales much worse than our own scalapack_fast.

o scalapack : Disabled now.
o svd : Effectively the same as lapack_old.

e lopcg : Experimental — under development lterative, locally optimal precondi-
tioned conjugate gradient eigensolver. Potentially useful for very large systems
where lapack becomes a bottleneck. However, implementation without any seri-
ous testing—contact us if interested.

» scalapack+lopcg : Experimental — under development. Same as lopcg, but
parallel with ScaLAPACK-type memory distribution.

The parallel eigensolvers are only available if ScaLAPACK support has been compiled
into the FHI-aims binary—see the Makefile for more information.

In fact, the default parallel eigensolver in FHI-aims is the “ELPA" solver through the
ELSI interface, which uses some ScaLAPACK infrastructure but has been rewritten from
the ground up for much improved parallel scalability.

Note that a (separate) parallelization over k-points will be performed in periodic systems
in any case.

KS_method parallel allows calculations without explicitly collecting the resulting
eigenvectors to each thread after the eigensolution is complete. This improves the
memory efficiency especially in large-scale / massively parallel situations and is the default
where possible. For details, see keyword collect_eigenvectors .

Prior to the solution of Eq. (3.27) using the serial or parallel solvers, the overlap
matrix s;; is checked for ill-conditioning (see basis_threshold keyword). For very
large basis sets or periodic calculations with many k-points, this criterion may trigger. In

122

Chapter 3. The Full Monty: All Keywords and Capabilities

that case, the Hamiltonian matrix is transformed to the “safe” set of eigenvectors of s;;,
and the transformed eigenvalue problem is solved. If you suspect ill-conditioning to be a
problem, it may sometimes be helpful to increase the density of the 3D integration grids
in order to minimize any numerical noise in s;; and h;;. That said: In our experience,
ill-conditioning is not a problem with accurate basis sets in standard calculations; see
Appendix A for some additional comments.

Tag:

elsi_method

Usage: elsi _method method

Purpose: Determines the usage of eigensolvers or density matrix solvers in ELSI.
Must be compatible with the density_update _method keyword (see Sec.
3.6).

method is a keyword (string). Default: ev.

Available options for method are:

ev : Use eigensolvers to solve the wave functions explicitly through ELSI. Sup-
ported serial solver is LAPACK. Supported parallel solvers are ELPA and SLEPc-
SIPs (if compiled in). Compatible with all options of density_update_method

dm : Use density matrix solvers to directly compute the density matrix without
explicitly solving the eigenproblem in Eq. (3.27). Note that this will not work
with any post-processing that requires the wave functions. Supported solvers
are ELPA, libOMM, PEXSI, SLEPc-SIPs, and NTPoly. Only compatible with

density update_method density_matrix.

Tag:

elsi_solver

Usage: elsi_solver solver
Purpose: Specifies the eigensolver or density matrix solver to use.

solver is a keyword (string). Default: elpa.

Available options for solver are:

elpa : Direct, dense eigensolver ELPA (EigensolLvers for Petaflop Applications).
Scales as O(NN?) with respect to system size. Fast for systems of small and medium
sizes (up to hundreds of atoms).

omm : Density matrix solver libOMM (the Orbital Minimization Method). Scales
as O(N3). No support for metallic systems. Not recommended for now.

pexsi : Density matrix solver PEXSI (the Pole EXpansion and Selected Inversion
method). Scales as O(N?) for 3D systems, O(N'5) for 2D systems, and O(N)

3.9. Eigenvalue solver and (fractional) occupation numbers 123

for 1D systems. Fast when solving a large system with sufficiently many MPI tasks
(a thousand or more). PEXSI is not compiled with FHI-aims by default. To use
it, either enable the compilation of PEXSI when building FHI-aims wiht CMake,
or link FHI-aims against a precompiled ELSI library with PEXSI support.

e eigenexa : Experimental Direct, dense eigensolver EigenExa. The pentadiago-
nalization eigensolver eigen_sx in EigenExa can be faster than ELPA when solving
the full eigenspectrum. Requires an externally compiled EigenExa library. No sup-
port for complex-valued problems. Therefore, in periodic calculations the number
of k-points in any direction cannot be greater than 2.

o sips : Experimental Sparse eigensolver SLEPc-SIPs (the Shift-and-Invert Parallel
spectral transformation method). Requires externally compiled SLEPc and PETSc
libraries. Not recommended for now. No support for complex-valued problems.
Therefore, in periodic calculations the number of k-points in any direction cannot
be greater than 2.

e ntpoly: Density matrix purification algorithms implemented in the NTPoly library.
For sufficiently large systems, scales as O(N). Only competitive for thousands of
atoms.

e magma : Experimental GPU-accelerated direct, dense eigensolvers in MAGMA.
Drop-in enhancement to the eigensolvers in LAPACK. Requires an externally com-
piled MAGMA library.

Tag: elsi_elpa_solver

Usage: elsi_elpa_solver solver
Purpose: Specifies the eigensolver used in ELPA.

method is an integer. Default: 2.

Available options for solver are:

o 1: One-stage tridiagonalization eigensolver.

e 2 : Two-stage tridiagonalization eigensolver.

Tag: elsi_elpa_n_single
Usage: elsi_elpa_n_single n_single

Purpose: Specifies the number of s.c.f. steps in which the eigenproblems Eq.
(3.27) are solved using single precision ELPA solvers.

n_single is an integer. Default: 0.

Tag: elsi_elpa_gpu

124 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: elsi_elpa_gpu gpu
Purpose: Switches on the usage of GPU (CUDA) acceleration in ELPA.
gpu is an integer. Default: 0.

Tag: elsi_omm_n_elpa
Usage: elsi_omm n_elpa n_elpa

Purpose: When using libOMM, specifies the number of s.c.f. steps in which the
eigenproblems Eq. (3.27) are solved explicitly using ELPA. As an iterative solver,
libOMM's performance heavily depends on the quality of the initial guess. By
default, random numbers are used as inital guess. The eigensolution computed
by ELPA proves to be a better choice.

n_elpa is an integer. Default: 6.

Tag: elsi_omm_flavor

Usage: elsi_omm_flavor flavor
Purpose: Specifies the flavor of libOMM to be used.

flavor is an integer. Default: 0.

Available options for flavor are:

o 0 : Directly minimizes the OMM energy functional without transforming the gen-
eralized eigenproblem to the standard form before minimization. This is usually
faster than flaver 2 if using several ELPA steps before switching to libOMM.

o 2 : Before OMM minimization, first transforms the generalized eigenproblem to
the standard form using the Cholesky decomposition of the overlap matrix.

Tag: elsi_omm_tol
Usage: elsi omm tol tolerance
Purpose: Specifies the convergence criterion of the OMM energy functional
minimization.

tolerance is a small positive real number. Default: 10712,

Tag: elsi_pexsi_np_symbo

3.9. Eigenvalue solver and (fractional) occupation numbers 125

Usage: elsi_pexsi_np_symbo np_symbo

Purpose: Specifies the number of MPI tasks assigned for the symbolic factoriza-
tion step in PEXSI.

np_symbo is a positive integer. Default: 1.

Parallel symbolic factorization with more than 1 MPI task is not always stable, hence
the default. Increasing np_symbo might accelerate the symbolic factorization, however
might also cause a segfault. Note that the symbolic factorization step needs to be
performed only once per s.c.f. cycle. Unless facing a memory bottleneck, using the
default value is recommended.

Tag: elsi_eigenexa_method

Usage: elsi_eigenexa_method method
Purpose: Specifies the eigensolver used in EigenExa.

method is an integer. Default: 2.

Available options for solver are:

o 1: One-stage tridiagonalization eigensolver.

o 2 : One-stage pentadiagonalization eigensolver.

Tag: elsi_sips_n_slice
Usage: elsi_sips_n_slice n_slice

Purpose: Specifies the number of slices used in SLEPc-SIPs. Note that the total
number of MPI tasks must be a multiple of the number of slices. In practice,
setting n_slice to be equal to the number of nodes seems to work well. The
default value should always work, but by no means leads to the best performance.

type is a positive integer. Default: 1.

Tag: elsi_sips_n_elpa

Usage: elsi_sips_n_elpa n_elpa

Purpose: Specifies the number of s.c.f. steps to be solved with ELPA. The
performance of SIPs relies on a decent knowledge on the eigenvalue distribution,
which is key to an efficient spectrum slicing. This can be calculated by ELPA in
the first n_elpa s.c.f. steps.

type is an integer. Default: 0.

Tag: elsi_ntpoly_method

126 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: elsi_ntpoly_method method
Purpose: Specifies the purification algorithm used in NTPoly.
method is an integer. Default: 2.

Available options for method are:
o 0 : Canonical purification.
e 1 : Trace-correcting purification.
e 2 : 4th order trace-resetting purification.

e 3 : Generalized canonical purification.

Tag: elsi_ntpoly_tol

Usage: elsi_ntpoly_tol tolerance
Purpose: Specifies the convergence criterion of the density matrix purification.

tolerance is a small positive real number. Default: 1074

Tag: elsi_ntpoly_filter
Usage: elsi_ntpoly_filter threshold

Purpose: Specifies the threshold smaller than which the matrix elements will be
discarded in the process of density matrix purification.

tolerance is a small positive real number. Default: 1078.

Tag: elsi_magma_solver

Usage: elsi_magma_solver solver
Purpose: Specifies the eigensolver used in MAGMA.
method is an integer. Default: 1.

Available options for solver are:

e 1: One-stage tridiagonalization eigensolver.

e 2 : Two-stage tridiagonalization eigensolver.

Tag: frozen_core_scf

3.9. Eigenvalue solver and (fractional) occupation numbers 127

Usage: frozen core scf boolean

Purpose: Enables the frozen core approximation to reduce the dimension of the
Kohn-Sham eigenproblem. Atomic basis functions whose eigenvalue is lower than
frozen core_scf cutoff will be treated as core states. Useful for systems
consisting of heavy elements. This keyword applies only to the solution of the
Kohn-Sham eigenproblem. It does not imply a frozen core treatment anywhere
else. See also frozen_core and frozen_core_postscf , which control
the use of frozen core in other parts of the code.

boolean is either .true. or .false.. Default: .false.

Tag: frozen_core_scf_cutoff

Usage: frozen _core_scf cutoff cutoff

Purpose: Determines the number of core states when the frozen core approx-
imation is enabled by frozen core_scf . Atomic basis functions whose
eigenvalue is lower than cutoff (eV) will be treated as core states.

cutoff is a negative number. Default: -13605.5 (eV, which is about -500 Ha)

Tag: frozen_core_scf_core_correction

Usage: frozen core scf core correction boolean

Purpose: Provides better accuracy for the frozen core states when the frozen
core approximation is enabled by frozen core_scf .

boolean is either .true. or .false.. Default: .true.

Tag: frozen_core_scf_valence_correction

Usage: frozen core scf valence correction boolean

Purpose: Provides better accuracy for the unfrozen valence states when the
frozen core approximation is enabled by frozen core_scf .

boolean is either .true. or .false.. Default: .true.

Tag: lopcg_adaptive_tolerance

128 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: lopcg_adaptive_tolerance flag

Purpose: Experimental! Allows the lopcg-algorithm to dynamically adjusts its
convergence tolerance as max {0.01|dn|, lopcg_tolerance } where on is
the change in the electron density as recorded in the self-consistency cycles.

flag is a logical expression. Default: .false.

Tag: lopcg_block_size
Usage: lopcg_block_size number
Purpose: Experimental! The maximal size of a block in lopcg-iteration.

number is a positive integer. Default: 1.

Tag: lopcg_auto_blocksize

Usage: lopcg_auto_blocksize flag

Purpose: Experimental! Selects if the lopcg algorithm tries to find automatically
a better blocksize than the maximal one by grouping close eigenvalues together.

flag is a logical expression. Default: .false.

Tag: lopcg_preconditioner

Usage: lopcg_preconditioner type

Purpose: Experimentall For KS_method lopcg, specifies the preconditioner
used.

type is a string, either diagonal (diagonal preconditioning matrix) or
ovlp_inverse (use inverse of the overlap matrix for preconditioning).

Tag: lopcg_start_tolerance

Usage: lopcg_start_tolerance tolerance

Purpose: Experimental! Sets the tolerance for starting the lopcg-solver using
the change in the sum of eigenvalues as a criterion. The lopcg-solver is activated
as set in initial ev_solutions latest, but lopcg_start_tolerance
may trigger it earlier.

tolerance is a double precision real. Default: 0.0

Tag: lopcg_tolerance

3.9. Eigenvalue solver and (fractional) occupation numbers 129

Usage: lopcg_tolerance tolerance
Purpose: Experimental! Sets the convergence tolerance for the lopcg-solver.

tolerance is a double precision real. Default: 107°.

Tag: max_lopcg_iterations
Usage: lopcg_tolerance number

Purpose: Experimental! Sets the maximal number of iterations for one block in
the the lopcg-solver.

number is an integer. Default: 100.

Tag: mu_determination_method

Usage: mu_determination_method type
Purpose: Specifies the algorithm used to search for the Fermi level.

type is a descriptor (string) which specifies the desired algorithm to determine
the Fermi level. Default: bisection

Available options are:

e bisection : Standard bisection algorithm. Usually robust to reach an accuracy
of 10713 in terms of electron count. If a desired accuracy cannot be reached
by the bisection iteration, e.g., due to the limit of the machine precision, the
remaining error (very small) will be arbitrarily cancelled out. Not compatible with
the integer occupation_type .

o zeroin : Standard Brent's method. Not compatible with the cubic or the cold
occupation_type .

Tag: max_zeroin
Usage: max_zeroin number
Purpose: Number of iterations allowed in Brent's method to find the Fermi level.

number is an integer number. Default: 200.

Usually, this tag need not be modified from the default. This limits the number of allowed
iterations for the (standard) Brent's method search for the Femi level. Leave untouched
unless problems arise. Note that changing the values given for occupation_type or
empty_states may be the true fixes if the search for a Fermi level really ever fails.

Tag: occupation_acc

130 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: occupation_acc tolerance

Purpose: Accuracy with which the sum of calculated occupation numbers for a
given Fermi level reproduces the actual number of electrons in the system.

tolerance is a small positive real number. Default: 10713

Usually, this tag need not be modified from the default. Determines the target accuracy
for the Fermi level (calculated vs. actual number of electrons in the system). Note that
changing the values given for occupation_type or empty_states may be the
true fixes if the search for a Fermi level really ever fails.

Tag: occupation_type

Usage: occupation_type type width [order]

Purpose: Determines the broadening scheme used to find the Fermi level and
occupy the Kohn-Sham eigenstates.

type is a string which determines the desired broadening function. Default:
gaussian

width specifies the width of the broadening function [in eV]. Default: 0.01 eV.
order is an integer, and only required to specify the order of type
methfessel-paxton.

Based on the eigenvalues ¢; of each s.c.f. iteration, the selected occupation_type
determines the Fermi level ¢x and occupies all Kohn-Sham states with fractional occu-
pation numbers fi(er) for the following electron density update. Detailed discussions
can be found in Ref. [26] or other standard literature [128]. We only briefly list the
available options for the occupation type here:

» gaussian : Gaussian broadening function [67]

o methfessel-paxton : Generalized Gaussian-type distribution functions of Meth-
fessel and Paxton (see Ref. [159] for details). In practice, any order beyond 1 is
not recommended, and is not supported if bisection is chosen for the keyword
mu_determination_method .

o fermi : Formally correct finite-temperature broadening scheme [158]

1
14 exp[(g — ep)/width]

f

However, to be useful in practice, width must take on values significantly greater
than kT at room temperature, and therefore mostly loses its physical meaning. In
practice, fermi broadening seems to lead to faster-increasing total energy inaccu-
racies than gaussian broadening, which is why the latter is preferred in FHI-aims.

» integer : Forces the occupation numbers to be integers.

3.9. Eigenvalue solver and (fractional) occupation numbers 131

e cubic : Experimental Cubic polynomial broadening.

e cold : Cold smearing technique proposed by Marzari and Vanderbilt.

For metallic systems / systems with small HOMO-LUMO gap, the availability of an
occupation scheme with finite width (e.g., 0.1 €V) is critical to guarantee the stable
convergence of the s.c.f. cycle. Especially for metallic systems, FHI-aims outputs an
extrapolated total energy, which estimates the total energy for zero broadening based
on the entropy of the electron gas [128, 72, 226]. This extrapolated total energy must
only be used for metallic systems, not, e.g., for atoms with a decidedly discrete density
of states.

For non-metallic systems / systems with appreciable HOMO-LUMO gap, the broadening
width must be finite in order to guarantee the existence of a formal Fermi level, but not
so large as to lead to any actual fractional occupation numbers. In our experience, the
default width of 0.01 eV performs well for this purpose.

Tag: override_illconditioning
Usage: override_illconditioning flag

Purpose: Allows to override a built-in stop and run with a nearly singular overlap
matrix.

flag is a logical flag, either .true. or .false. Default: .true.

If the overlap matrix s;; has an eigenvalue below basis_threshold or below 107°
(whichever is larger), FHI-aims will stop and warn the user of a potentially ill-conditioned
basis set. Usually this situation can still be resolved by setting an appropriate value of
basis_threshold, but anyone relying on this functionality should first check whether
their “ill-conditioning” condition is not also due to another, inadvertent choice, such as
an insufficient integration grid for very extended functions, or an excessively large cutoff
radius in dense periodic systems (is it really necessary?).

In other words: By all means, override if you wish, but check first whether all computa-
tional settings are actually intentional and appropriate.

132 Chapter 3. The Full Monty: All Keywords and Capabilities

3.10 SCF Cycle: Initialization, density mixing,
preconditioning, convergence

The preceding tasks (charge density update, Hartree potential, Hamiltonian and eigen-
value solver) are all methodologically simple, with well-defined standard choices, since
they all relate to the densities and potentials within a single s.c.f. iteration of the
Kohn-Sham equations only.

However, in order to run a complete, self-consistent Kohn-Sham or generalized ground
state calculation, many such cycles must be performed. Beginning with well-defined ini-
tial criteria, self-consistency of the charge density and orbitals must be reached, and must
be reached within a rather finite number of iterations. This is a non-linear optimization
problem and not always trivial.

The most important keywords related to this problem in FHIl-aims are adjust_scf ,
which is set by default and automates the process with a choice of s.c.f. settings that is
often safe. The key parameters that can be manually adjusted are charge mix_param
and occupation_type . Many more keywords are described below, but usually, these
are the relevant choices.

For many standard problems in electronic structure theory—especially systems with a
large, well-defined HOMO-LUMO or band gap—reaching self-consistency today presents
essentially no problem, and is achieved to great accuracy already within ~10 or so
iterations.

However, in cases where the band structure is metallic, different charge or spin states are
close to one another or in competition, there may be several self-consistent solutions,
depending on the exact chosen initialization. Even worse, in such cases reaching even a
single one of potentially several different self-consistent solutions can be problematic.

It is very important to remember that different stationary densities for the exact same
atomic geometry and for the exact same density functional are a real and not always
unrealistic possibility in DFT. A simple example are antiferromagnetic vs. ferromagnetic
spin states in some systems. In such cases, the true ground state in a DFT sense is
the stationary density that yields the lowest energy. It can be found by way of a global
search for different stationary densities, usually by varying the initial density guess.

The present section summarizes all available options in FHI-aims to facilitate the self-
consistent solution of any given problem in FHI-aims in as few iterations as possible,
including:

Initialization of the s.c.f. cycle

Criteria for the convergence of the self-consistency solution

Electron density mixing

Electron density preconditioning

Please refer to Ref. [26] for a more exhaustive discussion of the physics / mathematics
behind the individual choices laid out below.

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 133

Important note: The following settings are made or required by default.

o The initial spin density must be specified in a spin-polarized calculation. In spin-
polarized systems, the choice of a good initial spin density can be critical for good
convergence. For example, for a free atom, you might wish for a high-spin initial
density according to Hund's rules. In a ferromagnetic Fe crystal, you might want
tousea default_initial moment of 2 (far lower than the Hund's rule value)
to obtain fast convergence. In an antiferromagnetic Cr crystal, a ferromagnetic
default initialization might do no good at all. And in a molecule with a single
magnetic atom enclosed, you might want a spin-polarized initial moment only for
that atom, but not for the surrounding molecule. In short, FHI-aims can not
and should not guess the spin initialization for you. The program will stop if no
initial moments of any kind are provided by the user. Setting either an overall
default_initial_moment (in control.in), or (better!) at least one individual
initial_moment tag in geometry.in, or both will allow you to run.

o Use of the Kerker preconditioner for periodic systems. This option can greatly im-
prove the s.c.f. convergence especially of large periodic systems (see preconditioner
for more details). At the very least, it does not appear to do much harm, and is
therefore now used by default in any periodic calculation. Howewver, for very large
systems the Kerker preconditioner can cost significant amounts of time — see
the detailed timing output that is written by the code at the end of each s.c.f.
iteration. You may try to switch it off. Should you encounter any difficulties,
either turn the preconditioner off by hand, or play with associated screening
momentum, g (default: go=2.0 bohr™!).

o The keyword sc_init_iter sets the number of s.c.f. iterations after which
the Pulay mixer resets itself from scratch. This can significantly help in cases of
bad convergence. If you have real mixer trouble, please consider this keyword.

Regarding options to converge the self-consistency cycle, note that one further important
parameter is not covered here but instead in Sec. 3.9: The “broadening” of (fractional)
occupation numbers around the Fermi level. Especially in metallic systems, this broad-
ening must be large enough to prevent oscillations around the Fermi level, independent
of the methods laid out below.

For further suggestions to improve s.c.f. convergence, see Sec. A.8.

3.10.1 Visualizing the convergence of the s.c.f. cycle

There is a simple tool that can be used to visualize the s.c.f. convergence behavior
of FHI-aims graphically for a given run. Preferably do this analysis on your desktop
computer (i.e., copy over the necessary files). This is what you need to do:

o Install the Grace 2D visualization program (http://plasma-gate.weizmann.ac.il/Grace/)
on your computer.

» Go to the directory with the FHI-aims output file you wish to analyze.

134 Chapter 3. The Full Monty: All Keywords and Capabilities

o From the FHI-aims utilities directory, copy over the file scf_convergence_template.agr

o At the commandline, call the FHI-aims utility
plot_scf_convergence.pl [FHI-aims output file|
to visualize the s.c.f. convergence behavior of the FHI-aims output file. plot_scf_convergence
can be found in the FHI-aims utilities directory and must (of course) be called with
the correct directory path preceding the file name.

If successful, this procedure will assemble and open a graphical representation of the
s.c.f convergence of FHI-aims.

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 135

Tags for geometry.in:

Tag: initial_charge
Usage: initial_charge charge
Purpose: Allows to place an initial charge on an atom in file geometry. in.

charge is a real number. Default: 0.

The initial charge keyword always applies to the last atom previously spec-
ified in input file geometry.in. The charge is introduced by using an ionic instead of
neutral spherical free-atom density on that site in the initial superposition-of-free-atoms
density. Note that initial charge densities are generated by the functional specified with
xc for DFT-LDA/GGA, but refer to pw-1da densities for all other functionals (hybrid
functionals, Hartree-Fock, ...).

Tag: initial_moment

Usage: initial_moment moment

Purpose: Allows to place an initial spin moment on an atom in file
geometry.in.

moment is a real number, referring to the electron difference NT — N+ on that
site. Default: Zero, unless default _initial moment is set explicitly.

The initial moment keyword always applies to the last atom previously specified
in input file geometry.in. The moment is introduced by using a spin-polarized instead
of an unpolarized spherical free-atom density on that site in the initial superposition-
of-free-atoms density. Note that initial charge densities are generated by the functional
specified with xc for DFT-LDA/GGA, but refer to pw-1da densities for all other
functionals (hybrid functionals, Hartree-Fock, ...).

136

Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: adjust_scf

Usage: adjust_scf frequency number

Purpose: Adjusts key parameters that govern the s.c.f. cycle based on a rough
estimate of the system's band gap.

frequency is a keyword, once, never, or always. Default: once.

number is an integer number (zero or greater). Default: 2.

This keyword decides whether key s.c.f. convergence parameters will be adjusted au-
tomatically during the s.c.f. cycle, based on a simple estimate of the system character
according to its approximate HOMO-LUMO gap or band gap.

The number keyword determines in which iteration of the s.c.f. cycle the adjustment
will be attempted. A zero value corresponds to the initial s.c.f. cycle; values of 1, 2,

etc.

correspond to an update after the first, second, etc. s.c.f. iterations are almost

complete and their eigenvalue spectra known.

The frequency keyword determines for which full s.c.f. cycle (i.e., for which geometry
step) an adjustment will be made:

once means that an adjustment of the s.c.f. parameters will only be made in the
first geometry in a geometry relaxation or MD run.

always indicates that an adjustment will be made for every new s.c.f. cycle, i.e.,
for every new geometry in a run.

never indicates that no adjustment will be attempted.

Parameters will only be adjusted if they are not explicitly set by a keyword in control. in.
Any parameter that is included in control. in will not be modified by the adjust_scf
keyword. For frequency once or always, the following parameters may be adjusted:

e The initial default value of charge mix param for mixer pulay will be set

to 0.05 (i.e., an overall cautious value). For frequency never, the default value
of the charge_mix_param keyword remains at its usual default value 0.2 (for
many metallic or spin-polarized systems, this is a fairly aggressive value).

In s.c.f. iteration number, the current estimated value of the HOMO-LUMO gap
(for solids, the band gap) is checked. If the system shows fractional occupation
numbers or if the estimated gap has a value of less than 0.2 €V at this point, the
system is likely near-degenerate or metallic and the s.c.f. cycle could be diffcult
to converge. In this case, the charge mix param is set to 0.02 — a cautious
value but, in conjunction with the Pulay = mixer , still surprisingly effective.
The broadening of the occupation numbers near the Fermi level is increased to
occupation_type option 0.05 [eV].

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 137

« If, instead, the gap is found to be equal or greater than 0.2 €V in s.c.f. iteration
number, the rather aggressive default charge mix param 0.2 is kept for the
Pulay mixer, and the default broadening value (suitable for non-metallic systems)
occupation_type option 0.05 [eV] is also kept.

Tag: allow_restart_xc_pre

Usage: allow_restart_xc_pre flag

Purpose: This keyword will safeguard against xc_pre being accidentally set
together with elsi_restart (they can still be set together on purpose if this
keyword is .true.)

flag is a logical variable (.true. or .false.). Default: .false.

The keywords xc_pre and elsi_restart both allow one to specify a non-standard
(and usually faster) initialization of the electronic structure that is later calculated self-
consistently for the exchange-correlation method specified by the usual xc keyword.

One frequent problem is that they can be accidentally set togethe. In that case, the
initialization using xc_pre can undo the often highly valuable initialization already
present from the elsi_restart information. For example, xc_pre can replace
the highly expensive information from a previous hybrid DFT run and replace it with the
much less suited information from, say, a PBE pre-initialization.

This is, ostensibly, a user error, but can cost immense amounts of CPU time especially
for the highest-value calculations. Therefore, we safeguard against this possibility.

When the xc_pre keyword is set, elsi_restart can still be used at the same
time — but only if no elsi_restart restart files are actually available to read (i.e.,
if all that elsi_restart would do is write). If elsi_restart actually does have
information to initialize the calculation, keyword xc_pre will only be allowed to be
used if allow_restart_xc_pre is explicitly set to be true. If it isn't, then the code
will stop and explain to the user that the two should not be used together.

The allow_restart _xc_pre keyword has no effect when used together with the
older restart keyword.

Tag: charge_mix_param
Usage: charge mix_param value

Purpose: Parameter for simple linear mixing of electron densities of previous and
present s.c.f. iterations

value is a real number between 0. and 1. Default: Depends on chosen mixer
algorithm. Now set by the adjust_scf keyword.

See Ref. [26] for details regarding the available density mixing algorithms. In the simplest
case of a linear mixer , value specifies a constant value G' to mix the output
density of the Kohn-Sham Equations in iteration number g, nE(“S) with the (already

138 Chapter 3. The Full Monty: All Keywords and Capabilities

mixed) input density that defined those equations, n*~1):

né‘rﬂp = p= 4 G’l(n(K“S) — n(“_l))) (3.28)
If a preconditioner is specified, charge mix_param defines an additional linear
factor to that preconditioner. In case of a pulay mixer , all density residuals are
mixed with this factor.

In general, the best choice for value is system-dependent, and also depends on the
chosen mixer algorithm. In general, please also see Appendix A.8, since several
keywords can be used to alleviate s.c.f. mixing instabilities.

e Inprinciple, a linear mixer will always converge with a sufficiently small value.
In easy cases, we recommend value=0.1-0.2, but in difficult cases, “sufficiently
small” can mean one to three orders of magnitude(!) lower, i.e., the process can
be apallingly slow.

o For a straight pulay mixer , our default value is adjusted according to the
adjust_scf keyword, depending on the estimated band gap / HOMO-LUMO
gap. For non-metallic systems, we choose a conservative value of 0.2. In metal-
lic systems or systems that are otherwise problematic, the default value set by
adjust_scf is value=0.02. Note that this small value does not necessarily cor-
respond to slow mixing since the Pulay mixer will learn over time and accelerate
the mixing process.

o In metallic systems, density oscillations can occur from one iteration to the next
(charge sloshing). This can be alleviated by a preconditioner . With a
preconditioner and pulay mixer specified together, value is still important
and may be chosen around 0.05 .

See also the mixer and preconditioner keywords.

Tag: relative_fp_charge_mix
Usage: relative_fp_charge mix value

Purpose: Parameter for under-relaxation of the fixed point part of s.c.f. cycle
with the broyden mixer

value is a real number between 0. and 1. Default: 0.05

relative_fp_charge mix determines the under-relaxation of the fixed point part of

the Broyden mixer s.c.f. cycle together with charge mix param. relative fp charge mix
and charge mix_param are multiplicative, and if no history is included the effective
under-relaxation is relative_fp_charge mix times charge mix_param .

Tag: default_initial_moment

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 139

Usage: default_initial moment moment

Purpose: For spin-polarized calculations, sets the default initial moment of the
spin-polarized atoms that make up the initial electron density.

moment is either a string or a number that defines the desired initial number of
electrons, NT — NV, Default: hund for isolated atoms. Zero otherwise.

Sets the default initial spin moment for all atoms whose initial moment s are not
specified explicitly in geometry.in.

If there is at least a single initial moment keyword specified in geometry.in,
the default _initial moment will be zero for all other atoms, for which no
initial moment is specified explicitly.

Ifno initial moment isincluded in geometry.in at all, the default_initial moment
must be specified explicitly by the user for the code to run at all.

For most (bonded) systems, it is advisable to set the default_initial_moment
to a numerical value close to what most atoms in the structure will do. For example,
ferromagnetic Fe would be close to 2, whereas a large non-magnetic molecule would be
better served with something close to zero.

For isolated free-atom calculations, default initial moment hund can be used.
This will result in the usual high-spin atom initialization characteristic of free atoms.

Note that at least one moment in the system must be set to a non-zero value in order to
reach any spin-polarized state at all. If the initial spin polarization is zero, the final s.c.f.
result will also not be spin-polarized, no matter how magnetic the system is in reality.

Warning. It is not advisable to set a blanket default initial moment hund for any
structures other than free atoms. The result can be enormous convergence difficulties
because the calculation begins from a bad starting point — a high-spin state that is
completely unrealistic for most bonded structures. A calculation will converge much
better if the initial spin moment is realistic for each individual atom in the structure.

One more warning: It is not advisable to set a default_initial moment other
than zero in structures in which only a few atoms actually carry spin (such as a large
molecule with a few transition metal atoms). Rather, a good choice would be to set a
zero default_initial moment and then set finite initial moment values for
individual atoms in geometry.in.

And again: Setting default_initial _moment to zero and not specifying any
initial _moment values in geometry.in will lead to a zero spin state in the final
result, simply because the system is never given any indication which way to break its
symmetry. So one does need to set a finite moment somewhere if a finite-spin converged
solution is expected in the calculation.

The upshot is: It pays to think about the right spin initialization. There may be multiple
different self-consistent solutions, and in spin-polarized systems, this can happen for very
natural reasons (e.g., ferromagnetic vs. antiferromagnetic states). Similar to geometry
optimization, starting from a very bad initial guess can cause problems. Conversely, a
good starting point may greatly simplify a calculation.

140 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: force_potential

Usage: force_potential type

Purpose: Determines how far / with which potential the Kohn-Sham equations
are solved.

type is a string that determines the potential used. Default: sc

This option is not required under normal circumstances. It is mainly useful to produce /
test a fast, non-self-consistent solution for a superposition-of-atoms potential that yields
only the sum of eigenvalues as a result. If a non-self-consistent total energy is needed
(correct only for the non-spinpolarized free-atom density!), running a normal calculation
with sc_iter_limit =0 is the better way.

Options for type are:

o sc: Self-consistent Kohn-Sham potential in each s.c.f. iteration

 superpos_pot: Superposition of free-atom potentials, evaluation only once (no
self-consistency cycle). Restriction: This method works only for self-adapting
angular grids (i.e, angular_acc not equal zero for at least one species
). This also means that the option will not perform well in periodic boundary
conditions. A fix is simple, contact us if needed.

o superpos_rho: Superposition potential created from sum of free-atom densities;
evaluation only once (no self-consistency cycle)

» non-self-consistent: Same as superpos_rho.

Tag: ini_linear_mixing
Usage: ini_linear_mixing number

Purpose: If mixer is pulay, specifies simple linear mixing for a number of
initial iterations.

number is the integer number of iterations for which linear mixing is done.
Default: 0 .

Try only if the standard / preconditioned pulay mixer definitely fails. Keywords
ini linear mix_param , 1ini_spin _mix_param can be used to specify separate
mixing parameters for the initial linear mixing.

Tag: ini_linear_mix_param

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 141

Usage: ini_linear_mix_param value

Purpose: Separate parameter for simple linear mixing of electron densities for
ini_linear_mixing .

value is a real number between 0. and 1. Default: same as charge_mix_param

ini_linear mixing should only be tried if the standard algorithms provably fail. In
that case, value should be relatively small.

Tag: ini_spin_mix_param
Usage: ini_spin_mix_param value

Purpose: For spin-polarized calculations, separate parameter to mix the spin
density during ini_linear mixing .

value is a real number between 0. and 1. Default: same as spin_mix_param

ini_spin mix_param should only be tried if the standard algorithms provably fail. In
that case, value should be relatively small.

Tag: mixer
Usage: mixer type

Purpose: Specifies the electron density mixing algorithm used to achieve fast
and stable convergence towards the self-consistent solution.

type specifies the density mixing algorithm used and can be set to either
linear, pulay, or broyden. Default: pulay.

FHI-aims provides three mainstream density mixing algorithms across the s.c.f. cycle,
type linear, pulay, and broyden. We here only give a brief summary of options,
please see Ref. [26] for further references and for the exact mathematical details.

For most practical purposes (non-pathological systems), Pulay’s DIIS mixing algorithm
[184] is robust and fast, and should be the algorithm of choice. For this algorithm,
n_max_pulay n determines the number of past iterations y—k (k=1,...,n) to be mixed
with the Kohn-Sham output density of iteration . charge _mix_param determines
an additional (system-dependent) linear factor that is multiplied with the output density
change of the Pulay mixer. Normally, this (and perhaps a preconditioner) is all
you need to do to ensure convergence.

In some pathological cases, reaching self-consistency is a more tricky problem. Broadly
speaking, these are systems with a small HOMO-LUMO gap (band gap) and/or several
competing possibilities for a self-consistent solution. Specifically, these difficult cases
include:

o Large metallic systems (e.g., slabs), where charge may “slosh” from one end
of the system to another before reaching self-consistency. In that case, the

142 Chapter 3. The Full Monty: All Keywords and Capabilities

pulay mixer may be used together with a large charge mix param and a
preconditioner (see that keyword) to dampen the resulting oscillations. Also
make sure that occupation_type is set to a sufficiently large broadening of
occupation numbers near the Fermi level in metallic systems.

o Spin-polarized systems with competing spin states. A classic. If problems arise,
playingwith ini_linear_mixing, the charge mix_param and spin_mix_param
and further options listed in this section may help. Likewise, setting a specific
fixed_spin_moment may be helpful. Finally, different initial moment set-
tings may easily switch between different metastable self-consistent spin states
(e.g., ferromagnetic vs. antiferromagnetic), and should be tested separately if
different competing spin states are suspected.

 Systems near a level crossing (even dimers, if two or more Kohn-Sham levels of
different symmetry come close for a given binding distance). Apart from the usual
mixing mechanisms, keyword occupation_type with a larger broadening near
the Fermi level may help alleviate this situation.

o Spin-polarized free atoms. The simplest conceivable systems may exhibit unex-
pected problems towards self-consistency, likely because the electron density can
rotate between several fully equivalent spin states. Here, demanding a specific or-
bital occupation using the force_occupation_basis keyword may be useful.

In principle, even in the toughest cases a linear mixer will always converge with a
sufficiently small charge mix_param . Unfortunately, “sufficiently small” can mean a
charge mix_param of 1072-107%, i.e., the process can be apallingly slow. Playing with
the pulay mixer settings is usually the better strategy, unless a proof of principle is
sought.

The broyden mixer is an improvement on the linear mixer . The broyden
mixer works by effectively dividing the s.c.f. cycle into two separte parts: the space
in which we have local information gained by previous evaluations of the s.c.f. cycle,
and the remaining space in which we do not have information. charge mix_param
determines the linear factor which under-relaxes the density predicted by the broyden
mixer , n_max_broyden n controls the number of past iterations used to construct
the next estimate, and relative_fp_charge mix is the additional (multiplicative)
under-relaxation affecting only the step length in the space where we have no further
information.

Note that a modification is needed when going beyond DFT-LDA/GGA (Hartree-Fock,
hybrid functionals, ...). In that case, the density implicitly enters the two-electron ex-
change operator (via the density matrix, 7;; = Y_; ficucj;, where i and j label basis
functions, and [label the Kohn-Sham states), and should also be mixed.

By default, for linear mixing, we do not mix the exchange operator, unless keyword
use_density matrix_hf is enabled. The latter is the default if the pulay mixer is
selected. Then, the density matrix is submitted to the same Pulay mixing factors as the
normal charge density n(r) before constructing the exchange operator. Note that we do
not have a formal density matrix available that corresponds to the initial superposition

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 143

of free-atom densities, making this form of mixing slightly less efficient than for normal
Kohn-Sham DFT-LDA/GGA.

Tag: mixer_threshold

Usage: mixer_threshold keyword threshold

Purpose: Allows to cap the density step between two iterations rigorously by
setting an explicit threshold.

keyword is a string, indicating whether the following is the charge or spin
density threshold.

threshold is a real number, the maximum allowed change in the density norm
(in electrons). Default: no thresholds.

This option is perhaps useful when there are definite convergence problems with the
standard mixing algorithms, but can otherwise safely be ignored.

Tag: n_max_pulay

Usage: n_max_pulay number

Purpose: The number of past iterations that the pulay mixer uses for
density mixing.

number is the number of stored iterations used by the mixer. Default: 8

A larger number of stored iterations can sometimes lead to a stabilization of the mixing
process. Choosing number too large (e.g., 20 and above), though, may destabilize the
Pulay matrix, which can become near-singular.

Note that the storage effort associated with Pulay mixing is significant on systems
with few CPUs / low memory. Each additional stored iteration requires the storage
of two charge density residuals, and two times three charge density gradient resid-
ual components. For large systems, low memory, and overall stable mixing, reducing
n_max_pulay may be a way to get a given calculation below the most difficult memory
barriers.

Tag: n_max_broyden

Usage: n_max_broyden number

Purpose: The number of past iterations that the broyden mixer uses for
density mixing.

number is the number of stored iterations used by the mixer. Default: 8

A larger number of stored iterations can sometimes lead to a stabilization of the mixing
process. Choosing number too large (e.g., 20 and above), though, may destabilize the
Broyden matrix, which can become near-singular.

Note that the storage effort associated with Broyden mixing is significant on systems
with few CPUs / low memory. Each additional stored iteration requires the storage

144 Chapter 3. The Full Monty: All Keywords and Capabilities

of two charge density residuals, and two times three charge density gradient resid-
ual components. For large systems, low memory, and overall stable mixing, reducing
n_max_broyden may be a way to get a given calculation below the most difficult

memory barriers.

Tag: postprocess_anyway

Usage: postprocess_anyway boolean

Purpose: By default, FHI-aims simply stops if the SCF procedure does not
converge. In particular, all desired postprocessing steps are skipped. If you do
want postprocessing to be done anyway, set boolean to .true..

boolean is either .true. or .false.. Default: .false..

Tag: prec_mix_param
Usage: prec_mix_param value
Purpose: Possible separate mixing parameter while the preconditioner is on.

value is a real number between 0. and 1. Default: sameas charge_mix_param

It's our tentative observation that a larger mixing parameter (0.5-0.8) is sometimes
helpful with the preconditioner , but after the preconditioner is switched
off, a smaller mixing parameter (as set by charge_mix_param) may be desirable.
prec_mix_param can provide the needed separate setting, if desirable.

Tag: preconditioner

Usage: preconditioner keyword [type] [value]

Purpose: “Master keyword” that precedes any information related to the
preconditioner. May appear multiple times in control.in, in different contexts.

Restriction: Because it cannot simply be written in a density matrix formulation,
the preconditioner has no effect on the density matrix entering the exchange
operator for Hartree-Fock, hybrid functionals, etc.

keyword : A string, indicating the type of information following.
type : If required by keyword, a string with more details.
value : If required by keyword, a numerical value.

Default values:

« Non-periodic systems: preconditioner kerker off (no preconditioner).

o Periodic systems: preconditioner kerker 2.0 (Preconditioner with a
momentum of ¢y=2.0 bohr™!).

See Ref. [26] regarding the mathematical definition of the Kerker-type [150, 166, 119]

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 145

preconditioner, which is the currently implemented form.

See keyword precondition_max_1 for the angular momentum cutoff specified for
the kerker preconditioner .

keyword can have the following forms, controlling various aspects of the preconditioner:

e kerker :

— if followed by off : No preconditioner used.

— if followed by value : value is a real positive number, indicating the char-
acteristic momentum ¢q associated with the Thomas-Fermi type screening
assumed in the preconditioner (in bohr~!). Typical values in the literature
range around 1.0-2.0 bohr™!, but larger values may be useful in small clusters.

e turnoff : To avoid any residual influence on the s.c.f. cycle, the preconditioner
can be switched off at a given level of s.c.f. convergence, leaving the remaining
convergence to a pure pulay mixer . Possible types of turnoff criteria are:

— charge : value refers to the root-mean-square deviation between n(*~1 (the
mixed and preconditioned input density to the Kohn-Sham Equations) and
”&Ls) (the unmixed output density from the Kohn-Sham Equations). Default:

sc_accuracy_rho .

— energy : value refers to the total energy difference between two successive
iterations [in eV].

— sum_ev : value refers to the difference in the eigenvalue sums between two
successive iterations [in eV].

All requested convergence criteria for the preconditioner must be fulfilled. If
no explicit turnoff criterion is set, the =~ preconditioner turnoff charge,
energy and sum_ev defaults to the same values as sc_accuracy_rho ,
sc_accuracy_etot , and sc_accuracy_eev , respectively.

o dielectric : The inverse of the microscopic dielectric function, ¢ !(r,r’;0) is
used to precondition the density. This option is experimental and computationally
expensive but the the dielectric function can be theoretically justified to be a good
preconditioner. Works only for non-periodic systems.

e none or off : No preconditioner used.

Tag: precondition_max_1

Usage: precondition _max_1 value

Purpose: Angular momentum cutoff used in the partitioned atom-centered
real-space form of the kerker preconditioner .

value is an integer number, specifying an angular momentum. Default: 0.

We use a partitioned atom-centered multipole rewrite of the Kerker preconditioner in

146 Chapter 3. The Full Monty: All Keywords and Capabilities

angular momentum space, similar in spirit to the Hartree potential (see Ref. [26] for de-
tails). In principle, precondition_max_1 is thus the equivalent of the 1 _hartree
angular momentum cutoff for the expansion. However, since we here precondition a
density difference (which reduces to zero as we approach self-consistency), and since we
are combatting charge sloshing across potentially faraway parts of the systems, precon-
ditioning the atom-centered monopole component of the density difference (value=0)
is often all that is needed for the preconditioner to work. This is also the numerically
most efficient way of running the preconditioner.

Tag: kerker_factor

Usage: kerker_factor value

Purpose: value is a real positive number. Additional empirical factor for the last
step of the kerker precondioner. Best results were achieved by choosing value as
the characteristic momentum (go — 0.5) associated with the Thomas-Fermi type
screening assumed in the kerker preconditioner (kerker preconditioner).

This keyword is experimental and derived fully empirically. For notorious cases the
keyword may help to achieve convergence (faster). For ¢y = 1 the method is identical
to the standard kerker preconditioner.

Tag: restart

Usage: restart file

Purpose: Saves and reads the final wave function or density matrix of each
scf-cycle to/from file.

file is a string, corresponding to the desired restart filename.

Note: A more generic restart functionality is provided by the elsi restart — please
see that keyword for a description. The elsi restart keyword is the supported
restart functionality going forward unless you have special reasons to prefer the simple
restart keyword.

The restart keyword summarizes a set of different cases for which the electronic
structure information in FHI-aims can be saved and then later used to restart a calculation
from that point. restart comes in many internal variants and, for example,
restarting a calculation with more MPI tasks than a previous run is not possible. The
alternative elsi_restart keyword (which uses a different storage format than the
restart keyword) is much more flexible and may be the better choice.

If file is not yet present, the calculation simply writes that file during the run. If
file is already present, it is read and the wave function contained therein is used to
restart the calculation, instead of a fresh superposition of free atoms initialization. Mind
that restart is currently not supported for keywords load_balancing and
use_local index so that file will not be written or read when either keyword is set.

It is important to note that the restart infrastructure corresponds to a restart
from the last Kohn-Sham orbitals, not from the last density. In practice, this means

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 147

that the code will restart from the last unmixed Kohn-Sham density, not from the last
mixed density. When restarting from a non-self-consistent starting point, this can lead
to unexpected jumps in the calculated non-self-consistent total energy. Only the self-
consistent total energy is truly meaningful and this (the self-consistent) total energy
should be the same for the same stationary density. (Note also that some systems
may exhibit several different self-consistent stationary densities — a simple example are
antiferromagnetic vs. ferromagnetic spin states in some systems. In such cases, the true
ground state in a DFT sense is the one with the lowest energy and must be found by
varying the initial density guess.)

In parallel runs, there is one file for each process, numbered as fileXXX. See also
restart_read_only and restart_write_only . There are limited checks on
whether or not the restart file provided is actually from the same system, but ensuring
that a given restart file works is mainly the user's responsibility. See also MD_restart
for more information on the separate restarting process for molecular dynamics.

A much more complete overview of the restart infrastructure in FHI-aims can be found
in the dedicated Section 4.7.

Tag: restart_read_only

Usage: restart_read_only file

Purpose: reads the final wave function of the last scf-cycle in a preceding
calculation from file.

file is a string, corresponding to the desired restart filename.

Similar to keyword restart , but does not overwrite file at any time (this may
facilitate another restart from the same file later on).

Note: A more generic restart functionality is provided by the elsi restart, described
further below. We recommend to use elsi_restart unless you have special reasons
to prefer the simple restart keyword.

Tag: restart_write_only

Usage: restart_write_only file

Purpose: writes the final wave function of the last scf-cycle to file for a later
restart.

file is a string, corresponding to the desired restart filename.

Similar to keyword restart , but does not read the restart file in case it already
exists.

Note: A more generic restart functionality is provided by the elsi restart , described
further below. We recommend to use elsi_restart unless you have special reasons
to prefer the simple restart keyword.

148 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: restart_save_iterations

Usage: restart_save_iterations number

Purpose: writes restart information every number scf-iterations or at the end of
each cycle.

number is the integer number of s.c.f. iterations after which the restart
information is rewritten.

See also restart .

Tag: force_single_restartfile

Usage: force_single restartfile .true.

Purpose: Forces FHI-aims to always write a single, wavefunction based restart
file if possible.

Only relevant when using keyword restart . For technical and efficiency reasons
FHI-aims uses different types of restartfiles depending on the eigenproblem solver (see
Section 4.7 for details). In cases where the wavefunction is needed (e.g. for external
post-processing, ...), the default restart handling might make it difficult to do so.

This option only works for cluster (non-periodic) and periodic I'-only calculations.

Tag: elsi_restart

Usage: elsi_restart task freq

Purpose: Controls the density-matrix-based restart using parallel matrix /0
routines provided by the ELSI software. Although they are not known to interfere
with each other, the two restart keywords, restart and elsi_restart,
should not be requested in the same calculation.

task is a string, specifying the desired restart task.

freq is a positive integer, specifying the frequency of outputting restart info.

Available options for task are:

o write: Writes restart info (in ELSI format) to files. The info will be written to files
in every freq s.c.f. iterations, and will always be written out after a converged cy-
cle. The number of files depends on the choice of elsi _restart use_overlap

» read: Reads restart info from files and uses it (instead of free atom superpositions)
as the initial guess of an s.c.f. cycle. The code will search for files written by the
write option. If relevant files do not exist, the code will abort. freq is not used
for this option. The restarted run can use any number of MPI tasks, i.e., not
necessarily the same number as used in the original run.

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 149

e read_and _write : Performs what the write and read options do. Note that if
the restart files do not exist, the code will still proceed normally.

Restarting hybrid functional calculations from the density matrix obtained using a dif-
ferent (i.e. less expensive) functional may reduce the number of SCF steps taken by
the hybrid calculation. However, hybrid functional calculations currently require that the
symmetry_reduced_k_grid besetto .false.. If you are planning to restart a calcula-
tion with a hybrid functional from a less-expensive functional, first use elsi_restart
combined with symmetry reduced k _grid .false. for initial SCF convergence
with the less expensive functional, then restart your calculation with the hybrid func-
tional.

Note that the elsi_restart keyword — when it has actual past restart information
available to read — cannot be used together with the xc_pre keyword, unless explicitly
allowed using the allow_restart_xc_pre (see there for more information). We
do this to prevent unintended duelling inializations. The two keywords can still be used
together if all that elsi restart would do is write information, not read it.

Tag: elsi_restart_use_overlap

Usage: elsi_restart_use_overlap boolean

Purpose: By default, elsi restart uses density matrices as its restart info.
The number of density matrix files is equal to the number of k-points times
the number of spin channels. The density matrix files can be used to restart a
calculation of the same geometry. elsi_restart_use_overlap should be
used to initialize a calculation with the density matrices obtained from a different
structure. When this keyword is set to .true., the code writes overlap matrix
files in addition to density matrix files. The number of overlap files is equal to
the number of k-points. The stored overlap matrices are used to extrapolate the
stored density matrices.

boolean is either .true. or .false.. Default: .false..

Tag: calc_dens_superpos

Usage: calc_dens_superpos .true.

Purpose: When reinitializing the SCF cycle, fall back to the superposition of free
atoms density for the initial guess (instead of using the guess from the previous
converged cycle).

Tag: sc_abandon_etot

150 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: sc_abandon_etot iter threshold

Purpose: If the s.c.f. cycle diverges, abort the s.c.f. cycle after a specified
number of iterations between which the total energy changed by more than a
given threshold.

iter is an integer number of iterations after which the calculation is aborted.
Default: 5 iterations.

threshold is a positive real number - if the total energy keeps changing by
more than this number [in €V], the abort will be triggered. Default: 1000 eV.

This keyword allows to catch obviously ludicrous runs. If it triggers, something went
seriously wrong during the mixing procedure and the settings for mixers, occupation
broadening, preconditioner etc. should all be revisited very carefully.

The alternative setting sc_abandon_etot never switches the abort off, restoring
the previous behaviour.

Tag: sc_accuracy_eev

Usage: sc_accuracy_eev value

Purpose: Convergence criterion for the self-consistency cycle, based on the sum
of eigenvalues.

value is a small positive real number [in eV], against which the difference of the
eigenvalue sum between the present and previous s.c.f. iteration is checked.

Very sensitive criterion for s.c.f. convergence. Usually, value=10"3 eV is enough to
indicate a reliable total-energy and force convergence. If value is set to zero or not given,
the sum of eigenvalues will not be used as a convergence criterion.

Tag: sc_accuracy_etot

Usage: sc_accuracy_etot value

Purpose: Convergence criterion for the self-consistency cycle, based on the total
energy.

value is a small positive real number [in eV], against which the difference of the
total energy between the present and previous s.c.f. iteration is checked.

The Harris-Foulkes form of the functional is used as the total energy in FHI-aims (see
Ref. [26] for a brief discussion). A typical tight convergence criterion is value=10"% eV.
If value is set to zero or not given, the total energy will not be used as a convergence
criterion.

Tag: sc_accuracy_forces

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 151

Usage: sc_accuracy_forces value

Purpose: Convergence criterion for the self-consistency cycle, based on energy
derivatives (“forces”).

value is EITHER a small positive real number [in eV/A], against which the
maximum difference of atomic forces between the present and previous s.c.f.
iteration is checked, OR a string, 'not_checked’.

Default: not_checked

Attention: If keyword sc_accuracy_forces is set in control.in, forces are by
default computed, regardless of whether or not they are later needed. The rationale
is that the only way to check a requested force convergence criterion is to compute
the necessary forces, despite the added numerical effort. For single-point calculations
(no relaxation required), sc_accuracy_forces should therefore not be set unless
explicitly needed for some reason.

One can explicitly set the keyword value to the string 'not_checked' In this case, the
forces are computed in only a single shot, their s.c.f. convergence will not be checked.

In this case, the code now relies on the default convergence criterion for the electron
density itself (sc_accuracy_rho) to be sufficiently tight to guarantee good forces.
This avoids excessive numbers of force evaluations in production runs.

Calculating forces is relatively expensive, so this convergence criterion is either not
checked (default behavior), or it is checked after the purely electronic / energetic cri-
teria, sc_accuracy_eev, sc_accuracy_etot, sc_accuracy_rho , are all
fulfilled. To avoid too many iterations with force computations before the forces are
converged, it is important to set the other criteria (especially sc_accuracy_eev ,
which checks a non-variational quantity) to tight convergence, as indicated above. For
sc_accuracy_forces itself, e.g., value=10"% eV/A is a reliable and robust criterion
to avoid noise in geometry relaxations.

For simple structure relaxation, not _checked will often be good enough if the electronic
criteria (especially sc_accuracy_rho) are set reasonably tightly.

For molecular dynamics, however, even slightly underconverged forces may lead to long-
term energy drifts in (nominally) constant-energy runs. Here, it is a good idea to try out
in explicit tests how tightly sc_accuracy_eev must be set to guarantee drift-free
trajectories.

Tag: sc_accuracy_rho

152 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: sc_accuracy_rho value

Purpose: Convergence criterion for the self-consistency cycle, based on the
charge density.

value is a small positive real number [in electrons], against which the volume-
integrated root-mean square change of the charge density between the present
and previous s.c.f. iteration is checked.

Default: Between 1d-6 and 1d-3 e/a,®, depending on number of atoms or if a
forces corrected calculation is taking place (see below).

By default, FHI-aims checks separately the convergence of the charge density and the
spin density, using the same criterion. Specifically, the unmixed output density of the
Kohn-Sham Equations, ”E<Hs) is checked against the input density n=1 to the same
equations. A typical tight convergence criterion is value=10"°.

sc_accuracy_rho is the most important s.c.f. convergence criterion and must be set.
If the keyword is not set in control.in, the code chooses its initial default as follows:

« Up to 6 atoms in geometry.in: value=10"%/n_atoms
« Between 6 and 60 atoms in geometry.in: value=10"%.,/n_atoms/6

« Above 6000 atoms in geometry.in: value=10"5y/1000

Then, in case the keyword force_correction is set to .true. (the default value),
and neither compute_analytical stress nor output are not used, FHI-aims
multiplies the above values by a factor of 8. This is because, once force_correction
is employed, forces can be computed with a higher accuracy even with relatively a looser
charge density convergence criterion.

Tag: sc_accuracy_stress

Usage: sc_accuracy_stress value
Purpose: Convergence criterion for analytical stress.

value is EITHER a small positive real number [in eV/A?], against which the
maximum difference of the analytical stress components between the present
and previous s.c.f. iteration is checked. A negative number, or simply the string
'not_checked' results in no convergence check.

Default: not checked .

Warning. Setting sc_accuracy_stress to a finite non-negative value will
result in a disproportionately large computational cost. In this case, the number
of stress evaluations per relaxation step is at least doubled. This is normally by far the
most expensive part of the calculation. Only set this to a finite value if you have a good
reason to do so.

The default for value is not _checked, i.e. the convergence of the analytical stress will
not be checked. However, you have to ensure that other convergence criteria (especially

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 153

sc_accuracy_eev , which checks a non-variational quantity) are set to tight values, as
indicated above.

Calculating the analytical stress is relatively expensive, so this convergence criterion
is only checked after the purely electronic / energetic criteria, Sc_accuracy_eev
, sc_accuracy_etot , sc_accuracy_rho , are all fulfilled. To avoid too many
iterations with analytical stress computations before the analytical stress is converged,
it is important to set the energetic criteria to tight convergence.

Tag: sc_accuracy_potjump

Usage: sc_accuracy_potjump value

Purpose: Convergence criterion for the self-consistency cycle, based on the
vacuum level potential shift.

value is a small positive real number [in eV], against which the difference of the
dipole correction potential jump between the present and previous s.c.f. iteration
is checked.

This keyword only makes sense (and is only accepted) for periodic slab calculations with
the option use_dipole correction set. If you are interested in the work function
or vacuum level shifts explicitly, it is recommended to use this flag. A typical tight
convergence criterion is value=10"%.

Tag: sc_init_factor

Usage: sc_init factor number
Purpose: The sc_init _iter keyword will not trigger if the density
convergence criteria are already within a factor sc_init factor of the

density convergence criterion, sc_accuracy_rho .

number is an real (double precision) number. Default: 1.d0

See the sc_init_iter keyword for a more complete description of this behavior.

Tag: sc_init_iter
Usage: sc_init_iter number

Purpose: If the s.c.f. cycles for the initial geometry of a run fails to converge
within (number) iterations, then FHI-aims will end this s.c.f. cycle and begin a
new one with the exact last wave function as its starting guess.

number is an integer number. Default: 1001

sc_init_iter endsonlythes.c.f. cycle for the first geometry of a run. The idea is to do
a step that looks exactly like a new geometry step, but to not alter the geometry. Rather,
reinitializing from the exact orbitals reached after (number) iterations ensures that the
mixer and other parts of the calculation will not drag along some misguided information

154 Chapter 3. The Full Monty: All Keywords and Capabilities

of the original superposition-of-free-atoms initialization. In some cases, such a clean
start can help converge the s.c.f. cycle of a calculation that otherwise has difficulties to
converge at all.

See also the sc_init factor keyword, which can be used to tune this behavior
further.

Tag: sc_iter_limit
Usage: sc_iter_limit number
Purpose: Maximum number of s.c.f. cycles before a calculation is considered
and abandoned.

number is an integer number. Default: 1000

sc_iter_limit is a keyword that should be set in every run. Note: You must ensure
for every run that the self-consistency cycle was actually converged. If this is
not the case, a loud warning is issued in the standard output of FHI-aims at the end of
the s.c.f. cycle, and relaxations, molecular dynamics, and postprocessing may continue
anyway depending on the postprocess_anyway setting.

If the end of the s.c.f. cycle is reached in this way, forces are computed regardless of
whether the electronic convergence was reached.

Tag: spin_mix_param

Usage: spin_mix_param value

Purpose: Separate parameter to mix the spin density between different s.c.f.
iterations.

value is a real number between 0. and 1. Default: sameas charge mix_param

spin_mix_param may be different from charge mix_param, but there is not usually
a clear recipe how it should be different. This option is thus only needed if the standard
algorithms provably fail.

Tag: switch_external_pert

Usage: switch_external_pert number type

Purpose: May be used as a combined parameter to switch on an artificial
perturbing homogeneous_field only for a given number of iterations.

number is the integer number of s.c.f. iterations before the external perturbation
is switched off.

type is a string. If set to safe, specific settings for the occupation_type
and for the homogeneous_field are enforced (see below).

This is an experimental keyword that allows to switch on an initial homogeneous_field
, e.g., to lock in the symmetry of a free atom in order to enforce smoother s.c.f. con-

3.10. SCF Cycle: Initialization, density mixing, preconditioning, convergence 155

vergence. The field is switched off after number iterations, before self-consistency is
reached.

If type is not safe, the actual value of homogeneous field and occupation_type
should be set explicitly in geometry.in and control.in, respectively. The default
homogeneous field is 1073 eV/A.

If type is set to safe, a homogeneous field of 1073 eV/A and a Gaussian occupation
with very small (1075 €V) broadening are automatically enforced.

This flag is mainly used to artificially break the symmetry of spin-polarized free atoms
with open d and f shells, which are sometimes very hard to converge otherwise (see
special cases listed for mixer). Remember that FHI-aims does not allow to enforce
a given symmetry automatically.

Tag: use_density_matrix_hf

Usage: use_density _matrix_hf

Purpose: Technical keyword that states that the density matrix is mixed prior to
constructing the exchange matrix in hybrid functionals, Hartree-Fock, et al.

Default: When possible, use_density matrix_hf is assumed.

Tag: apply_boys
Usage: apply_boys KSmin, KSmax, KSming KSmaxg integer

Purpose: In the cluster case is used to switch on a subspace localization using
the Boys localization algorithm.

KSmin, and KSmax, are the integer KS-state indexes which define the lower and
upper boundary of the subspace which should be included in the transformation.
In calculations without spin, the [parameters are omitted.

integer is an integer and can either be 0, 1, or 2. If set to 0, the localization
is performed at the beginning of the SCF cycle. If set to 1, it is performed
throughout the cycle and if set to 2, it is performed at the end (before writing
the restart information).

This is an experimental keyword that allows to perform a Boys localization on one or
more subspaces of the KS eigenvector. Boys localization is only applicable in non-periodic
calculations. Since each localization requires calculation of the transition dipole matrix,
this adds a considerable overhead in computation time if it is performed in each SCF
cycle. The currently recommended setting is either 0 or 2.

Tag: xc_pre

156 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: XCc_pre xc-type steps

Purpose: Specifies the exchange-correlation approach used during the initial steps
of a self-consistent DFT / Hartree-Fock.

xc-type is a keyword (string) which specifies the chosen exchange-correlation
functional.
steps is an integer that determines the number of SCF steps performed with this

functional before switching to the functional defined by xc .
One can specify any xc-type from the LDA, GGA and meta-GGA options available as

listed for xc . One can also use the dfauto formalism, i.e. xc_pre dfauto
xc-type steps for non-hybrid XC functionals. See the dfauto section for tag zc for
more detail.

Note that the elsi restart keyword, when it has actual past restart information
available to read, cannot be used together with the xc_pre keyword, unless explicitly
allowed using the allow_restart_xc_pre (see there for more information). We
do this to prevent unintended duelling inializations. The two keywords can still be used
together if all that elsi_restart would do is write information, not read it.

3.11. Energy derivatives (forces, stress) and geometry optimization 157

3.11 Energy derivatives (forces, stress) and
geometry optimization

With self-consistent Kohn-Sham orbitals, densities and total energies available, one of
the primary tasks of electronic structure theory is to obtain energy derivatives with
respect to the nuclear coordinates R,. First derivatives (“forces”) allow to find the
optimum structure and molecular dynamics on the Born-Oppenheimer surface. Based
on the structure optimum, second derivatives then enable the calculation of the (Born-
Oppenheimer) zero-point vibrational energy of the nuclei, and of vibrational excitations
(phonons).

The present section deals with the options available in FHI-aims for the computation
of forces in FHI-aims, and with algorithms related to geometry optimization. Specifics
regarding first-principles molecular dynamics are given in Sec. 3.12, and the computation
of second energy derivatives (vibrational frequencies, zero-point energies, and oscillator
strengths) by a finite-difference technique is covered in Sec. 4.6.

Before coming to the full set of related keywords, we give some basic comments below.
Please also consider using (and adding to) the wiki, especially if you encounter any kind
of behavior that is obviously not intended. We would like to know about such cases.

One “most important” rule:

For efficient local structure optimizations, do not simply use “tight” settings from an
arbitrary starting geometry and wait.

It is usually much more effective to use a two-step approach. First, use “light” settings
in a pre-relaxation step to get the rough geometry right quickly. Then, use “interme-
diate” or “tight” settings for post-relaxation or post-processing only, e.g., based on the
“geometry.in.next_step” file that is written out by the code by default (see below).

Basic handling:

For most applications, reliable structure optimizations of atomic coordinates into a local
minumum of the potential energy surface can be obtained by simply setting the keyword
relax_geometry bfgs threshold

threshold denotes the minimum absolute force component in €V/A acting on any atom.
Typically, a threshold value of 5d-3, i.e., 5-1073 eV/A, corresponds to a very tightly
converged structure optimization. Do not use much lower values since you might spend
substantial amounts of CPU time for no measurable gain.

For unit cell optimizations in periodic systems, the keyword relax unit cell must
additionally be invoked (otherwise, the unit cell shape will remain fixed).

Finally, individual coordinates or degrees of freedom can be fixed by using the keyword
constrain_relaxation .

Another method to run a constrained relaxation is the combined use of the keywords
symmetry n_params , symmetry_params, symmetry_lv and symmetry_ frac
. When this block is added to a geometry.in and relax_geometry (and optionally
relax_unit_cell) are set in control.in, a geometry relaxation is started that is

158 Chapter 3. The Full Monty: All Keywords and Capabilities

constrained to a parameter reduced space defined by the user. This can be used to enforce
a symmetry-preserving relaxation by providing the exact prototype of the given structure
in its analytic form. It furthermore allows for the introduction of local symmetries or
local symmetry breaking like distortions. Important: When using these constraints
all keywords must be specified for all lattice and atomic degrees of freedom. If you
want to run with these constraints on only the lattice or the atomic positions, add the
other block fixing the coordinates or with 3Ny .tice OF 3Nuiomic additional parameters
for a free relaxation. Important: The relationship between the full coordinates and
the reduced parameters has to be linear, i.e. there is a transformation matrix A and a
transformation matrix B that can map the flattened 1-dimensional representation of the
lattice cell/atomic positions to the parameter-reduced space. For the monoclinic and
triclinic lattice systems, e.g. do not use ¢ - cos(/3) and ¢ - sin(3) but replace them with
independent variables e.g. d and e. It is on the to-do-list to make aims recognize these
cases internally.

Hint: You can create geometry.in's already containing the required input block for a
symmetry-constrained relaxation using AFLOW as of version 3.1.204. It gives access to
hundreds of structure prototypes in the AFLOW Prototype Library [156, 102] throughout
all spacegroups. Simply add --add_equations to the command. Example:

aflow --proto=AB_cF8 225_a b --params=5.64 --aims --add_equations

To obtain gradients for a given structure, but without any subsequent structure op-
timization, molecular dynamics run, etc., employ the keywords compute_ forces ,
compute_analytical stress or compute _numerical_ stress instead.

relax_geometry bfgs value calls a trust radius enhanced variant of BFGS, also
available as trm. This variant covers all use cases.

The bfgs algorithm can be tweaked by specifying an initial guess for the Hessian matrix,
which can influence the performance. The default is the model Hessian matrix by Lindh
and coworkers,[146] which leads to reliable and fast optimizations in the vast majority
of scenarios.

If, for any reason, the BFGS algorithm does not perform well for a given structure
initially, a number of options are available. The standard first step should always be
to simply restart the optimization from the updated geometry and Hessian matrix in
geometry.in.next_step (see below). Alternatively, one may preset a simple, diagonal
Hessian using the keyword init_hess diag value (see the actual keyword description
for more details). Finally, the energy tolerance and harmonic_length_scale
keywords decide when the bfgs algorithm will abort a relaxation because a presumed
deviation between the predicted and the real energy landscape. They can be set to more
forgiving values if needed.

For the relax_geometry bfgs algorithm, the handling of restarting relaxations is
formalized by writing out a file geometry.in.next_step after each relaxation step. By
default, this file contains both the geometry and the current estimate of the Hessian
matrix of the system that are used by the BFGS algorithm. For an organized restart,
simply copy this file to geometry.in, and the stored geometry and Hessian will be used
to reinitialize the BFGS algorithm if the control. in file requests a structure relaxation.
If the keyword distributed_hessian is in use, the current estimate of the Hessian

3.11. Energy derivatives (forces, stress) and geometry optimization 159

matrix will be stored in a separate binary file, which should not be modified by hand.

Use the 'get_relaxation_info.pl" utility script to monitor the progress of an ongoing or
finished relaxation run. This information can be immensely helpful to make sure that
you are not, e.g., spending your time optimizing the last 107° eV out of an already
converged structure relaxation.

To stop an ongoing structure relaxation in an organized way, create the abort_opt
file in the respective directory.

MP2 and RPA total energy derivatives with pz-lda and pbe potential:

For running particle-hole RPA total energy derivatives calculation following tags in con-
trol.in file are necessary: One should set (keyword rpa_force freq_formula_method
or matrix_diag_method) depending on two different approaches. The first one use fre-
quency integral formula for evaluation of correlation energy which scale N4, with N
being the system size. The later one scales N% comparatively consume more time
as compared to first one. Others additional tags required are as RI_method Ivl,
use_2d_corr .false.,, DFPT vibration or vibration_reduce_memory if doing calcula-
tion with pz-lda, with pbe only use vibration_reduce_memory, total energy method
rpa, this is optional does not effect anything. Calculation with bigger Gaussian basis
set, the accuracy is affected with the choice of number of auxiliary basis sets control by
tag prodbas_acc, it is highly recommended to use larger values like 1.E-2. Currently,
MP2 and RPA forces are evaluated for closed shell systems only. For MP2 force, same
(keyword rpa_force mp2_force) invoke. Frozen-core approximation can be invoked
by using additional tag frozen core_postSCF 1.

Stress tensor:

For unit cell optimization (keyword relax_unit_cell), an analytically computed
stress tensor will be used where available, thanks to work by Viktor Atalla, Christian
Carbogno, and Franz Knuth [124]. For some density functionals, the analytical stress
tensor is not available. In these cases, the unit cell itself can still be relaxed, but the
stress tensor must be computed numerically from finite differences of total energies.

The numerical finite-difference stress tensor is always available as a fallback.

Finally, we note that, in some cases, just optimizing the unit cell shape blindly may not be
what you want. For example, in high-symmetry structures a fit to Murnaghan's Equation
of state—see the utility provided in the utilities directory—will be more accurate and
give you more information about the system (bulk moduli and, in case of more than one
phase, also access to transition pressures).

Hybrid functionals:

For hybrid functionals, analytic energy gradients and the analytic stress tensor are only
available together with the RI_method LVL_fast version of “resolution of identity”
of the two-electron Coulomb operator.[111]

For perturbative methods (MP2 perturbation theory, RPA and beyond), analytical gra-
dients are not yet available.

160 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for geometry.in:

Tag: constrain_relaxation

Usage: constrain_relaxation constraint

Purpose: In geometry.in, fixes the position of the last specified atom /
lattice_vector in a structure optimization.

constraint is a string, indicating what exactly will be constrained. Default:
.false.

Allows to relax only parts of a structure, while keeping the rest at fixed positions.
Currently, the following simple options for constraint are possible:

.true.: All coordinates for this atom will be constrained.

.false.: The relaxation of this atom will not be constrained.

x: The x coordinate of this atom is not allowed to move.

y: The y coordinate of this atom is not allowed to move.

z: The z coordinate of this atom is not allowed to move.

Attention: If you wish to constrain more than one coordinate, the required constraints
must be specified as separate lines, like this:

atom 0. 0. 0. Fe
constrain relaxation x
constrain_relaxation y

In contrast, specifying two constraints in one line will not work. The second constraint
would simply be ignored!

Tag: hessian_block

Usage: hessian_block i_atom j_atom block

Purpose: In geometry.in, allows to specify a Hessian matrix explicitly, with one
line for each 3x3 block. The option block consists of 9 numbers in column-first
(Fortran) order. The 3x3 block corresponding to j_atom, i_atom is initialized
by the transposed of block. The Hessian matrix is input in units of eV /A2,

If at least one hessian block line is found in the file, the Hessian is constructed
using this mechanism. So far there is no safe-guard from overriding Hessian blocks with
subsequent lines with equal i_atom, j_atom.

There are two scripts in the utilities directory to automatically construct such Hes-
sian matrix approximations. First, conversions/thess2aims.py converts a Tinker

3.11. Energy derivatives (forces, stress) and geometry optimization 161

generated Hessian matrix. Second, Lindh.py constructs a general purpose model ma-
trix [146]. Please note that the Lindh model matrix is now also directly available with
init_hess Lindh.

Tag: hessian_block_1v

Usage / purpose: Like hessian block , but for Hessian matrix elements
between lattice vector degrees of freedom.

Tag: hessian_block_lv_atom

Usage / purpose: Like hessian block , but for Hessian matrix elements
between lattice vector degrees of freedom.

Tag: hessian_file
Usage: hessian _file

Purpose: In geometry.in, this keyword indicates that there exists a
hessian.aims file to be used to construct the Hessian.

If hessian_file is found in geometry.in, the Hessian is constructed using the data
in hessian.aims, which is a binary file generated by geometry optimization calculations
with FHI-aims (please see distributed_hessian). The user should not try to create
such a file by hand.

Tag: trust_radius

Usage: trust_radius value

Purpose: In geometry.in, allows to specify the initial trust radius value for the
trm relaxation algorithm.

This keyword is a significant exception — it is the only algorithmic keyword found in
the geometry.in file. Conceptually, it would belong into control.in, but since it is
written out as part of the geometry.in.next_step file which can be used to restart a
structure relaxation, we keep it here.

The keyword specifies the initial value of the “trust radius” used to limit structure
relaxation steps determined by the bfgs (synonymous with trm) relaxation algorithm.

The default is set to 0.2 A. It will be overridden by the default value of max_atomic_move
, which can be set in control.in.

Tag: symmetry_n_params

162 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: symmetry_n_params n_total n_lv n_coords

Purpose: In geometry.in, specifies the number of parameters to be optimized
in a symmetry-constrained relaxation. n_total is the total number of parameters,
n_lv is the number of parameters that define the lattice cell, n_coords is the
number of parameters defining the fractional atomic positions.

n_Iv + n_coords = n_total

Example for an orthorhombic cell and no parameters for the atomic positions:
symmetry n _params 3 3 O

This keyword also serves as a flag, setting use_symm_const_geo_relaxation internally
to True. If n_1v is 0, then no unit cell relaxation is done. For unit cell relaxations make
sure to set relax unit cell to full.

Tag: symmetry_params

Usage: symmetry_params [list of variables for parameters]

Purpose: In geometry. in, list all variables that are used as parameters separated
by blanks. Always list the lattice parameters first. The number of variables used
for parameters has to be equal to n_total specifies in symmetry n params .
Example for an orthorhombic cell and no parameters for the atomic positions:
symmetry_params a b ¢

Tag: symmetry_lv
Usage: symmetry_lv x,y,z

Purpose: Specifies the analytic form of the lattice vectors. Use exactly the
same cell as given in lattice_vector (same order of lattice vectors, same
orientation), and simply replace entries that are free to relax by their analytic
expression in terms of parameters specified by symmetry_ params . Example
for an orthorhombic cell:

symmetry _lva , 0 , O

symmetry 1v O , b , O

symmetry_1lv O , 0 , c

Note the comma between the components of the lattice vectors.

Tag: symmetry_frac

Usage: symmetry_frac n;, ns, ng

Purpose: Specifies the analytic form of the fractional atomic positions. Use
exactly the same form as given in atom_frac (same order atoms), and simply
replace entries that are free to relax by their analytic expression in terms of
parameters specified by symmetry_params .

Example:

symmetry_frac 0.0 , 0.0 , x1

symmetry_frac 1./2 , 1./2 , x1 + 1./2

3.11. Energy derivatives (forces, stress) and geometry optimization 163

Note the comma between the fractional coordinates of the atoms and that no species
entry is needed.

164 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: aggregated_energy_tolerance

Usage: aggregated_energy_tolerance tolerance

Purpose: Sets the energy amount by which the energy across an entire relaxation
trajectory may ever go uphill, based on the lowest known energy so far.

tolerance is a positive real number, in eV. Default: 5-1073 eV.

Small uphill steps of a relaxation trajectory are allowed up to the keyword energy_tolerance
, but a relaxation trajectory should never go uphill for an extended number of steps in
small uphill increments. The keyword aggregated_energy_tolerance sets an over-

all cap for any accepted uphill steps across an entire relaxation trajectory. The default

is much larger than the allowed energy_tolerance in a single step and should,

in principle, never be breached. If the aggregated_energy_tolerance criterion
triggers, please contact us.

Tag: calc_analytical_stress_symmetrized

Usage: calc_analytical_stress_symmetrized flag

Purpose: If .false., calculates all 9 components of the analytical stress tensor.
If .true. calculates only the upper triangle (6 components) of the tensor and
copies the result to the lower triangle.

flag is a logical string, either .true. or .false. Default: .true.

Generally, it is sufficient to calculate the upper triangle of the tensor. This flag is mainly
for debugging purposes.

Tag: clean_forces

Usage: clean_forces type

Purpose: Can remove small unitary force components (rotation and translation
of the whole structure due to residual numerical noise) in relaxations.

type is a string, specifying whether and how any overall rotations / translations
are removed.

The default for type depends on the exact circumstances (see below). The following
choices exist:

o none : No removal of residual rotations and translations. This is the default if
any external embedding fields or charges are specified in geometry. in.

» sayvetz : Non-periodic structures: Removal of rotations and translations by a
formal projection [60, 199]. In periodic systems, only translations are removed.

o fixed _plane : experimental Simple alternative algorithm by constraining three

3.11. Energy derivatives (forces, stress) and geometry optimization 165

atoms into a plane (implicitly constraining all others).

Tag: compute_analytical_stress

Usage: compute_analytical_stress flag
Purpose: If .true., switches on the computation of the analytical stress tensor.
flag is a logical string, either .true. or .false.

Default: .true. if a unit cell relaxation was requested and computation is possible.
Otherwise, .false.

This flag allows to request an explicit analytical stress tensor computation for an other-
wise explicit single-point calculation.

The calculation of the analytical stress is limited to LDA, GGA, Meta-GGA and hybrid
functionals and is not possible with load_balancing . The vdW correction based on
Hirshfeld partitioning (vdw_correction_hirshfeld) is included into the analytical
stress tensor.

Tag: compute_forces

Usage: compute_forces flag
Purpose: If .true., switches on the computation of forces.

flag is a logical string, either .true. or .false.

Default: .true. if a geometry optimization or molecular dynamics run was requested,
or if the sc_accuracy_forces convergence criterion was set. Otherwise, .false.

This flag allows to request an explicit force computation for an otherwise explicit single-
point calculation. This is necessary for use with external tools that require forces, such
as a finite-difference calculation of vibrational frequencies (see Sec. 4.6) or a transition
state search (see Sec. 4.8). In these cases, keyword final forces_cleaned should
also be set.

Tag: compute_numerical_stress

Usage: compute_numerical_stress flag

Purpose: If .true., switches on the computation of the numerical stress tensor
based on central finite differences.

flag is a logical string, either .true. or .false.

Default: .true. if a unit cell relaxation was requested and the computation of the
analytical stress is not possible. Otherwise, .false.

If not further specified (by = delta_numerical_stress) the default value for the
scaling factor delta is set to 1072

166 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: delta_numerical_stress

Usage: delta_numerical_stress value

Purpose: Specifies the scaling factor delta in the computation of the numerical
stress tensor (compute_numerical_stress).

value is a dimensionless real number > 0. Default: 107%.

Tag: distributed_hessian

Usage: distributed_hessian flag

Purpose: If .false., each MPI task holds a complete copy of the Hessian
matrix. If .true., the Hessian matrix is distributed across tasks.

flag is a logical string, either .true. or .false.. Default: .true. if both
MPI and ScaLAPACK are available, .false. otherwise.

This keyword is particularly useful when relaxing a large structure. Please note that
it only works if FHI-aims is built with both MPIl and ScaLAPACK. If = init_hess
reciprocal_lattice is found in control.in, distributed storage of the Hessian will
be automatically turned off.

Tag: energy_tolerance

Usage: energy_tolerance tolerance

Purpose: Sets the energy amount by which a relaxation step can move upwards
and is still accepted.

tolerance is a small positive real number, in €V. Default: 5-107% eV.

Small upward steps during relaxation may occur as a result of a slightly mis-guessed bfgs
Hessian matrix somewhere along the path, or as a result of some residual numerical noise
that leads to a discrepancy between energies and forces. In the present code version,
such noise is always safely below the default energy_tolerance for reasonable settings.
However, be sure to check that the total energy does not go up across several successive
steps in a relaxation run. For the trm optimizer, also see harmonic_length_scale .

Tag: external_force

Usage: external force xyz

Purpose: Experimental — Applies an external force to the atom previous to this
keyword.

X,y,z are the force components in eV/A applied to the atom in x, y, z direction.
When an external force is applied it is necessary to contstrain the relaxation of at least on

other atom to avoid a constant shift of the geometry. Also the value has to be reasonably
chosen. Tear apart geometries can result in very flat energy landscapes, which take a

3.11. Energy derivatives (forces, stress) and geometry optimization 167

large amount of time to optimize. Typically this feature should be used in cases where
a small external force, e.g. a STM-tip is applied on an atomic layer and the geomtry
response of this external force is of interest.

This feature is experimental since no extensive testing was done for it.

Tag: external_pressure

Usage: external pressure value
Purpose: Experimental — Applies external pressure to the unit cell.

value is the pressure in éV/A3 applied to the unit cell.

In the periodic case, it is possible to apply hydrostatic pressure to the unit cell. To
actually see the effect of the external pressure, a unit cell relaxation is required (see
relax_geometry and relax_unit_cell). The crystal is then relaxed with the
external pressure added to the stress tensor.

This feature is experimental since no extensive testing was done for it.

Tag: final_forces_cleaned

Usage: final forces_cleaned flag

Purpose: Decides whether spurious unitary transformations of the complete
system (translations and rotations) are removed before the final output.

flag is a logical string, either .true. or .false. Default: .true.

This option affects directly the long-format (15 decimal) output of total energies and
forces at the end of the s.c.f. cycle in the standard output file. If flag is .true.,
the final output forces are “cleaned” using the sayvetz [60, 199] mechanism of key-
word clean_forces (removal of translations and rotations for cluster geometries;
only translations removed for periodic systems).

final forces_cleaned .true. should be set for use with external tools that require
forces, such as a finite-difference calculation of vibrational frequencies (see Sec. 4.6) or
a transition state search (see Sec. 4.8).

Tag: force_correction

Usage: force_correction flag

Purpose: When computing the forces, determines whether or not to include
the Hartree potential force correction term. Consideration of this keyword can
be helpful to speed up processes such as geometry relaxations or a molecular
dynamics run.

flag is a logical string, either .true. or .false. Default: .true.

As described elsewere[22, 44], omission of this term is one of the main reasons why the
Hellmann-Feynman forces require a high level of self-consistency before their values can

168 Chapter 3. The Full Monty: All Keywords and Capabilities

be trustworthy. In fact, this term is only equal to zero at full self-consistency.

Because this correction is only meaningful at a low level of self-consistency, for an appro-
priate use of this keyword, sc_accuracy_rho must also be set within a reasonable
value, i.e., a too tight threshold for the density can lead to an insignificant correction to
the forces. Therefore, unless specified by the user, FHI-aims lowers the default value of
sc_accuracy_rho accordingly if a calculation involves force_correction .

Although force_correction and sc_accuracy_forces can be used together
inside a particular calculation, its joint use is strongly discouraged due to the considerably
high cost that each forces computation imply.

It should be noted that currently, in case of relax unit cell or any kind of
analytical stress computation, as well as usage of ouput , force_correction
becomes ineffective in determining the default value of sc_accuracy_rho .

Tag: harmonic_length_scale

Usage: harmonic_length _scale length

Purpose: The trm/bfgs algorithm of relax_geometry judges a step by its
energy gain. Usually, one simply uses the energy difference. For very short steps
and rather light grids, however, it turns out that the qualitiy of the energy is
inferior to the quality of the forces. For steps shorter than length, do not look at
the energy but use the harmonic approximation —AE = (X, — X,)- (Fy+ F,)/2
as an estimate for the energy gain. If this procedure willfully accepts a step
which increases the energy by more than energy_tolerance , the code stops
to warn the user about the inconsistency between energy functional and forces.
length is a length scale in A. Default: 0.025

Effectively, this flag switches from a real energy minimizer to a search for a stable zero
of the force field for short step lengths.

Tag: hessian_to_restart_geometry

Usage: hessian_to_restart_geometry flag

Purpose: Exports the current approximation to the Hessian matrix to
geometry.in.next_step during a relaxation restart using hessian_block
or hessian_file.

flag is a logical string, either .true. or .false. Default: .true.

Note: The geometry.in.next_step file is written out by default when the relax_geometry
bfgs algorithm is used.

Tag: init_hess_lv_diag

3.11. Energy derivatives (forces, stress) and geometry optimization 169

Usage: init_hess_1lv_diag value

Purpose: In a geometry relaxation with a unit cell optimization, allows to specify
the initial Hessian matrix elements used to estimate relaxation steps that are
associated with the lattice vector degrees of freedom.

length is a length scale in eV/A%. Default: 25 ev/A?

See the init_hess keyword for more information on the initial Hessian matrix used
during a structure optimization.

Tag: init_hess

Usage: init_hess type [value]

Purpose: Defines the initial Hessian matrix that is used by the bfgs structure
relaxation algorithms (synonymous with trm) of the relax_geometry
keyword.

type: Presently supported options are diag [value], Lindh [value].

Default: init_hess Lindh 2. unless a specific Hessian is given in the
geometry.in file.

If no explicit initial Hessian matrix is given in the geometry.in file, the keyword init_hess
can be used to specify the initial Hessian matrix used in a structure optimization.

With the option diag, a diagonal initial Hessian matrix is assumed. Then, the number
given by the value option sets the diagonal elements between all atomic coordinates
directly. The default is 25eV /A%, Larger values lead to a more conservative start, smaller
values lead to more aggressive initial relaxation steps.

With Lindh the Lindh model matrix [146] is used to initialize the Hessian between all
atomic coordinates (usually a very efficient guess). For stability reasons, add-value
(in eV/A?, defaults to 2.0eV/A?) is added to all matrix elements on the diagonal. The
parameter thres (default: 15.0) can be used to specify the accuracy of the Lindh matrix;
only terms estimated to be larger than e~*2¥°S are taken into account. If you are planning
a large number of complex unit cell optimizations of a similar type, we do recommend
to check whether this default value is any good.

If a unit cell relaxation is additionally requested, the Hessian for the lattice degrees
of freedom is set to be the square of the reciprocal lattice matrix and normalized to
25eV /A%, This mimics a diagonal initial Hessian if strain coordinates for the represen-
tation of the lattice would be used. [183]

If the initial Hessian is specified explicitly by hessian block or hessian file in
geometry.in, this explicit hessian overrides any information requested by the init_hess
keyword.

Tag: max_atomic_move

170 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: max_atomic _move value
Purpose: Maximum allowed step length taken during relaxation.
value is a real positive upper bound for the maximum allowed change in single

atomic coordinate, in A. Default: 0.2 A.

If the bfgs-predicted change in an atomic coordinate exceeds max_atomic_move ,
the length of the entire step (all coordinates) will be scaled down to not exceed the
maximum allowed displacement.

Tag: max_relaxation_steps

Usage: max_relaxation_steps number

Purpose: A structure optimization will be aborted after exceeding a prescribed
maximum number of steps.

number is the prescribed maximum step number. Default: 1000 .

Tag: numerical_stress_save_scf

Usage: numerical_stress_save_scf flag

Purpose: Controlsif constrain relaxation directives are used to determine
implicitly if a component of the numerical stress has to be calculated. This
greatly accelerates unit cells with high symmetries (e.g. orthorhombic).

flag is a logical string, either .true. or .false. Default: .true.

Tag: orthonormalize_eigenvectors

Usage: orthonormalize_eigenvectors flag

Purpose: Specifies whether or not the wave function coefficients from the
previous geometry will be re-orthonormalized before initializing a new relaxation
step.

flag is a logical string, either .true. or .false. Default: .true.

The orthonormalize_eigenvectors keyword allows to reorthnormalize the con-
verged self-consistent Kohn-Sham orbitals c;; after a relaxation step. These are then
used to reinitialize the electron density for the next relaxation step.

Due to the change in atomic positions, the wave function coefficients c;; for the earlier
geometry are no longer orthonormal after the relaxation step. The consequence is an
initial electron density which no longer satisfies the correct electron count (i.e., the system
may appear to be charged immediately after a relaxation step, although a neutral system
was requested). In principle, this does not matter for the outcome of a calculation, since
the self-consistent solution will be independent of the starting point. In many cases, there
is no clear benefit in terms of the s.c.f. convergence duration from orthonormalizing the

3.11. Energy derivatives (forces, stress) and geometry optimization 171

c;i prior to the reinitialization; however, some cases with unstable s.c.f. convergence
may benefit significantly.

Tag: relax_geometry

Usage: relax_geometry type tolerance

Purpose: Specifies if a structure optimization (geometry relaxation) is requested,
and which.

type specifies the type of requested structure optimization. Default: none.
tolerance: Specifies the maximum residual force component per atom (in
eV /A) below which the geometry relaxation is considered converged.

Finds the nearest minimum of the Born-Oppenheimer potential energy surface for the
nuclei.

For periodic calculations: If you are looking to relax not just atomic coordinates but
also the unit cell shape (lattice vectors), you do need to specify an additional keyword:
relax_unit_cell .

The presently supported options for type are none and trm (synonymous with bfgs),
as well as trm_2012 for reference with older FHI-aims versions.

e bfgs or trm is the recommended default. It uses a trust radius method enhanced
version of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm
(see Ref. [168], which was the basis for Jirgen Wieferink's code effort in this
area). In our tests, this version appears to give the fastest convergence reliably.

As of December 2018, it additionally implements preconditioning of the lattice-
lattice Hessian as explained in init_hess and preserves fractional coordinates
of the atomic positions when predicting a new lattice. This mimics the optimiza-
tion in strain coordinates. [183]

e trm_2012 Implements the former trm method without effective strain coordinates.

A reliable force convergence criterion tolerance for most structures is 1072 eV/A or
5.107% eV/A. Do not use significantly smaller values unless you have a specific
reason. Smaller values may cost much computer time for essentially no further
measurable total energy minimization.

Going to a much smaller tolerance value may only be useful for some very specific
purposes, for example, high-accuracy finite difference calculations for vibrational prop-
erties. In other scenarios, if tolerance is set to a too small value by default, 80% or
more of your CPU time may be spent groping around in the last meV of the structure
optimization.

If tighter settings of the tolerance parameter are used, do not forget that tighter
s.c.f. convergence accuracy settings may also be required to get accurate gradients in
the first place. ldeally, use the = sc_accuracy_rho keyword for this purpose, not
sc_accuracy_forces or sc_accuracy_stress (see below).

172 Chapter 3. The Full Monty: All Keywords and Capabilities

In other words, use the tolerance criterion for a structure relaxation run wisely — decide
what is the physical quantity you are actually interested in, and then check which value
of the tolerance criterion is safe but still efficient.

The relaxation algorithm can be greatly sped up by using a somewhat intelligent guess
for the Hessian matrix used in the initial step. By default, FHI-aims now sets the general
purpose model matrix due to Lindh and coworkers [146] with a slight modification.
If, for some reason, a particular initial geometry does not appear to play well with the
Lindh Hessian, a simpler, slower, but more resilient diagonal approximation to the initial
Hessian matrix can also be used. For more information see the init_hess keyword
above.

The energy_tolerance and harmonic_length_scale keywords can be set to
more forgiving values if the bfgs algorithm decides to abort relaxations because of a
presumed deviation between the predicted and the real energy landscape.

Another important warning: Evaluating the forces and the stress tensor is much
more expensive than a normal iteration during s.c.f. convergence. The current default
behavior of FHI-aims avoids any double computations of forces and stress tensors, relying
instead on a sufficiently tight convergence criterion sc_accuracy_rho to determine
s.c.f. convergence and only then calculating forces and stresses once per geometry step.

While one can in principle check the s.c.f convergence of forces / stresses explicitly,
the cost of multiple evaluations of forces / stresses for a single geometry can be very
high. Therefore, we recommend to never use the keywords sc_accuracy_forces or
sc_accuracy_stress in a control.in file unless there is a specific need. Do not set
these keywords routinely.

Tag: relax_unit_cell

Usage: relax_unit_cell type

Purpose: Relaxes unit cell (lattice vectors) using the structure optimization as
specified in relax_geometry .

type specifies the type of requested unit cell optimization. Presently supported
options: none, full, fixed_angles. Default: none

Allows to optimize the lattice vectors of a periodic calculation, in addition to the normal
atomic coordinates inside the unit cell. This keyword is not on by default, as automati-
cally optimizing the unit cell of (say) a surface calculation could do a lot of unintended
harm. Possible settings:

o none : Unit cell will be kept fixed, no optimization.

o full: All lattice_vector degrees of freedom will be relaxed, except those
affectd by explicit constraints.

o fixed_angles: All angles between lattice vectors will be constrained (kept fixed),
only the lengths of each lattice vector are varied. (This option used to be called
shape, but that is a misunderstandable term. The shape term will be removed
in the future to avoid confusion.)

3.11. Energy derivatives (forces, stress) and geometry optimization 173

This keyword should be used only together with relax geometry . Individual lattice
vectors or its components can be constrained by using constrain_relaxation .

If the computation of the analytical stress is possible regarding the chosen computational
settings, the analytical stress is used for the unit cell relaxation. Otherwise, the numerical
stress is used. With stress_for_relaxation , one can explicitly choose either
numerical or analytical stress for the unit cell relaxation.

If a unit cell relaxation produces strange results with the analytical stress, here are some
potential remedies:

1. A very possible reason may be because the integration grids are not dense enough.
This could especially well be the case for “light” settings. One remedy is to just
use the integration grids from “tight” and the basis functions from “light”.

2. Another possible remedy is to switch the way the integration weights are calculated
to a slightly slower, non-default version. E.g., change the partition_type to
a spherical one like rho_r2.

3. Finally, you may wish to set the convergence of the analytical stress with sc_accuracy_stress
to an explicit, final value. Only ever set this keyword for test purposes,
though, not routinely. The cost for too many analytical stress evalua-
tions can be disproportionately large.

Tag: stress_for_relaxation

Usage: stress_for_relaxation type
Purpose: Use either numerical or analytical stress for unit cell relaxations.
type can be either numerical or analytical. Default: Chosen automatically

based on computational settings.

To perform an actual unit cell relaxation, one has to set = relax unit_cell . If
one chooses analytical but the computation of the analytical stress is not possible,
FHI-aims will abort.

Tag: write_restart_geometry

Usage: write_restart_geometry flag

Purpose: During a structure optimization, exports the current geometrys and
approximation to the Hessian matrix to a file geometry.in.next_step.

flag is a logical string, either .true. or .false. Default: .true.

Note: The geometry.in.next_step file is written out by default when the relax_ geometry
bfgs algorithm is used.

174 Chapter 3. The Full Monty: All Keywords and Capabilities

3.12 Molecular dynamics

FHI-aims provides the capability to run Born-Oppenheimer molecular dynamics. The
necessary keywords are described in this section. A brief description of the physical
algorithms implemented in FHI-aims can be found in Ref. [26]. For a truly thorough
explanation of the underlying concepts, please refer to the standard literature, e.g., Refs.
[65, 27].

Wave function extrapolation

For molecular dynamics runs within the microcanonical ensemble (“NV E") or for de-
terministic thermostats, the wave function can be extrapolated in order to reduce the
computational effort to reach self-consistency. This section specifies what quantity is
actually extrapolated and how.

Following the approach of Kiihne et al. [133], we extrapolate the contra-covariant density
matrix PS, the product of the ordinary (purely contravariant) one-particle density matrix
P and the overlap matrix S. The contra-covariant density matrix is then used to project
new wave function coefficients from the last iteration Cpew = (PS)extraCola- As a last
step, the one-particle coefficients are orthonormalized.

1.5

1.0f 1

0.5} :

\4

00l e—e p10: f(t)=c, 1
m—a p21: f(t)=c,t+c

051 o— p32: f(t) =cot® +¢,t ¢ 1
vv p31l: f(t) =cyt® +ct+c

7205 00 05 1.0 15 20 25 3.0 35 4.0

Figure 3.1: Different extrapolation schemes. The scheme “pno” refers to an n point scheme
of order o, remaining orders used to fit odd components.

The extrapolation scheme we use is sketched in Fig. 3.1 for the example of an ordinary
function f(t) in a real variable ¢. For a pno scheme (chosen with wf_extrapolation
polynomial n o) n old iterations f(ty — kAt), k = 1,...,n are stored. An ansatz
function with n degrees of freedom is then used to fit all of these previous iterations and
evaluated at 7y and the value used to intialize the SCF procedure.

The choice of the fitting function should aim at two targets: accurate extrapolation and

3.12. Molecular dynamics 175

time-reversal symmetry. The parameter o specifies the order of the extrapolation. The
higher o, the better the extrapolation gets with decreasing time stemps At. Time-reversal
symmetry is useful to avoid energetic drifts for not-so-tight SCF accuracy settings. By
adding odd terms (odd with respect to ty + ¢t <> t, — t), time-reversal symmetry is
enhanced [127].

Therefore, in contrast to [185, 97], the (n — 0 — 1) remaining degrees of freedom are
not resolved within a least-squares fit but instead to add fitting functions (t — #)%*!
to enhance time-reversal symmetry and thus energy conversion. Please note, however,
that time-reversal symmetry itself only enhances energy conservation and not necessarily
dynamical properties of the trajectories.

If you are interested in energy conservation, “p31” is in general a good choice to start
with. If a good initial guess for the SCF procedure is desired, you should give “p32" a try.
Please note that deactivation of extrapolation (wf_extrapolation none) is actually
the same as the “pl0” extrapolation (see Fig. 3.1) and simply uses the one-particle
coefficients of the last iteration are to initialize the SCF procedure.

Tags for geometry.in:

Tag: velocity
Usage: velocity vx vy vz

Purpose: Specifies a velocity for the immediately preceding atom in file
geometry.in.

VX, vy, vz : z, y, and z components of the velocities, in A/ps.

In geometry.in, the line containing the velocity must follow the line containing the
atom that the velocity refers to. This can be used, e.g., to initialize a molecular
dynamics run, or for analysis purposes later. Note that, for molecular dynamics, the
FHI-aims standard output prints this information in the proper format, as part of a
particular geometry associated with a molecular dynamics trajectory.

176 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: MD_maxsteps

Usage: MD_maxsteps N
Purpose: Sets the maximal number of molecular dynamics steps.

N is an integer number. Default: -1 (infinite run).

A negative number signals that the ending criterion is not checked, in fact, the default
setting is N=-1.

Tag: check_MD_stop

Usage: check MD stop .true. / .false.

Purpose: if .true., an MD calculation ist stopped when a file MD_stop is
generated

Default: .true.

Tag: MD_MB_init
Usage: MD_MB_init Temperature

Purpose: Initializes random velocities in a molecular dynamics calculation using
a Maxwell-Boltzmann distribution.

Temperature : Initial temperature in K. Default: No initial velocities.
This keyword is for a rough initialization only, and is overridden by any successful calls

of the MD restarting procedure through MD restart . The default initialization for
all velocities is zero.

Tag: MD_clean_rotations

Usage: MD_clean_rotations .true. / .false.

Purpose: if .true., uses Sayvetz conditions to clean initial velocities from
rotations

Default: .true. for non-periodic systems, .false. for periodic systems or if
relaxation__constraints are used.

This option is useful for non-periodic systems, allowing to weed out some residual nu-
merical noise in the forces. However, seeming rotations of the unit cell can easily appear
in periodic systems for completely normal, physical reasons. Since this led to some con-
fusion, this option is now actively disabled (code stops) for periodic systems. If you have
a good reason to use this option in periodic systems, it can be re-introduced by hand.

3.12. Molecular dynamics 177

Tag: MD_thermostat_units

Usage: MD_thermostat _units units

Purpose: To allow user specification of the effective thermostat mass outside of
the internal units.

unit : Unit of the effective mass of the Nosé-Hoover and Nosé-Poincaré ther-
mostats — either amu*bohr~2 (mass-oriented specification) or cm™-1 (frequency
oriented specification, to allow to connect the thermostat mass to characteristic
frequencies of the system). Default: amu*bohr~2 .

Tag: MD_restart

Usage: MD_restart option
Purpose: controls the MD initialization from a molecular dynamics restart file.

Restriction: At present, this keyword does not produce proper results when
switching ensembles between runs.

option is a string (see below). Default: .false.

Possible values for option are .true., .false., time_restart, or filename. The
default is .false..

The data for the molecular dynamics integrator is always written to a file aims_MD_restart.dat
after each time step (regardless of whether or not keyword MD_restart is used). If

MD restart is set, this keyword controls the reading of such data from a previous run

(if that exists), to either

« continue a previous run (.true.), or

* to use previous position / velocity information but reset all timings (time_restart),
or

o to begin a new run from scratch (.false.)

The default file name is used unless the user specifies a specific file filename from
where the input is to be read.

Important: If the starting structure and velocities are taken from the restart
file, any exact positions noted in geometry.in are ignored. However, the species
identification, possible initial charges, and other per-atom information in geometry.in
remain valid and must be present as always. If the option .true. is set, the molecular
dynamics clock is also read from file, in all other restarts the clock is reset to zero.

Tag: MD_restart_binary

178 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: MD_restart_binary option
Purpose: controls the format used for the molecular dynamics restart file.

option is a string (see below). Default: .true.

Possible values for option are .true. and .false.. The default is .true.. Use this
flag to switch to the ASCII format in the MD restart file.

Tag: MD_run

Usage: MD_run time ensemble [further specifications]

Purpose: Central controls of the physical parameters of a Born-Oppenheimer
molecular dynamics run.

time : Requested MD time in ps.

ensemble : Ensemble specifications for ~ MD_run , listed as subkeywords to
MD _run in a separate section below.

further specifications: See ensemble subkeywords below.

This keyword is the key control for all molecular dynamics. The runtimes time are
specified in ps. There are five different possible ensembles, each of which require different
options - as described in a separate subsection below.

When a schedule of different temperatures, thermostats etc is required within the
same run (e.g., initialization followed by NVE, change of temperature, etc.), use the
MD_schedule keyword instead of MD_run .

Tag: MD_schedule

Usage: MD_schedule

Purpose: Must be followed by specific segments of a Born-Oppenheimer
molecular dynamics run.

Must be followed by an arbitrary number of lines MD_segment , where different
temperatures, thermostats, etc. may be specified for each segment of the run.

Tag: MD_segment

Usage: MD_segment time ensemble [further specifications]

Purpose: Central controls of the physical parameters of a Born-Oppenheimer
molecular dynamics run.

time : Requested MD time in ps.

ensemble : Ensemble specifications for ~ MD_run , listed as subkeywords to
MD run in a separate section below.

further specifications: See ensemble subkeywords below.

Keyword MD_segment must only appear in consecutive lines after an MD_schedule
keyword. Instead of a single set of MD thermostats, temperatures etc. throughout the

3.12. Molecular dynamics 179

simulation, this keyword allows to set specific values for only a segment of the full run.

Tag: MD_time_step

Usage: MD_time_step deltat
Purpose: Set the time step for a molecular dynamics run, in ps.

Default: 0.001 (this is 1 fs)

Tag: wf_extrapolation

Usage: wf_extrapolation extrapolation_type

Purpose: Used to specify the wave function extrapolation. Options are
polynomial n o (an n-point polynomial extrapolation of order o, where
the remaining degrees of freedom are used to enhance time reversibility),
niklasson06 n (an n-point extrapolation as specified by Niklasson et al.
[167]), none (same as polynomial 1 0), linear (polynomial 2 1), and
quadratic (polynomial 3 2).

Default: polynomial 3 1 for NVE, none otherwise.

The option polynomial 3 1 strongly reduces a possible energy drift in NVE runs even
for moderate force accuracy settings and additionally lowers the number of SCF cycles
per time step.

Warning: This feature is experimental. It most probably will not enhance convergence
of metallic systems and is not parallelized. The niklasson06 schemes are not suitable
for long runs of nontrivial physical systems because a regular reinitialization would be
necessary.

Tag: wf_func

Usage: wf_func specifications

Purpose: Used to activate the wave function extrapolation with fine grained
control over the basis functions used for extrapolation. Each wf_func
line adds one iteration to the extrapolation scheme and one fitting function.
Options are “constant” (1), “linear” (t), “quadratic” (#?), “cubic” (¢%),
“polynomial n" (t"), “sin w unit"” (sinwt), and “cos w unit" (coswt).
The unit “unit” is either “cm”-1" or “fs". Additionally, “none” can be used to
add one degree of freedom which is used to stabilize things in a least squares
manner.

The same warning as for wf_extrapolation applies.

180 Chapter 3. The Full Monty: All Keywords and Capabilities

Ensemble specification options for the MD_run and MD_segment
keywords:

When used with a molecular dynamics schedule of time segments with different ther-
mostats, the following subkeywords should appear behind an MD_segment keyword
instead of MD_run .

MD_run sub-tag: NVE

Usage: MD_run time NVE

Purpose: Performs molecular dynamics in the microcanonical ensemble.

MD_run sub-tag: NVE_4th_order

Usage: MD run time NVE_4th_order

Purpose: Performs molecular dynamics in the microcanonical ensemble, using a
fourth-order integration method. The integrator used is called SI4 in Ref. [112].
This method is sometimes useful for longer time steps and for very accurate MD.
Note that there are five force evaluations per time step, instead of the usual
single calculation.

MD_run sub-tag: NVE_damped
Usage: MD_run time NVE_damped damping_ factor

Purpose: Performs microcanonical molecular dynamics, but dampens each
velocity by a factor damping factor after each time step.

damping factor is the damping factor between different MD steps.
This option is a useful addition to the structural relaxation, which can be done in principle

with a molecular dynamics run as well. In almost all cases, however, the BFGS algorithm
as called with the relax geometry keyword is preferable.

MD_run sub-tag: NVT_andersen
Usage: MD_run time NVT_andersen Temperature nu
Purpose: Run molecular dynamics with an Andersen stochastic thermostat.

Temperature is the simulation temperature in K.
nu : Probability that a given atom’s velocity will be “reset” to a Maxwell-

Boltzmann distributed value, per picosecond!

Andersen's [6] simple definition of a thermostat that randomly resets the velocity of
individual atoms to a Maxwell-Boltzmann distributed value with a given frequency. This

3.12. Molecular dynamics 181

is an example of a rather harsh thermostat.

MD_run sub-tag: NVT_berendsen

Usage: MD _run time NVT_berendsen Temperature tau
Purpose: Molecular dynamics run using the Berendsen thermostat.

Temperature is the simulation temperature in K.
tau is a relaxation time of the thermostat, in ps.

Note that the Berendsen thermostat does NOT resemble any physical ensemble, but
that it is a useful standard to initialize a molecular dynamics simulation. The relaxation
time tau must be chosen by the user, there is no default. Remember that the special
case 7 = At reproduces the correct temperature exactly at every time step and can be
used for a very rough initialization.

MD_run sub-tag: NVT_parrinello

Usage: MD_run time NVT_parrinello Temperature tau

Purpose: Molecular dynamics run using the Bussi-Donadio-Parrinello thermostat.
[34]

Temperature is the simulation temperature in K.
tau is a relaxation time of the thermostat, in ps.

This is the Bussi-Donadio-Parrinello thermostat, as described in Ref. [34] It a) properly
samples the canonical distribution and b) preserves time correlations. The relaxation
time tau (in ps) must be chosen by the user, there is no default. The performance of
the thermostat is claimed in Ref. [34] to be practically independent of the value of T,
for condensed phases. For clusters, though, a proper tuning of tau might be necessary.
When this ensemble is chosen, the conserved pseudo-Hamiltonian (as described in Ref.
[34]) is printed in the output.

MD_run sub-tag: GLE_thermostat
Usage: MD run time GLE thermostat Temperature
Number of aux DOF

Purpose: Molecular dynamics run using the colored-noise thermostats based
on the Generalized Langevin Equation, proposed by M. Ceriotti and coworkers
[39, 42, 40].

Temperature is the simulation temperature in K.

Number_of _aux_DOF (integer) is the number of auxiliary degrees of freedom for
this thermostat, that specifies the dimensions of the input matrices

This is a flexible thermostat based on the Generalized Langevin Equation, that adds extra

182 Chapter 3. The Full Monty: All Keywords and Capabilities

degrees of freedom to the equations of motion and has a frequency dependent memory
kernel, so that one can adjust the performance of the thermostat for different degrees of
freedom in the system. It requires also matrices as inputs, for which we refer the reader
to the keywords MD_gle A and MD_gle_C . Please read references [39, 42, 40] and
references therein before using this. It can be used to sample the canonical ensemble or
to break detailed balance and simulate other conditions, including approximate quantum
effects. It has a conserved quantity in the same spirit of the BDP thermostat.

MD_run sub-tag: NVT_nose-hoover

Usage: MD_run time NVT_nose-hoover Temperature Q
Purpose: Run molecular dynamics with a Nosé-Hoover thermostat.

Temperature is the simulation temperature in K.
Q : Effective mass specification of the thermostat in units as specified by
MD_thermostat_units .

Probably the most popular thermostat in the literature.

MD_run sub-tag: NVT_nose-poincare

Usage: MD_run time NVT_nose-poincare Temperature Q
Purpose: Run molecular dynamics with a Nosé-Poincaré thermostat.

Temperature is the simulation temperature in K.
Q : Effective mass specification of the thermostat in units as specified by
MD_thermostat_units .

Due to numerical issues, this thermostat has been disabled for the time being.

Tag: MD_gle_A
Usage: MD_gle A entries
Purpose: Required input for GLE_thermostat

entries contains all entries (Number_of_aux_DOF + 1) of one row of the
matrix. One must repeat this flag for each row of the matrix, in order.

Units should be 1/ps, and the matrix can be downloaded from http://epfl-cosmo.
github.io/gledmd/. If you wish to model different dynamics (quantum effects, or
thermalization of PIMD), one can also specify a C matrix with the keyword MD_gle C

Tag: MD_gle_C

http://epfl-cosmo.github.io/gle4md/
http://epfl-cosmo.github.io/gle4md/

3.12. Molecular dynamics 183

Usage: MD_gle C entries
Purpose: Optional input for GLE_thermostat

entries contains all entries (Number_of_aux_DOF + 1) of one row of the
matrix. One must repeat this flag for each row of the matrix, in order.

This matrix is optional for the usage of the GLE thermostats. If sampling the canonical
ensemble it is not needed. Otherwise, it is. Units should be K, and the matrix can be
downloaded from http://epfl-cosmo.github.io/gledmd/.

3.12.1 Path integral molecular dynamics and advanced types of
dynamics

The best way to perform path integral molecular dynamics and other more advanced
dynamics techniques in FHI-aims is through the i-P| python wrapper [41]. This code is
available free of charge and can be downloaded from http://epfl-cosmo.github.io/
gle4md/index.html?page=ipi. Information about the code can be found in http://
ipi-code.org/ and we provide a quick tutorial on how one can make it work with FHI-
aims in the tutorials folder within aimsfiles. Through this interface, one can perform all
types of dynamics (classical or quantum) with a wide range of thermostats, barostats,
and different path integral acceleration techniques. i-Pl uses internet sockets for the
communication with the client codes, making it also easy to join different codes in the
same simulation (e.g. a thermodynamic integration), as long as they can all communicate
with i-Pl. Note that NPT and NST (constant stress) simulations are currently supported
only for functionals where the analytical stress tensor is available. If you wish to perform
an NPT simulation, please add also compute_analytical stress .true. to your
control.in file.

The basic keywords that can appear in the control.in file of FHI-aims are listed
below. Examples of how to run FHI-aims bound to i-Pl are available in the folder
aimsfiles/examples/ipi with the corresponding i-Pl and FHI-aims input files, as
well as a short explanation on how to run the programs. Examples of FHI-aims being
used with i-Pl can also be found in the i-PI distribution. Please refer also to the i-PlI
manual and contact the developer responsible for the FHI-aims interface (Mariana Rossi)
if you have any doubts about the usage of FHI-aims with this code.

Tag: use_pimd_wrapper

http://epfl-cosmo.github.io/gle4md/
http://epfl-cosmo.github.io/gle4md/index.html?page=ipi
http://epfl-cosmo.github.io/gle4md/index.html?page=ipi
http://ipi-code.org/
http://ipi-code.org/
mailto:rossi@fhi-berlin.mpg.de

184 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: use_pimd_wrapper hostaddress portnumber
Purpose: Interfaces FHI-aims to an internet socket based python wrapper code
that does path integral molecular dynamics.

hostaddress accepts a host name or an IP address. If you want to use UNIX
sockets, add '"UNIX:" before the host address.

portnumber should contain the number of the port that the wrapper is listening
to.

Tag: communicate_pimd_wrapper

Usage: communicate_pimd_wrapper quantity

Purpose: Communicates the specified quantity to the i-Pl code. Currently i-PI
keeps track of this specified quantity for each step of the dynamics and each
replica of the system (should they exist). They are written on a file created
by i-Pl that can be easily parsed for postprocessing purposes. The current
available options are: dipole, polarizability,hirshfeld, workfunction
and friction.

3.12.2 Running FHI-aims with i-Pl over TCP/IP Sockets

Using TCP/IP sockets (Internet sockets) is the most straightforward and consistent
way of using the i-Pl wrapper with FHI-aims, particularly on HPC systems where UNIX
sockets are unavailable. However, IP/TCP ports are assigned dynamically on a system,
and therefore there can be no guarantee that a previously assigned port in an input file
will be free when the calculation starts. To avoid this problem we recommend using the
utility script get_free port.py in the utilities directory to set the port to right before
initializing the calculation either locally or inside the submission script on an HPC system.
This script will automatically check if a requested port and change it if it is not free
or find a free port, and update both the relevant information in the i-Pl and FHI-aims
input files. To use the script simply, run

> get_free_port.py -x inputs.template.xml \
-ox inputs.xml \
-c control.in \
-oc {system_name_descriptor}/control.in

or for cases when multiple calculators are used

> get_free_port.py -x inputs.template.xml \
-ox inputs.xml \

3.12. Molecular dynamics 185

-c control.in \
-oc {system_1_name_descriptor}/control.in \
{system_2 name_descriptor}/control.in

In cases where you simply want to overwrite the template input files do not set the -ox
or -oc variables. Additionally if you are running a system with a variable IP address, you
can update the hostaddress with the following command:

> get_free_port.py --host HOST_ADDRESS \
-x inputs.template.xml \
-ox inputs.xml \
-c control.in \
-oc {system_name_descriptor}/control.in

where —-host default will set the host to be the default for the system you are on.
For a complete description of the functionality of the script run

> get_free_port.py --help

186 Chapter 3. The Full Monty: All Keywords and Capabilities

3.13 Thermodynamic Integration

Note added to the present manual: Albeit functional, the thermodynamic integration
routines are still classified as “experimental”. Please contact carbogno®@fhi-berlin.mpg.de,
if you encounter any problems or if you have suggestions.

FHI-aims provides the capability to compute the anharmonic contributions to the
Helmholtz free energy of a system with the so called “thermodynamic integration”
technique. For a truly thorough explanation of the underlying concepts, please refer to
the standard literature, e.g., Refs [225, 79], since only a basic overview that sheds some
light on the required input is given here.

Theory

In this brief introduction, we will focus on a perfect, periodic crystal, the Helmholtz free
energy F'(T, V') of which can be decomposed in three contributions:

F(T,V)=FYV)+ F"™(T,V)=FYV)+ F"T,V)+ F“"T,V) . (3.29)

F(T, V) is the free energy of the electronic system, which can be assessed by Mermin’s
canonical generalization of DFT [158]. For large band gap insulators, the electronic
contribution is approximatively temperature independent and thus equal to the free en-
ergy of the electronic system at zero Kelvin (see occupation_type). F™(T,V) is
the free energy associated to the nuclear motion on the Born-Oppenheimer energy sur-
face V”“(ﬁ) In the limit of low temperatures, this contribution can be described within
the quasi-harmonic model (see Sec. 4.6), i.e., by only accounting for small elongations U
from the equibrium positions I3L0 on the approximative harmonic potential
I | 02V (R)
14 (R) ~V (RO) + 92 % a(-RO,L)a a(RN,M)

N,M,B

(Uo.r)a(Unar)s - (3.30)

BlR=R,

The free energy F9"(T, V') associated to the motion on such a potential can be computed
with the FHI-aims code, as discussed in Sec. 4.6. At large temperatures, however,
the quasi-harmonic approximation is no longer justified, since the deviations from the
equilibrium are not minute. In this case, the “thermodynamic integration” technique can
be employed to compute the anharmonic contributions to the free energy

FMT, V)= F™(T,V) - F"T,V) . (3.31)

For this purpose, the dynamics of the hybrid system that is characterized by the potential
VMR, N) = A V™R) + (1—\) VI(R) (3.32)

is inspected. The parameter)\ appearing therein describes the linear interpolation
between the full Born-Oppenheimer potential V"*(R) and the quasi-harmonic poten-
tial V9"(R). The free energy F*(T,V,\) associated to the motion on this hybrid po-

tential is directly related to the anharmonic contributions via

I (OFNT,V,\))

F“h(T,V):/ d>\< o

(3.33)

3.13. Thermodynamic Integration 187

as the fundamental theorem of differential and integral calculus shows. The relation [225]

OFNT,V,\) <a

_)\ 5]
o o5 V(&)\)>VA (3.34)

allows to replace the integrand in Eq. (3.33) with a canonical ensemble average (-)y, .

If an ergodic thermostat is used (see Sec. 3.12), this ensemble average can then be

substituted with a time average, so that the anharmonic contributions can be eventually
expressed as [225]

t
d\ (0 ~

FUTV) = [ar 5 (S VAEN 3.35

V= (55 VEY (3.39

Within this approach it is thus possible to determine the anharmonic contributions to the

free energy from an ab initio MD simulation, in which the parameter X is adiabatically
varied from zero to unity and/or vice versa.

Tags for MD_schedule section of control.in:

Tag: thermodynamic_integration
Usage: thermodynamic_integration Mg Aeng QH_filename VO

Purpose: Specifies the thermodynamic integration parameters for the immedi-
ately preceding MD_segment in file control.in.

Astarts Astart - Initial and final value for A in the specific MD_segment .

QH_filename : Name of the file containing the parametrization of the quasi-
harmonic potential V4" (R).

VO : Value of the Born-Oppenheimer potential V”“(éo) in equilibrium Ro.

In control.in, the line containing the parameters for the thermodynamic integration
must follow the line containing the MD_segment that the thermodynamic integration
refers to. Note that a thermodynamic_integration line must be provided for
all segments (or none) within an MD_schedule section, as shown in the following
example:

MD_schedule
Equilibrate the system for 100 fs at 800 K with lambda = 0
MD_segment 0.1 NVT_parrinello 800 0.0010
thermodynamic_integration 0.0 0.0 FC_file.dat -0.328E+07

Perform the thermodynamic integration over 10 ps
MD_segment 10.0 NVT_parrinello 800 0.0010
thermodynamic_integration 0.0 1.0 FC_file.dat -0.328E+07

188 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for QH_filename:

Note that the file QH_filename can be automatically generated with the methods dis-
cussed in Sec. 4.6. As a reference, the syntax of the file is given here in spite of that.

Tag: lattice_vector

Usage: lattice_vector x y z latt_index
Purpose: Specifies one lattice vector for periodic boundary conditions.

x, y, z are real numbers (in A) which specify the direction and length of a unit
cell vector.

latt_index : Sequential integer number identifying the lattice vector.

Lattice vectors associated with the equilibrium geometry. Please note that this input
has to be equal to the specifications in geometry.in.

Tag: atom

Usage: atom x y z species_name atom_index
Purpose: Specifies the equilibrium location and type of an atom.
x, y, z are real numbers (in A) which specify the atomic position.

species_name is a string descriptor which names the element on this atomic
position; it must match with one of the species descriptions given in control. in.

atom_index : Sequential integer number identifying the atom.

Equilibrium atom positions. Please note that this input has to be consistent with the
specification in geometry.in (same number of atoms, same order, same species).

Tag: force_constants

Usage: force_constants FC_x FC_y FC_z atom_j direction atom_i

Purpose: Specifies the force constants, i.e., the change in the forces that occur
if one atom is displaced in the unit cell.

FC_x, FC_y, FC_z are the change in the forces in the respective cartesian
coordinates.

atom_j : is the index of the atom that is displaced.
direction : is the cartesian direction in which atom_j is displaced.

atom_i : is the index of the atom the forces refer to.

Equilibrium atom positions. Please note that this input has to be consistent with the
rest of the specification in QH_filename.

Example for a very basic file QH_filename:

3.13. Thermodynamic Integration 189

lattice_vector 3.987 3.987 0.000 1

lattice_vector 0.000 3.987 3.987 2

lattice_vector 3.987 0.000 3.987 3

atom 0.000 0.000 0.000 A1 1
atom 1.993 1.993 0.000 Al 2
atom 0.000 1.993 1.993 Al 3
atom 1.993 3.987 1.993 Al 4
atom 1.993 0.000 1.993 Al 5
atom 3.987 1.993 1.993 Al 6
atom 1.993 1.993 3.987 Al 7
atom 3.987 3.987 3.987 Al 8

displace atom 1 ————-————————————————————

force constants 5.739e+00 -7.069e-16 6.805e-16 111
force_constants -1.909e+00 -1.455e+00 -1.324e-16 112
force_constants 3.692e-01 2.618e-16 3.813e-16 113
force_constants -1.909e+00 -1.398e-16 1.201e+00 114
force_constants -1.909e+00 2.040e-16 -1.201e+00 115
force constants 3.692e-01 1.423e-16 -7.205e-16 116
force constants -1.909e+00 1.455e+00 9.268e-17 117
force_constants -3.934e-02 4.931e-18 -4.373e-18 118
force_constants -2.979e-17 5.004e+00 1.698e-15 121
force_constants -1.016e+00 -1.430e+00 -9.899%e-17 122

force constants 1.675e-19 -3.460e-02 -1.160e-17 128
force_constants 3.498e-17 2.663e-16 5.373e+00 131
force_constants -2.894e-16 3.914e-16 3.969e-01 138
end atom 1 ---—----—-"""-""""""""""""""
displace atom 2 —-————————————-—-—————— o
force_constants -1.909e+00 -1.455e+00 3.466e-17 211
force_constants -8.873e-17 1.914e-16 3.969e-01 238
end atom 2 -————---————————————— -

end atom 7 —————————---m—mmmm oo
displace atom 8 ~———————-—————————————————————————————————
force_constants -3.934e-02 4.931e-18 -4.373e-18 811

190 Chapter 3. The Full Monty: All Keywords and Capabilities

3.14 Electronic constraints

Most production calculations only require the converged ground state of a calculation,
but in some cases, a deliberate deviation from the Born-Oppenheimer surface is desired.
For example it may be desirable to fix the spin state of a spin-polarized calculation using
a defined multiplicity .

More generally, intuitive chemical concepts may suggest the localization of a fixed given
spin moment or number of electrons in one part of a system, and a different spin
moment or number in another part. Examples include enforcing definite charges on ions
in a system, or a desired spin moment on one particular atom.

The latter idea of partitioning different numbers of electrons or spin moments in space
thought of as divided into different atoms is inherently ambiguous. Nonetheless, this is
a classic intuitive picture of chemistry, and, at least in the limit of well-separated system
parts, becomes exact.

For non-periodic geometries, FHI-aims implements the possibility of constrained calcu-
lations to enforce predefined electron numbers in different regions and/or spin channels.
We follow the prescription of Behler et al. [20, 21], which assigns electrons to different
atoms according to a Mulliken-like analysis, i.e., by partitioning the occupied Kohn-Sham
eigenstates according to the occupation of different atom-centered basis functions.

For details regarding the method, we refer to the original references, but we add here a
clear word of caution. The implemented partitioning is well-defined when the relevant
parts of the system are far apart, and/or when relatively small, confined basis sets are
employed. For large, overlapping basis sets, electrons may be spatially located at one
atom even though they are numerically assigned to the basis functions of a different
atom. In other words, the procedure becomes more ambiguous as the basis size and
completeness increase. Contrary to the usual paradigm of electronic structure theory, it
is not meaningful to converge constrained DFT calculations to the basis set limit if the
individual pieces of the system are not very well separated.

To set up an electronic constraint, the only keywords normally required are constraint_region
in geometry.in and constraint_electrons in control.in. The remaining key-

words documented below are normally required only for experimental purposes or trou-
bleshooting.

For the purpose of simulating electronic excitations, either from electronic core levels
(XPS) or from valence levels (UPS), the keywords force_occupation_basis and
force_occupation_projector enforce electron occupations of specific atomic basis
states or Kohn-Sham states, respectively.

3.14. Electronic constraints 191

Tags for geometry.in:

Tag: constraint_region

Usage: constraint_region number
Purpose: Assigns the immediately preceding atom to the region labelled
number.

number is the integer number of a spatial region, which must correspond to
a region defined by keyword constraint_electrons in file control.in.

Default: 1.
To divide up space into regions for the purpose of enforcing an electronic constraint,

each atom in the structure is included in a constraint_region .

Simple example of an Na-Cl dimer (geometry.in):

atom 0. 0. 0. Na
constraint_region 1

atom 0. 0. 3. Cl1
constraint_region 2

assigns Na to the first region and Cl to the second region of a constrained calculation.

The special case of only one region (e.g., for a fixed spin moment calculation) needs
no explicit constraint_region labels. Note that, apart from an explicit setup by
keyword constraint_electrons , the case of an integer fixed spin moment for the
whole system (all atoms) can also be called by the shortcut multiplicity .

192 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: constraint_debug

Usage: constraint_debug flag

Purpose: If set, provides extra output that monitors the convergence of the local
constraint potentials used to enforce the requested constraint.

flag is a logical string, either .true. or .false. Default: .false.

Tag: constraint_electrons

Usage: constraint_electrons regionn_1 [n_2]

Purpose: Fixes the number of electrons to n_1 (in the spin-polarized case, ton_1
in the spin-up channel and n_2 in the spin-down channel) for a given region.

region is an integer number, corresponding to one of the regions listed as
constraint_region in geometry.in.

n_1 is the number of electrons in the corresponding region (the number of
spin-up electrons in the case of a spin-polarized calculation).

n_2 is the number of spin-down electrons in the corresponding region (only
needed in the spin-polarized case).

This is the central keyword that can be used to define a strict constraint on the electron
numbers associated (i) with the orbitals of a given subset of atoms (“region”) and / or
(ii) with a given spin channel. See the multiplicity keyword for a shortcut for
fixed spin moment calculations with an integer spin multiplicity.

Tag: constraint_it_lim

Usage: constraint_it_lim number

Purpose: For the determination of the constraint potentials in different
constraint_region s, sets the maximum number of internal iterations before
the search for a converged value is aborted.

number is an integer number. Default: 200.

The method to determine the constraint potentials that enforce the local electron / spin
constraint is set by constraint_mix ; for more than one active constraint region
, this determination is always iterative. Keyword constraint_it_lim sets the
maximum number of iterations before this search is aborted in case of failed convergence
(or too ambitious accuracy requirements from keyword constraint_precision).

Tag: constraint_precision

3.14. Electronic constraints 193

Usage: constraint_precision tolerance

Purpose: Sets the precision with which each requested local constraint on the
electron count must be fulfilled.

tolerance is a small positive real number. Default: 107°.

Tag: constraint_mix

Usage: constraint_mix factorl [factor2]
Purpose: Mixing factors for the iteratively determined constraint potentials.

factorl is a mixing factor for the iteratively determined constraint potentials
(for spin-polarized calculations, the spin-up mixing factor).

factor2 is the mixing factor for spin-down constraint potentials in the case of
spin polarized calculations.

Only meaningful for non-standard settings of mixer constraint , irrelevant for the
standard bfgs case.

Tag: ini_linear_mixing_constraint
Usage: ini_linear_mixing constraint number

Purpose: If keyword mixer constraint is a Pulay mixer, initial linear mixing
for a few iterations can be requested first.

number is the number of initial linear iterations.

Only meaningful for non-standard settings of mixer_constraint , irrelevant for the
standard bfgs case.

Tag: mixer_constraint

Usage: mixer_constraint type
Purpose: Sets the iterative algorithm to determine constraint potentials.

type is a string. Default: bfgs

This flag has nothing to do with electron density mixing or the electronic self-consistency
loop. Instead, this defines the process to determine constraint potentials that enforce
the requested electron number constraints, if the keyword constraint electrons
was invoked. This process happens in each s.c.f. iteration after the Hamiltonian matrix
is known, in the course of solving the Kohn-Sham eigenvalue problem.

If more than one constraint regions are requested, determining the constraint poten-
tials to enforce the local constraint on the electron numbers is an iterative process.
Technically, FHI-aims supports three different algorithms for type :

o bfgs : The default. A BFGS algorithm that optimizes the constraint potentials to
their nearest local optimum. Nothing else should be used unless for experimental

194 Chapter 3. The Full Monty: All Keywords and Capabilities

purposes.
e linear : Linear mixing algorithm to determine the constraint potentials.

o pulay : Pulay-type mixing algorithm to determine the constraint potentials.

Under normal circumstances, the mixer constraint keyword should not be needed
explicitly.

Tag: n_max_pulay_constraint

Usage: n_max_pulay_constraint number

Purpose: If the pulay mixer is selected for ~ mixer_constraint , sets the
number of iterations to be mixed.

number is the number of mixed iterations. Default: 8.

Only meaningful for non-standard settings of mixer constraint , irrelevant for the
standard bfgs case.

Tag: force_occupation_basis
Usage: force_occupation_basis 1i_atom spin basis_type basis_n
basis_1 basis_m occ_number max_KS_state

Purpose: Flag originally programmed to compute core-hole spectroscopy simula-
tions (for a short how-to cf. force_occupation_projector). In practice,
it constrains the occupation of a specific energy level of an specific atom, being
also able to “break the symmetry” of an atom.

i_atom is the number of the atom on which the occupancy is constrained, as it
is listed in the geometry.in file.

spin is the spin channel (e.g., 1 if only one spin channel).

basis_type is the type of basis which is used to force the occupation of the
orbital (set it to atomic).

basis_n is the main quantum number for the state of interest.
basis_1 is the orbital momentum quantum number for the state of interest.

basis_m is the projection of the orbital momentum onto the z-axis (-1, 0, or 1
for a p state).

occ_number is the occupation constraint for the chosen state.

max_KS_state is the number of the highest energy Kohn-Sham state in the
system that will be included in the constraint.

Example:
force_occupation_basis 1 1 atomic 2 1 1 1.3333 6

This choice will constrain the overall occupation of a given basis function (not Kohn-

3.14. Electronic constraints 195

Sham state!) in the system to 1.3333 electrons.

The basis function in question resides on the first atom (number 1) as listed in geometry . in.
The first spin channel is constrained.

Since we are interested in constraining an atomic-like orbital, we choose one that is part
of the minimal basis (type “atomic”).

In fact, we let the constraint act on a 2p level, m=1 (defined by the sequence “2 1 1").

Only Kohn-Sham orbitals up to the 6th state (counted in the overall system) will be
included in the constraint. In general, it is a good idea to constrain the orbital in question
out of the occupied space, i.e., choose a value for max_KS_state that indicates a state
above the Fermi level.

There is a small problem here: We need to define the occupation of a “basis function,”
but really, we here have a non-orthogonal basis. Strictly speaking, only the Kohn-Sham
states in the system have a well-defined occupation. What to do?

One thing we could use (and we do) are Mulliken occupation numbers of the basis func-
tions. These are formally always well defined. In practice, however, as the overall basis
set becomes larger and larger and approaches (over-)completeness, Mulliken occupations
become less and less meaningful because other basis functions are not exactly orthogonal
to the one used in our projection, and can “restore” the component that was originally
constrained away.

Either way, we use Mulliken occupations, assuming that the atomic core basis functions
are sufficiently compact and practically orthogonal to everything else.

This assumption will work well for localized basis functions such as the 1s levels of most
elements. As a rule, the constraint is expected to be less and less unique if applied to
more delocalized basis functions — there can even be multiple different self-consistent
constrained solutions for the same formal constraint. For instance, Si 2p basis functions
can exhibit this problem if the basis sets on the surrounding atoms — which overlap with
the Si atom — become too large. Here, a smaller basis set (tier 1) can indeed be the
way to keep a qualitatively meaningful Mulliken-type constraint.

Tag: force_occupation_projector

Usage: force_occupation_projector KS_state spin occ KS_start
KS_stop

Purpose: This keyword enforces the occupation occ in KS_state of spin
channel spin. Between different SCF steps the overlap of this state with
states KS_start to KS_stop is being checked and the constraint is changed
correspondingly if the main character of the state changes.

Example:
force_occupation_projector 8 1 0.0 6 10
force_occupation_projector 9 2 1.0 6 10

196 Chapter 3. The Full Monty: All Keywords and Capabilities

This enforces 0.0 occupation in state 8 of spin channel 1 and 1.0 occupation for state 9
of spin channel 2. KS states between 6 and 10 are checked for overlap with state 8 and
9 of previous SCF steps. If 8/1 was occupied and 9/2 was unoccupied in the ground
state, this corresponds to a triplet excitation 8—9.

To simulate XPS energies with n inequivalent atoms of the same species (called excitation
centre in the following) a total of n + 1 single runs is required: One ground state
calculation and one force_occupation_basis / force_occupation_projector
calculation for each of the excitation centres.

The ground state calculation should use the restart write_only orthe restart
flag to create a restart file that is needed for the = force_occupation_basis or
alternatively the = force_occupation_projector run. Therefore the geometry.in
and all other parameters (except the charge) such as basis sets have to match. In
practise it is often beneficial for the interpretation of the XP spectra to use output
cube eigenstate to have an idea of the localization of the different core levels.

For the simulation of the XPS spectra typically a full core hole is introduced at the
excitation centre (for example in ref. [54]). Relying on initial state effects alone (i.e.,
defining the ionization energies using ground state eigenvalues) neglects the screening
of the core hole by valence electrons [147] and is therefore not a good approximation for
XPS. For example, to force the occupation of eigenstate 3 to 1.0, where states 1-4 are
(near-)degenerate or at least very similar in energy and type:

force_occupation_projector 3 1 1.0 1 4

Results in the following occupation (the introduction of the core hole leads to a re-
ordering):

State Occupation Eigenvalue [Ha] Eigenvalue [eV]

1 1.00000 -16.148150 -439.41353
2 2.00000 -14.162982 -385.39434
3 2.00000 -14.162981 -385.39432
4 2.00000 -14.091396 -383.44640

Note that charge was set to 1 to take into account the reduced electron number
and a restart from the ground state run was made using restart .

XPS energies can then be calculated as the difference of the total energy obtained in
the ground state calculation and the total energy of the core-hole excited simulation
(corresponding to the definition of the ionization energy). That means that for each
excitation center an ionization energy is calculated. For the core level shifts only relative
energy differences are relevant, which are already directly reflected in the differences
of total energies of the core-hole excited states. If, however, absolute energies are of
interest, note that experiments are referenced to either the vacuum level or the Fermi
level, and that simulations including an extended surface might differ by the workfunction
from those for isolated molecules. The ionization energies can then by broadened with
Gaussian functions of same amplitude (assuming no preferential direction, especially valid
for 1s spectra) and summed up to obtain the total XPS spectrum.

3.14. Electronic constraints 197

Simulating NEXAFS spectra can be less straightforward as there are different approxi-
mations to account for the core hole and the excited electron. One possibility is to use
the transition potential approach [220], where instead of a full core only half a core hole
is used, i.e., n = 0.5 in one spin channel. Independently from the approximation used
for the core hole: To obtain the dipole matrix elements that give information about the
transition probability the flag compute_dipolematrix needs to be used. Note that
to use this option the FHI-aims binary has to be compiled enabling hdf5, as the output
is a hdf5 container containing eigenvalues and matrix elements. It is recommended to
include additional empty_states , depending on the amount of unoccupied states
you want to probe. In this case the ground state calculation has already to include the
same number of empty states, otherwise a restart is not possible.

Tag: force_occupation_smearing

Usage: force_occupation_smearing smearing width

Purpose: If keyword is set, the occupation constraints are enforced in form of
gaussians with a width of smearing width instead of delta peaks. This applies
to orbitals within an energy range of -+ 3*smearing width

Default: No Smearing at all.

Example:

force_occupation_smearing 0.05

This keyword helps to converge systems with state degeneracies, which are constrained
by force_occupation__projector. Specifically when calculating electronic excited states in
the frontier orbital regime, many state degeneracies can occur. If one of two degenerate
states is constrained to a different than the ground state occupation, convergence can
be hindered. If this happens, this keyword can enable convergence for the price of a
minimally different final occupation and therefore also a small error in excitation energy.
One should be very careful with this keyword and only employ it if convergence can not
be reached without.

WARNING: It is very easy to generate reandom numbers when using this keyword. The
smearing value should never exceed 0.15

198 Chapter 3. The Full Monty: All Keywords and Capabilities

3.15 Embedding in external fields

To simulate the effect of external field (for instance, to connect to a QM /MM embedding
formalism), FHI-aims allows to add the effect of a homogeneous electrical field and/or
point charges surrounding the molecule in question.

Note that these embedding charges are in addition to any charge specified in
control.in, and not already included there. charge should equal only to the sum
of charges of all nuclei in geometry.in minus the overall number of electrons in the
system, but does not count any embedding charges specified by keyword multipole .

This functionality is not yet available for periodic systems.

Warning: When using a multipole, e.g., an external charge with no basis
functions etc., you are creating a Coulomb singularity. If this singularity is
inside the radius of a basis function of another atom, it will lead to numerical
noise in integrals, up to near-infinities.

To test and/or overcome this problem, all you need to do is to place an integration grid
on any multipole that is within the radius of a basis function of any atom. This radius
is given by the cutoff radius plus width in the cut_pot keyword of each species .

Such a grid can be placed by creating an empty site with no basis functions (
include_min_basis .false.) and placing this empty site on the same site as the
multipole in question in geometry.in. Simply taking the species defaults for a H atom
(light settings) and adjusting them to have no basis functions should create the necessary
definition of the empty site in question (see Fig.3.2 for an example).

3.15. Embedding in external fields 199

Tags for geometry.in:

Tag: homogeneous_field

Usage: homogeneous_field E xE yE_z

Purpose: Allows to perform a calculation for a system in a homogeneous
electrical field E.

E_x is a real number, the 2 component of E in V/A.
E_y is a real number, the y component of E in V/A.
E_z is a real number, the z component of E in V/A.

Please note: The electrical field is usually defined to point in the direction of a
force exerted on a positive probe charge. Historically grown, FHlaims uses the
opposite sign convention. Although this behaviour might be considered a bug, we
decided to leave it this way in order not to break any scripts people are already
using.

Tag: multipole

Usage: multipole x y z order charge

Purpose: Places the center of an electrostatic multipole field at a specified
location, to simulate an embedding potential.

x : x coordinate of the multipole.

y : y coordinate of the multipole.

z . z coordinate of the multipole.

order : Integer number, specifies the order of the multipole (0 or 1 = monopole
or dipole).

charge : Real number, specifies the charge associated with the multipole.

If the order of the multipole is greater than zero (presently, only monopoles or dipoles
are supported), a dipole moment must be specified in addition to the data provided with
the multipole tag itself. To that end, a line must immediately follow the original
multipole line, adhering to the following format:

datam xm ym_z
Here, m_x, m_y, m_z are the z, y, and z components of the dipole moment, in e-A.

Warning: Note that monopoles amount to Coulomb singularities. When inside the basis
function radius of any atom, such monopoles should be covered with an integration grid
in geometry.in, as explained in the beginning of this section.

200 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: full_embedding

Usage: full_embedding flag

Purpose: Allows to switch between embedding of the full electronic structure
(affecting the Kohn-Sham equations) or the embedding of an electronic density
that is calculated without knowledge of the embedding potential.

flag is a logical string, .true. or .false. Default: .true.

For most purposes, embedding into an external potential will involve a change to the
electronic structure of the structure which is embedded. However, in some instances
one may wish to embed a given charge density non-selfconsistently, i.e., by calculating
the electron density without an external field and then computing the energy of that
unperturbed electron density in the external field.

This feature is useful if multipoles are located too close to the quantum-mechanical re-
gion of the calculation. These act as Coulomb-like potentials, just like any other potential
in the systems. If there are basis functions that cover the location of that potential, some
electronic charge may artificially become trapped there, creating a bad approximation to
the core / valence electrons of an atom with a nucleus of charge charge. In most cases,
this is clearly undesirable behaviour, and apart from that will create unwanted numerical
noise since the electronic structure near the Coulomb-like singularity of the multipole
will be represented solely by basis functions that are inadequate for this purpose in the
first place.

Tag: qmmm

Usage: qmmm

Purpose: Allows to compute Hellmann-Feynman like forces from the quantum-
mechanical part of a structure exerted on the multipoles on an external
embedding field.

Restriction: Works only for external monopole potentials.

For quantum-mechanics / molecular-mechanics (QM/MM) “hybrid” molecular dynamics
simulations, one must evolve both the quantum and classical subsystems with time. In
that case, it is necessary to know the derivatives of the quantum-mechanical total energy
with respect to the positions of the classical multipoles (see keyword multipole),
i.e., the forces on the multipoles that originate from the quantum-mechanical region.

The computation of these forces is switched on by adding the qmmm keyword to
control.in. The actual QM/MM simulation must still be performed using an outside
framework, for example ChemShell [203] that uses the energies and forces provided by
FHI-aims as a “plugin”.

3.15. Embedding in external fields 201

[...]

species empty_site
global species definitions
nucleus 1
mass 1.00794
#
1 _hartree 4
#
cut_pot 3.5 1.5 1.0
basis_dep_cutoff le-4
#

include_min_basis .false.

radial_base 24 5.0
radial_multiplier 1
angular_grids specified
division 0.2421 50
division 0.3822 110
division 0.4799 194
division 0.5341 302
outer_grid 302
HESHHHHFHHAEHHH B FH B AR HHBEFHBAFHHBEHH RS H B EHH B R HHBEHHBEFH RS HH B HH R AR R R B HH R AR
#
Definition of "minimal" basis

#
HEH R R R
valence basis states
valence 1 s 1.
ion occupancy
ion_occ 1 s 0.5

HESSHHA R

Figure 3.2: Species data for what could be used as an empty site on top of monopole.

202 Chapter 3. The Full Monty: All Keywords and Capabilities

3.16 QM/MM Embedding

Please continue to consider this functionality experimental and contact the maintainers
before using it.

When simulating nanostructured surfaces, it may be favorable to avoid the standard
supercell approach and rather make use of a QM/MM embedding approach. E.g. with
clusters or molecules adsorbed, extensive supercells are required to avoid spurious in-
teraction between the nanostructure and its periodic copies. This makes computations
tedious.

In the QM/MM approach, one embeds a quantum mechanical (QM) region in an ex-
tended monopole field. To avoid spurious charge leakage out of the QM region posi-
tively charged monopoles in the vicinity are replaced by norm-conserving pseudopoten-
tials [122]. Those pseudopotential files can be either generated manually with the open
source program package FHI98PP [70] or downloaded from http://www.abinit.org/
downloads/psp-links/lda_fhi orhttp://www.abinit.org/downloads/psp-links/
gga_fhi.

Figure 3.3: Example for QM /MM setup: Au,@Ti02. The adsorbed cluster and direct
substrate vicinity defines the QM-region. The far field surrounding (grey particles) pictures
a monopole field with formal charges (4+ for Ti and 2- for O). In the blue region, oxygen
particles are still represented as monopoles, however Ti-cations are described with ionic
pseudopotentials.

The QM /MM approach has the huge advantage ultimately also being capable to effi-
ciently deal with charged systems, which will be a fundamental asset for the description
of surface electrochemistry or photo-induced catalysis.

QM/MM embedding is not applicable for metal substrates for physical reasons.

http://www.abinit.org/downloads/psp-links/lda_fhi
http://www.abinit.org/downloads/psp-links/lda_fhi
http://www.abinit.org/downloads/psp-links/gga_fhi
http://www.abinit.org/downloads/psp-links/gga_fhi

3.16. QM/MM Embedding 203

Tags for geometry.in:

Tag: pseudocore

Usage: pseudocore x y z species
Purpose: Places the center of a pseudopotential at a specified location.

x : x coordinate of the pseudocore.

y : y coordinate of the pseudocore.

z . z coordinate of the pseudocore.

species : string defining the name of the pseudoized species; this needs to
correspond to name specified in control.in .

The keyword pseudocore should be used for those particles replaced by pseu-
dopotentials, so cations. Anions are to be treated simply as monopoles, employing the
multipole infrastructure.

Tags for general section of control.in:

Only species data concerning the pseudoized species mentioned in geometry.in need
to be appended in the control.in. Accept for some mandatory changes (listed below)
those species data are essentially the same as you can find them in the species_default
folder. E.g. if you want to pseudoize for example titanium, take the T default file as
a template. However, the pseudoized species must not have any basis functions
accept for the minimal basis. The minimal basis in needed to construct the integration
weights, however in order to exclude the minimal basis from the actual quantum chemical
calculation, the flag include min basis needs to be set to .false..

Although nomenclature is misleading as it is chosen at the moment, you do NOT need
the qmmm in order to make QM/MM embedding work.

Similar to all-electron atom , FHI-aims expects all atom specifications like mass ,
nucleus , information for the integration grid etc. Some additional flags need to be set
that FHI-aims is able to realize them as pseudoized species.

species sub-tag: pseudo

Usage: pseudo string

Purpose: Parses the name of file the Kleinman-Bylander pseudopotential is
written in

string name of file

FHI-aims expects the pseudopotential file to be in a specific formatting, namely the
output format *.cpi of the generator program FHI98PP [70]. FHI98PP expects this file
to be in the same folder as control.in and geometry.in.

204 Chapter 3. The Full Monty: All Keywords and Capabilities

species sub-tag: pp_charge
Usage: pp_charge value
Purpose: Specifies the charge of the pseudoized ion.

value: any real value is allowed

pp_charge must be the charge which has been set in the generation of the pseudopo-
tential and equals the number of pseudoized valence electrons. This parameter is needed
for the far field extrapolation of the pseudopotential.

species sub-tag: pp_local_component

Usage: pp_local component value

Purpose: Specifies which |-channel of the pseudopotential should act as the local
component. Find a detailed theoretical background in [70].

value: integer value

The choice which |-channel should be the local component is essential for the perfor-
mance of the pseudopotentials. Again, read [70] for further help.

species sub-tag: nonlinear_core

Usage: nonlinear_core flag

Purpose: when .true. FHI-aims expects and reads in a partial core density (and
partial core density gradient) from the pseudopotential input file to take account
of nonlocal core correction [148].

flag is a logical expression, either .true. or .false. Default: .false.

3.16. QM/MM Embedding 205

[...]
species Ti_pseudo

global species definitions
nucleus 22
mass 47.867
pseudo Ti.cpi
pp_charge 4.
pp_local_component 1
nonlinear_core .false.

include_min_basis .false.

Figure 3.4: Species data for a pseudoized titanium atom. Starting from the default species
files only a few flags need to be added and the basis functions (accept the minimal basis)
need to be removed.

206 Chapter 3. The Full Monty: All Keywords and Capabilities

3.17 Continuum Solvation Methods

Continuum or implicit solvation methods provide a fast way the influence of solvents and
electrolytes on chemical reactions. Currently, FHI-aims supports two models which have
different strengths and capabilities which are summarized in Table 3.1. Both models
place a dielectric continuum outside the charge distribution modeling the polarizibility of
the solvent. Differences arise in the solvation cavity definition. The Multipole Expansion
(MPE) implicit solvation method separates the FHI-aims grid into two domains and
couples them via electrostatic boundary conditions. It therefore in fact solves two coupled
Poisson equations with different dielectric permittivities. The Finite ion-size and Stern
layer modified Poisson-Boltzmann (SMPB) method solves a single Poisson equation on
the full FHI-aims integration grid by defining a smooth dielectric permittivity function.
In general, the accuracy of the evaluation of solvation energies is expected to be similar.
In fact, both methods merge into each other if the dielectric transition in the SMPB
model is turned into a sharp step function. On top of this ion-free implicit solvation
model, the SMPB approach also supports the modeling of finite ionic strengths in the
solution.

The MPE solvation model is the faster one of both approaches with only a small overhead
with respect to vacuum calculations. The overhead of both implicit solvation methods
is reduced, when performing expensive hybrid calculations, since the actual time for the
implicit solvation calculations does not vary with the functional.

MPE SMPB

Solvent Parametrizations H,O (N,C) H,O (N,C), CH30H (N,C)
(more in work)
Dissolved ions/salt no yes (SMPB/LPB)
Salt Parametrizations — Aq. Monoval. Salt Solutions
CPU speed fast moderate
Forces no yes
PBCs 1no no (in work)
Developers Markus Sinstein Stefan Ringe
Christoph Muschielok, Marvin H. Lechner

Table 3.1: Comparison of the two implicit solvation methods in FHI-aims. Parameter sets
for the MPE method are available in ref. [206], for the SMPB method in ref. [7] and [59]
(parameters for methanol as more solvents in current work). N and C indicate parameter
sets fitted for neutral and charged solutes, respectively.

In the following, both models are summarized and the key input parameters presented.

3.17.1 MPE Implicit Solvent Model

This is an experimental feature which is still under development. Do not rely on properties
calculated by this method! Please contact the authors for further details.

markus.sinstein@mytum.de
mailto:sringe@stanford.edu

3.17. Continuum Solvation Methods 207

This functionality is not yet available for periodic systems.
The current implementation does not have analytical forces yet.

Generally, when combining MPE with other functionality, you should know what you
are doing. No specific interactions with other methods beyond single point DFT are
implemented, so only methods which do not interfere with MPE are safe to use.

The simulation of a solvent in a quantum mechanical calculation can, in principle, be
done in two ways. One way is to include explicit solvent molecules in the calculation.
This straightforward approach usually requires molecular dynamics (MD) simulations in
order to yield thermodynamically meaningful observables as e.g. solvation free energies.

The second way is to average the effect of the solvent and treat it as a continuum which
responds to the electrostatic potential created by the solute, i.e. the entity that is to
be solvated. There are several flavors to this comparatively inexpensive approximation,
e.g. the polarizable continuum model (PCM) [157], the conductor like screening model
(COSMO) [121], the self-consistent continuum solvation (SCCS) model [7], the “SMx”
models [49, 152, 153], or CMIRSv1.1 [230] to name some of the more popular ones.
Statistical sampling then only needs to be performed for the degrees of freedom of the
solute which obviously makes it computationally much cheaper.

In general, the necessary integration of the solvent’s degrees of freedom beforehand leads
to a problem where one now needs to solve a generalized Poisson’s equation,

V (e0e(r)V®(r)) = —4mo(r), (3.36)

to obtain the electrostatic potential ®(r) created by the total charge density o(r) which
now accounts for the electrostatic polarization potential of the solvent (often called
“reaction field"). Eq. 3.36 contains a spatially dependent dielectric permittivity function
£(r) in contrast to the regular Poisson’s equation,

V (eoV®y(r)) = —4mo(r), (3.37)

which is solved in a regular DFT calculation in every step of the SCF cycle to get the
Hartree potential ®y.

As outlined in more detail in Ref. [206], the multipole expansion (MPE) implicit solvent
model offers an efficient way of solving Eq. 3.36 based on the knowledge of the Hartree
potential @y readily available from a splined representation in FHI-aims (cf. Sec. 3.7)
via least-squares fitting instead of integration. The dielectric function £(r) here needs
to be a step-function in 3D-space where the following boundary conditions apply at the
step (n denotes the normal direction to the interface):

S, =0 (3.38a)
n- €+V¢+ =n-¢_Vo_ (338b)
Then, the above equations are discretized in two ways:

o The potentials @, and ®_ are expressed in a truncated multipole series with
expansion orders [, g and lpax 0, and

208 Chapter 3. The Full Monty: All Keywords and Capabilities

o equations 3.38a and 3.38b are evaluated at IV points on the interface manifold.

Thereby, N is chosen such that the resulting system of linear equations (SLE) is overde-
termined (typically by a factor of two to three).

Tags for general subsection of control.in:

The keywords controlling the MPE module are divided into four categories:

elementary These are the most important keywords—some are even mandatory—which likely
need to be specified for every calculation.

convergence Here, the most important convergence parameters are collected which should be
checked before doing (large scale) production runs.

expert These settings should only be modified by an experienced user as they allow quite
profound modifications.

debug Debug settings are intended to give valuable insight for developers into interme-
diate results.

The authors strongly encourage new users to try out “elementary” and “convergence”
settings first in order to gather some experience with the MPE implementation before
any modifications of other settings are made.

elementary Tag: solvent

Usage: solvent method
Purpose: Specifies the desired implicit solvent model.

method is a string which specifies the implicit solvent method; currently, mpe
(the method presented above) and mpb (cf. Sec. 3.17.2) are supported.

Tag: mpe_solvent_permittivity
Usage: mpe_solvent_permittivity epsilon
Purpose: Specifies the dielectric constant of the bulk solvent.

epsilon is a positive real number equal to the macroscopic dielectric constant
of the solvent. Default: 1.0

Tag: isc_cavity_type

3.17. Continuum Solvation Methods 209

Usage: isc_cavity_type type

Purpose: This keyword controls the model used to sample the implicit solvent
cavity for the MPE method. Depending on type, further flags (or even lines)
might be necessary. Those are explained below.

Options: Currently supported options are overlapping_ spheres, rho_free,
rho_multipole_static, and rho_multipole_dynamic.

isc_cavity_type sub-tag: rho_free
Usage: isc_cavity_type rho_free rho_iso

Purpose: Constructs the cavity as an iso-density surface of the superposed elec-
tron density of the neutral, free atoms in the solute.

rho_iso is a positive real number specifying the desired iso-density value in units
-3
of eA™" .

isc_cavity_type sub-tag: rho_multipole_static
Usage: isc_cavity_type rho_multipole_static rho_iso

Purpose: Constructs the cavity as an iso-density surface of the (multipole-
expanded) converged electron density of the solute in vacuum, keeping the cavity
static throughout the actual MPE calculation.

First, a vacuum calculation (SCF with any MPE related keywords turned off) will
be performed until self-consistency is achieved, then SCF will be restarted, with
specified MPE related keywords turned on and the isodensity cavity constructed
from the converged electron density in vacuum.

rho_iso is a positive real number specifying the desired iso-density value in units
-3
of eA™" .

Caveat: At its outermost tails, the multipole-expanded electron density can have ‘bumps’

and ‘dents’. Therefore, for very small rho_iso (i.e. large cavities), rho_multipole_static
and rho_multipole_dynamic can lead to excessively rough isocavities. The super-
position of free atom densities does not show this behaviour. /f there is a reason to use
isovalues significantly smaller than the ones reported in the original publication [206], it

is thus recommended to to use rho free instead to get a smooth cavity. In case of
doubt, writing the cavity to a .xyz file viathe isc_cavity_restart_write keyword

and visual inspection with the molecular visualization program of your choice might help
clarify.

isc_cavity_type sub-tag: rho_multipole_dynamic

210 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: isc_cavity_type rho_multipole_dynamic rho_iso

Purpose: Constructs the cavity as an iso-density surface of the self-consistent
(multipole-expanded) electron density of the solute, updating the cavity in each
SCF step.

rho_iso is a positive real number specifying the desired iso-density value in units

of e A7

With this method, the cavity is updated to the current electron density in every SCF
step. This also means that the MPE equations have to be solved in every SCF step
making it computationally more expensive.

Also consider Caveat at rho multipole_static !

isc_cavity_type sub-tag: overlapping_spheres

Usage: isc_cavity_type overlapping spheres type value

Purpose: Constructs the cavity as a superposition of overlapping spheres around
all atoms.

type specifies how the radii of the atomic spheres are determined.
« radius: all spheres have the same radius given by value in units of A;

o rho: the atomic spheres are iso-density surfaces based on the electron
density of the isolated, neutral atom with an iso-value of value in units of

eA™

value is a real number whose meaning and units depend on the choice of
radius (see above).

WARNING: The usage of this cavity type is strongly discouraged! It has been helpful
in the development to analyze the cavity sampling process itself. The resulting cavities,
however, are almost certainly not smooth and were never intended to be used in pro-
duction calculations. When used with the MPE model, the whole calculation is prone to
numerical problems and the results are very often unphysical. Instead, use the rho_free
type that builds the cavity based on the superposition of atomic densities (which is again
smooth) or use other types based on the (self-consistent) electron density of the solute.

Tag: mpe_nonelectrostatic_model

Usage: mpe_nonelectrostatic_model model

Purpose: This keyword controls any additional, “non-electrostatic” terms not
included in the purely electrostatic treatment of the solvent. Depending on
model, further flags (or even lines) might be necessary. Those are explained
below.

Options: Currently, only linear 0V is supported.

3.17. Continuum Solvation Methods 211

mpe_nonelectrostatic_model sub-tag: linear_0V

Usage: mpe_nonelectrostatic_model linear OV « (3

Purpose: Corrects the total energy term by aO + SV where O is the surface
area of the cavity and V' its volume.

« is a real number in units of eV A_i. Default: 0.0
{3 is a real number in units of ¢V A", Default: 0.0

This non-electrostatic model is in principle identical to the one proposed by Andreussi et
al. [7]. Note, however, that the surface tension of the solvent is here included in the
parameter .

convergence Tag: mpe_lmax_rf

Usage: mpe_lmax_rf lmax

Purpose: Specifies the expansion order of the polarization potential aka reaction
field inside the cavity.

lmax is a non-negative integer number. Default: 8

This is a critical convergence parameter of the MPE model. You should never forget
to test convergence with respect to this parameter before doing production runs. For
small organic molecules, the largest and successfully tested expansion order so far has
been 14. Note, however, that numerical problems might arise when choosing even larger
values for lmax or when going to larger systems.

Tag: mpe_lmax_ep
Usage: mpe_lmax_ep lmax
Purpose: Specifies the expansion order of the polarization potential aka reaction
field outside of the cavity.

1max is a non-negative integer number. Default: maximum value of 1 hartree
for all species.

This parameter is similar to but usually less critical than mpe_lmax_rf . However,
careful convergence tests with respect to this parameter before doing production runs is
advisable since this parameter dictates the size of the MPE matrix equation. Choosing
larger values than the default should usually have little to no impact on the results.

Tag: mpe_degree_of_determination

212 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: mpe_degree_of_determination dod

Purpose: Defines the desired ratio of number of rows to columns in left-hand
side matrix of the MPE equation.

dod is a real number > 1.0. Default: 5.0

For the very limited (!) number of applications of the MPE method so far, the default
value of 5.0 has been a save choice. However, you should never forget to test convergence
with respect to this parameter before doing production runs. Note, that the requested
degree of determination can only very approximately be reached. This can lead to an
under- determination of the MPE equations and a subsequent termination of the program
when values for dod very close to 1 are chosen.

Tag: mpe_tol_adjR2
Usage: mpe_tol_adjR2 tol

Purpose: Defines the tolerance for the adjusted coefficient of determination R?
of the solved MPE equations. Will abort if R? < 1 — tol.

tol is a real number between 0.0 and 1.0. Default: 0.075

The MPE equations are sometimes not solvable in the regular solid harmonic basis used
for the reaction field. This is the case especially for large molecules. A low R? indicates
such a bad solution. In some cases increasing mpe_lmax_rf helps, but there are
pathologic cases where increasing mpe_lmax rf leads to a perpetual decrease in
A8 G without ever converging.

solv

For R? < 0.925 it is likely that less than 90% of Af, G are captured. This is how-
ever based on experience from a limited number of cases. Feedback to the developers

(jakob.filser@tum.de) will be appreciated!

Tag: mpe_tol_adjR2_wait_scf

Usage: mpe_tol_adjR2_wait_scf bool
Purpose: If .true., will wait until the SCF cycle is converged before it is
checked whether R? < 1 — tol.

Default: .false.

Although MPE does not actively try to converge, R? tends to improve during the SCF
procedure. Setting mpe_tol_adjR2 wait_scf can thus help borderline cases con-
verge, at the cost of spending the full computation time of the SCF procedure on a
calculation that might ultimately fail.

expert Tag: mpe_factorization_type

mailto:jakob.filser@tum.de

3.17. Continuum Solvation Methods 213

Usage: mpe_factorization_type type

Purpose: Defines the numerical method used to factorize the left-hand side of
the MPE equations as the first step to the numerical solution.

type can be chosen from: qr, qr+svd, and svd. Default: qr+svd

The option qr is temporarily disabled until R* is implemented for this case!

The default behavior is to perform a QR factorization with a singular value decomposition
(SVD) on top. This allows to robustly solve the MPE equation via the pseudo-inverse
of the left-hand side.

Be careful! Using the (non rank-revealing) QR factorization alone can fail when the
left-hand side is rank deficient which can easily happen—especially for large expansion
orders mpe_lmax_rf and/or mpe_lmax_ep ! On the other hand, svd does not
necessarily mean that no QR factorization is performed as this (at least for the parallel
implementation) depends on the (Sca)LAPACK driver routine used.

Tag: mpe_f_sparsity_threshold

Usage: mpe_f_sparsity_threshold threshold

Purpose: Can potentially speed up the evaluation of the reaction field on the
integration grid by neglecting all its coefficients smaller than threshold.

threshold is a non-negative real number. Default: 0.0
Speed in this case usually comes at the price of sacrificing accuracy, i.e. it should always

be tested if the results are still sufficiently accurate. Moreover, a large threshold might
cause instabilities in the SCF cycle!

The keyword mpe f_sparsity_threshold is temporarily disabled until R? is im-
plemented for this case!

Tag: mpe_n_centers_ep
Usage: mpe_n_centers_ep n

Purpose: Defines the number of centers used for the expansion of the polarization
potential outside of the cavity.

n is a positive integer number. Default: number of centers for the Hartree
potential expansion (cf. 3.7)

The first n centers defined in geometry.in are used as expansion centers. The default
is to use all of them. Only change this value if you fully understand what you are doing
and why you want to do this!

Tag: mpe_n_boundary_conditions

214 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: mpe_n_boundary_conditions nbc

Purpose: Determines the number of boundary conditions imposed at every point
on the cavity interface.

Valid choices for nbc are 2 and 4. Default: 2

As outlined in Ref. [206], there are at least two more boundary conditions other than
Eqns. 3.38a and 3.38b that can be imposed on the electrostatic potential / field / flux at
a dielectric interface. The default is to enforce continuity of the potential and continuity
of the dielectric flux perpendicular to the interface, i.e. nbc equals 2. Furthermore,
continuity of the electric field parallel to the interface can be imposed, i.e. nbc equals 4.
However, this should automatically be satisfied by the former two boundary conditions
and—in the best case—only leads to a higher order correction of the fit. Warning: The
non-default has not been tested thoroughly. Verify your results carefully when using it!

Tag: isc_calculate_surface_and_volume

Usage: isc_calculate_surface_and_volume bool

Purpose: Determines whether the surface area and volume of the cavity are
calculated.

bool is of Boolean type. Default: .true.
As the only currently implemented mpe_nonelectrostatic_model linear QV

requires the calculated measures, this flag is automatically turned on when it has been
turned off but is needed.

Tag: isc_surface_curvature_correction

Usage: isc_surface_curvature_correction bool

Purpose: When this flag is turned on, the calculated surface area (and volume)
of the cavity is approximately corrected for the cavity curvature.

bool is of Boolean type. Default: .true.

The effect of this keyword is usually rather negligible. For more details regarding the
correction, please consult Ref. [206].

Tag: isc_rho_rel_deviation_threshold

Usage: isc_rho_rel deviation_threshold threshold

Purpose: Defines the convergence criterion of the cavity generation process: The
walker dynamics simulation is run until the density values for all walkers deviate
from the chosen iso value by at most threshold.

threshold is a small, positive real number. Default: 1 x 1073

This keyword is only applicable for an isc_cavity_type defined by an iso-density
value.

3.17. Continuum Solvation Methods 215

Tag: isc_max_dyn_steps
Usage: isc_max_dyn_steps num

Purpose: Determines the maximum number of allowed steps to reach conver-
gence of the walker dynamics simulation in the cavity creation process.

num is a positive integer number. Default: 300

Tag: isc_try_restore_convergence

Usage: isc_try_restore_convergence bool

Purpose: When convergence of the cavity creation dynamics run could not be
achieved within the number of allowed steps specified by isc_max_dyn_steps
, this flag allows to enforce convergence by simply deleting all walkers not satisfy-
ing the convergence criterion given by isc _rho rel deviation threshold

bool is of Boolean type. Default: .false.

Although a simple check is done to stop the calculation when too many walkers do
not satisfy the convergence criterion, one should always manually checking the resulting
cavity for larger holes that might result from the deletion of walkers which can lead to
a bad estimate of the cavity's surface area and volume and maybe also have an impact
on the quality of the polarization potential.

Tag: isc_kill_ratio
Usage: isc_kill ratio fraction

Purpose: This keyword can be helpful when the walker dynamics run does not
converge due to trapped walkers by killing the worst fraction of walkers at
each neighbor list update step (also see isc_update_nlist_interval).

fraction is a non-negative real number much smaller than 1. Default: 0.0

As the number of possibly trapped walkers depends a lot on the shape of the elec-
tron density, it is rather difficult to give a recommendation about a sensible value for
fraction. In case walkers get stuck, we propose to use a rather conservative kill ratio
of 1 x 1072 and only increase it if necessary.

Tag: isc_update_nlist_interval
Usage: isc_update_nlist_interval num

Purpose: This keyword triggers a re-evaluation of the neighbor lists in the density
walkers dynamics simulation after every num steps.

num is a positive integer number. Default: 50

216 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: isc_dynamics_friction
Usage: isc_dynamics_friction fric

Purpose: The value of fric determines how much “kinetic energy” is removed
from the walkers in every step of the simulations via a simple velocity scaling.

fric is a real number between 0 and 1. Default: 0.1
A value of 0 for fric means that no energy is removed from the system which may lead

to a bad convergence behavior. On the other hand, a value of 1 means that all kinetic
energy is removed at each step which tends to slow down the rate of convergence.

Tag: isc_dt
Usage: isc_dt delta

Purpose: Determines the “time"” step of the walker dynamics simulation.

delta is a positive real number. Default: 0.1

Note: Since this is no actual physical quantity, arbitrary time units are used.

Tag: isc_rho_k

Usage: isc_rho k k

Purpose: Determines the force constant k for the “density” force, i.e. the
harmonic force that pulls the walkers along the density gradient to the specified
iso-density value.

k is a positive real number. Default: 1.0

Note: Since this is no actual physical quantity, arbitrary time units are used.

Tag: isc_rep_k
Usage: isc_rep k k

Purpose: Determines the force constant k for the repulsive interaction between
walkers perpendicular to the density gradient.

k is a positive real number. Default: 0.01

Note: Since this is no actual physical quantity, arbitrary time units are used.

Tag: isc_g_k

3.17. Continuum Solvation Methods 217

Usage: isc_g k k

Purpose: Determines the force constant k for the “gravitational” force that drags
walkers to the center of gravity of the solute in case the local density gradient is
too small.

k is a positive real number. Default: 2.0

Usually this should not happen, but when walkers move too far away from the solute,
the density gradient becomes very small and its direction is unreliable due to numerical
noise (see isc_gradient_threshold). In this case, the walker is dragged to the
center of the solute until the density gradient is again large enough. Note: Since this is
no actual physical quantity, arbitrary time units are used.

Tag: isc_gradient_threshold

Usage: isc_gradient_threshold thsq

Purpose: When the squared norm of the electron density gradient at the position
of a walker is less than thsq, this gradient is considered unreliable. Instead, a
simple “gravitational” force towards the center of the solute is applied.

thsq is a positive real number. Default: 1 x 1078

The force constant of the “gravitational” force is determined by isc_g k.

debug Tag: mpe_xml_logging
Usage: mpe_xml_logging filename level
Purpose: Controls the MPE module’s internal XML logging output.

filename specifies the name of the log file to be written. Default:

mpe_interface.xml
level defines the detail of the output. Supported log levels are: off, basic,

medium, and detailed. Default: off

This keyword is intended for debugging purposes. Note: Depending on the log level, the
size of the output can become quite large.

Tag: isc_cavity_restart

Usage: isc_cavity_restart filename

Purpose: Read the solvation cavity from restart file (if available) and write new
cavity to same file.

filename is the name of the restart file.
Specifying this keyword is almost equivalent to specifying both isc_cavity_restart_read

and isc_cavity_restart_write with the same filename option except that with
isc_cavity_restart the program does not abort when there is no restart file to read

218 Chapter 3. The Full Monty: All Keywords and Capabilities

from.
Note: This keyword is intended for debugging purposes. Do not rely on the current
structure of the cavity restart file as it might change in the future.

Tag: isc_cavity_restart_read

Usage: isc_cavity_restart_read filename

Purpose: Read the solvation cavity from restart file instead of constructing a
new one.

filename is the name of the file (in .xyz format) containing the cavity points
and normal vectors. Additionally, a file <filename>.bin is written which
contains the entire cavity information in not human-readable form. While the
primary purpose of the former is visualization, the latter is the actual restart file.

Note: This keyword is intended for debugging purposes. Do not rely on the current
structure of the cavity restart file as it might change in the future.

Tag: isc_cavity_restart_write
Usage: isc_cavity_restart _write filename
Purpose: Write the cavity to the specified restart file once created.

filename is the name of the restart file (in .xyz format). If additionally
<filename>.bin is present, the cavity is read from the latter instead. Note that
the .xyz file has to be present in both cases. While this file itself is sufficient to
create a cavity, only the .bin file allows for a fully deterministic restart.

Note: This keyword is intended for debugging purposes. Do not rely on the current
structure of the cavity restart file as it might change in the future.

Tag: isc_record_cavity_creation

Usage: isc_record_cavity_creation filename num

Purpose: Controls the output of snapshots during the cavity generation process.
When num is positive, every num steps an XYZ snapshot of the cavity is written
to file filename. For other choices of num, no output will be generated.

filename is of type string.
num is of type integer. Default: 0

This keyword is intended for debugging purposes. Note that the size of the output file
can become very large!

3.17. Continuum Solvation Methods 219

3.17.2 SMPB Implicit Electrolyte Model

In FHI-aims, implicit solvation effects or electrolyte effects (z:z electrolytes) can be
included by solving the Stern- and finite ion-size Modlified Poisson-Boltzmann equation
((S)MPBE) in each SCF step:

V- [e[na(r)]Vu(r)] = —4rng(r) — 4mnlTB(r) | (3.39)

ion
with

nnP(r) = 2| (r) = (r)] (3.40)
where ¢[ng] is a parameterized function of the electron density, v is the electrostatic

potential, ng. is the solute charge density consisting of electrons and nuclei and nMPB

0on

is the ionic charge density modeled as a function of the exclusion function oy [nei]
being parameterized via the electron density and the electrostatic potential v. The
implementation so far supports different kind of models for the ionic charge density,
that is the modified, the linearized or the standard PBE. All models include a model
for the Stern layer by a repulsion of the ions from the solute modeled via ;o [n0] and
the size-modified version also a finite ion size a. Parameterizations are needed for the
dielectric function (i, and npax) and nonmean-field interaction of solvent with solute
((a 4+) and [3) which are readily available for water solvents but have to be obtained
first for other solvents. lonic parameters (ion size a and Stern layer defining parameters

dq,,,, and &,) are not known so far and we are currently working on deriving them.

The energies are outputted in the end of FHI-aims under the header MPBE Solvation
Additional Free Energies:

o Total energy = Electrostatic part of the energy. This does NOT consider yet
any non-electrostatic corrections (see next term)

o Free Energy in Electrolyte = (), in ref. [192]. Free energy of solute in
electrolytic environment, which is Total energy + Nonelectrostatic Free
Energy + Additional Nonelstatic MPBE Solvation Energy, where Total
energy is the normally outputted energy in Aims (electrostatic part)

e Surface Area of Cavity = quantum surface of solvation cavity
e Volume of Cavity = quantum volume of solvation cavity

o Nonelectrostatic Free Energy = non-electrostatic part of solvation energy
due to solute-solvent interactions, 2"°*~™f in the publication

o Additional Nonelstatic MPBE Solvation Energy = non-electrostatic part
of free energy due to ions. For ion-free calculations this is zero.

For more details see [192, 193]. If you want to do any calculations considering solvent
or ion effects, please contact the authors, we are happy to help and cooperate.

The keywords listed here are the main part of all keywords. Some of the keywords were
left out because they are highly experimental, if one is interested in more options, please
contact the authors.

220 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general subsection of control.in:

Tag: solvent mpb

Usage: solvent mpb
Purpose: Switches MPB solvent effects on.

Restriction: Only for cluster systems (no periodic systems).

solvent mpb sub-tag: dielec_func

Usage: dielec_func type parameters
Purpose: Define the dielectric function.

type integer describes the type of dielectric function used, type=0 Fattebert &
Gygi[64] or type=1 Andreussi & Marzari[7]

parameters settings for dielectric function, separated by space:
type=0: bulk dielectric constant >"uk 3 n,

s,bulk
h v Mmins Mmax

type=1: bulk dielectric constant ¢
Default: 1 78.36 0.0001 0.005[7]

solvent mpb sub-tag: ions_{parameter}

Usage: ions_{parameter} parameter

Purpose: Set the parameters defining the ions in the electrolyte. In our recent
publication[193] we explain how to choose these for different monovalent salt
solutions.

parameter {parameter} =
« temp (temperature (K))
« conc (bulk concentration ¢®"uk (mol/L))
 charge (2)
o size (lenght of lattice cell a (A))

« kind (0 for sharp step function, 1 for smooth function)

mOd_a/,Dha (daion 'goﬁon)

Defaults: T = 300K, ¢¢Puk =1M,z=1,a=5, kind = 1, d,,_ =0.5,,, . =1.0

Remarks: The inclusion of a second a;., function for the anions is experimental
and should not be used. The use of a sharp cutoff function for «j,, is not
recommended, not properly implemented and just there for testing purposes.

3.17. Continuum Solvation Methods 221

solvent mpb sub-tag: SPE_{setting}

Usage: SPE_{setting} parameter
Purpose: Change numerical parameters of the SPE solver.

parameter {setting} =

e Imax (maximum angular momentum [, of multipole expansion and of all
species)

» conv (TyEerM, 7, Separated by space)

o cut_and_Imax_fF (distance from atom centers at which far field is turned

on —multipole_radius_SPE, [T - maximum angular momentum in the
far field, separated by space)
Defaults: [, = max(l_hartree), mygrm = 1e-10, n =0.5, lglax = Lnax

multipole_radius_SPE is per default not used and the species dependent
multipole_radius_free + 2.0 is used as far field cutoff radius.

Remarks: Due to our present tests, we do not recommend to use lfflax < lpax, the

errors in the energies at the normal cutoff radius are too big. myrrM =1€-8 can
be enough in most cases and speed up the calculation. The species dependend
1 hartree can be by implementation not larger than [,.x, so it is reduced to
Imax if higher for the SPE solver.

solvent mpb sub-tag: dynamic_{quantity}_off

Usage: dynamic_{quantity}_off

Purpose: If these keywords are used, {quantity} is parameterized before the SCF
cycle from the superposition of free energy densities.

{quantity} =
e cavity dielectric function ¢

e Jjons exclusion function cjey

Default: both keywords not used by default, so both quantities are calculated
self-consistently by parameterizing it with the full electron density.

solvent mpb sub-tag: delta_rho_in_merm

222 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: delta_rho_in_merm

Purpose: Setting this keyword, evaluates the change of the source term
q— ﬁlevnH during the MERM iteration and solves the SPE for this change
rather than the full source density.

Default: Not used. This keyword is under development and experimental, do not
use it, yet.

solvent mpb sub-tag: nonsc_Gnonmf

Usage: nonsc_Gnonmf

Purpose: Setting this keyword, calculates the free energy term Q"°"~™f a5 3 post-
correction after the convergence of the SCF cycle, so no Kohn-Sham correction
is added which would normally arise from this term. This has been proven to give
very similar results for solvation energies like the fully self-consistent calculation
of this term. Since people observed numerical instabilities due to this term,
sometimes it might be better to set this flag.

Default: Not used. Fully self-consistent evaluation of (ron—mf

solvent mpb sub-tag: Gnonmf_ FD_delta

Usage: Gnonmf FD delta parameter
parameter A parameter defining the thickness of the cavity

Purpose: Used to calculated the quantum surface S and volume V' to evaluate
the free energy contribution Qren—f

Default: 1le-8

solvent mpb sub-tag: not_converge_rho_mpb

Usage: not_converge_rho_mpb

Purpose: Setting this keyword, runs a vacuum calculation first and then subse-
quently solves the MPBE once with the vacuum electron density and then outputs
all energetics.

Default: Not used. This could be of interest for either very big systems to get
first approximations without running the Newton method in each SCF step but
only once, but of course then does not involve any self-consistent solution of the
coupled Kohn-Sham and MPB equations. Originally, this feature was introduced
to evaluate electrostatic potentials and compare them to other codes, like e.g.
FEM codes.

solvent mpb sub-tag: solve_lpbe_only

3.17. Continuum Solvation Methods 223

Usage: solve_lpbe_only logical

Purpose: Instead of solving the MPBE, solve the linearized version of this, also
called the LPBE. For neutral molecules electrostatic fields are often small, so the
LPBE electrostatic potential is often a good approximation to the true MPBE
potential. The solution of the LPBE can be done directly using the MERM with-
out the Newton method and is therefore faster for most cases.

logical if .True., use the LPB electrostatic potential, but the MPB free en-
ergy expression which contains additional entropic terms compared to the LPB
expression.

Default: By default the MPBE is solved, so this is not used.

solvent mpb sub-tag: MERM_in_SPE_solver

Usage: MERM_in_ SPE_solver logical

Purpose: Do the MERM iterations inside the SPE_solver.f90 routine without
updating dv,,, on the full integration grid at each step, but only on the points
where we actually need it to form the source term. By this, we can gain speed,
especially for ¢>Pulk = (.

logical

Default: .true. Remark: In general the both options should give exactly the
same result at convergence. If any difficulties arise, one is however recommended
to try the .False. options, since it should be the more stable version of the
solver.

solvent mpb sub-tag: MERM_atom_wise

224 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: MERM_atom_wise logical

Purpose: Do the MERM iterations for each atom separately, i.e. we write eq.
(33)[192] (Generalized Poisson or LPB-kind of equation) as:

(V [eV] — R? [vn]) OUnt1at = —ATEPatq|Uy] (3.41)
OVps1 = D OUptiat (3.42)
qlvn] = Et:patq[vn] (3.43)

In order to perform the MERM iterations for each atom, the full grid of the re-
spective atom has to be used, i.e. also the electron density needs to be updated
on points where commonly the partition_tab is vanishing. However, by this
we avoid the cross-update of atomic potentials on the atomic grid of other atoms
as needed in the original method and this is usually most costly in particular for
larger systems. In terms of convergence with the maximum angular momentum
lmax, this method performs a bit worse than the original method, which is why
we recommend to use [, = 8 for production runs. Still this method should be
faster also with this higher accuracy in the multipole expansion.

logical
Default: .false.

Remark: Using this flag will automatically set MERM_in SPE solver =
.True..

solvent mpb sub-tag: set_nonelstat_params

Usage: set_nonelstat_params value value
Purpose: Set the parameters for the nonelectrostatic solvent-solute interactions.

value value two real numbers, a + v (dyn/cm) and 3 (GPa), separated by
space.

Default: o+ =50 dyn/cm, = —0.35 GPa

3.18. Hubbard corrected DFT (DFT+U) 225

3.18 Hubbard corrected DFT (DFT+U)

Standard semi-local DFT functionals like LDA or GGA suffer from improper self-interaction
error (SIE) cancellation. As a results this functional utterly fail when it comes to the
description of systems which are characterized by localized electron states. One spe-
cific approach cure for this drawback is to use hubbard corrected DFT also known as
DFT+U or LDA+U. In this approach one adds a correction to the LDA or GGA Hamil-
tonian which is inspired by the Hubbard Model [108]. The correction allows to reduce
the self-interaction error in systems, which are characterized by correlated states, sig-
nificantly [9]. Its great strength lies in the simplicity of its corrective term and in the
fact that its computational cost is only marginally higher compared to LDA or GGA.
Thus, the ability to localize electrons and its computational efficiency make DFT+U to
a suitable tool for studying systems in PBC supercell calculations [104].

In the following some of the main features of DFT+U, which are specific to the imple-
mentation in FHI-aims, are addressed.

Incorporation of the Hubbard model into the normal approximate DFT description leads
to the following DFT+U energy functional:

Eprriu [p (r)] = Eppr [p ()] 4+ E{ [npm] = Eac [nm) - (3.44)

Here, Eppr is the standard DFT energy functional on a LDA or GGA level of theory. E{}
depends on the orbital occupancy ny,, of the correlated states at site I and represents
the energy correction according to the Hubbard Hamiltonian. However, by simply adding
E% to Eppr, one runs into a double-counting issue of the coulomb interaction, because
all the electron-electron interactions are already taken into account in LDA or GGA.
Furthermore, the DFT Hamiltonian explicitly depends on the charge density, while the
Hubbard Hamiltonian is written in the orbital representation. Therefore, one can not
build a direct link between both descriptions and a simple subtraction of the double-
counting is not possible. As a consequence, the dc functional Ey. is not uniquely
defined and different formulations of Eg4. can lead to different results of the calculation
[229]. Within FHI-aims we offer three different double-counting correction strategies (see
plus_u_petukhov_mixing), the fully-localized limit (FLL), the around mean field
(AMF) approximation and a interpolation scheme where the double counting correction
is calculated in a self-consistent manner [180]. We strongly recommend to choose the
FLL as double-counting correction, as it is the most common one used in literature.

The last two terms on the r.h.s. of eq. 3.44 are usually combined to one energy correction,
Ey;. One arrives at following expression,

Eppriu [p(r)] = Eppr [p (r)] + Eu [nm] - (3.45)

As briefly mentioned, the orbital occupancies ny,, are the occupation numbers of local-
ized orbitals, where m is the state index which usually runs over the eigenstates of L,
for a certain angular momentum [. With other words, n;,, are the occupation numbers
of a specific shell of orbitals, located at a certain atom. The definition of a shell is best
explained by using an example. If a DFT+U treatment is requested for the 3d electrons
of a single first row transition metal, then a shell represents the five 3d-orbitals for each

spin type.

226 Chapter 3. The Full Monty: All Keywords and Capabilities

3.18.1 DFT+U correction as it is implemented in FHI-aims

So far this was just a brief sketch of the DFT+U approach in general. In the following
we present the precise definition of DFT+U how it is implemented in FHI-aims. Without
loss of generality we only show the equations with FLL as double-counting correction.

EFLL [{n?mm/}] = EIOJ [{nclrmm H - EdC [{n?mm/}]
Z LTr [ng (1 —n9)]

Z ¢ [T (n]) — Tr (nfn7)]. (3.46)

These functional is known as the spherically averaged form of DFT+U. It was first
proposed by Dudarev et al.[57] and it is also rotational invariant. In this formulation, the
effective on-site interactions enter via their spherical atomic averages. This is justified by
the fact, that localized states still have atomic character and hence, spherical symmetry.
In fact, for most materials this definition gives good results.

It should be pointed out, that U, can be seen as an effective value of the coulomb
interaction that also includes exchange corrections. This parameter has to be specified
by hand, so far, no possibility is implemented to calculate this parameter self-consistently.
Common to all approaches is that all the calculated results sensitively depend on the
applied U.g value. This value not only depends on the atom for which DFT+U is applied.
It also depends on the surroundings of the atom, the lattice parameters and physical
conditions. Furthermore, it also depends on the localized basis set of the underlying
quantum DFT code. This limits the comparability of different values in a strong way. In
general, for each DFT+U implementation and system, one should recalculate Usg.

The most important quantity in equation 3.46 is the so called DFT4U occupation matrix
n. This matrix simply tells us how many electrons are in a certain shell on a certain
atom. The problem here is the inability to break down the total charge density into
atom specific contributions. Or in other words, there is no proper operator for counting
the number of electrons on an atom. Hence, the choice of the occupation matrix will
affect the outcome of a calculation. Within FHI-aims we offer two specific choices: the
on-site representation of the occupation matrix

NG (O — site) = DY, 1 (3.47)
and
1
N (dal) = 2 37 Do kSt + St sk D5 g - (3.48)
i

The latter is known as the dual representation [89]. Within the dual representation
the occupation numbers are calculated in a similar way as in the Mulliken analysis. The
main difference between both is that the on-site version only accounts for overlaps within
a specific sub shell on an certain atom. The dual representation also accounts for the
overlap with the surrounding atoms. It is emphasized that all general aspects of DFT+U
are met by all matrix representations. Furthermore, more detailed studies regarding the

3.18. Hubbard corrected DFT (DFT+U) 227

performance of the occupation matrix for various transition metal oxides revealed that in
principle there is no definition which is clearly the best [211]. Unfortunately, we only offer
forces for the on-site representation. The on-site version is also the default occupation
matrix in FHI-aims and we strongly recommend to use it.

By now, one might have noticed that DFT+U is by far not a black box method and it
gets even worse if one considers in detail how the occupation matrix is constructed. In
general, each occupation matrix can be expressed in terms of a local projector operator,
f)]"mm,. The (m,m/)-th element of a occupation matrix at site I is then given by

n(;mm/ = Z f’Y <\I]?y| }Tmm/“lli‘» : (349)
Y
For example for the on-site projection operator this would lead to
Py (0m-site) = |07,,) (97,0l (3.50)

Here, gzzlm denotes the dual basis functions which are defined in terms of the inverse
overlap matrix S7!,

[07) = > St [P (3.51)
I'm/

The question now is which basis functions should be used in the projection? As default
we are using the atomic type basis functions of the minimal basis set in FHI-aims. Here
we automatically assume, as they are atomic like basis functions, that they will contribute
most to the localized states. However, in general it is not known if other basis functions
should also be included in the DFT+U projection e.g. tierl 3d if one deals with first row
transition metals. Usually one can notice that by a strange behavior of the occupation
matrix during the scf-cycle (occupation numbers drop to zero as the electrons occupy
other basis functions). For that purpose we offer to include also other basis functions
in the description of DFT+U (see plus_u_use_hydors). We also like to highlight
the corresponding paper related to our implementation where we address fundamental
issues of DFT+U in a LCAO electronic structure code. However, do not panic, for most
of the systems the default settings should be sufficient enough.

So far, we presented DFT+U in quite some detail. However, we just wanted to highlight
that DFT+U is far from being a black box method. However, the handling of a actual
DFT+U calculation in FHI-aims is quite easy. One just have to specify the double-
counting correction first via the plus_u_petukhov_mixing . Afterwards one can
specify the U value and the angular momentum shell to which DFT+4U should be applied
for each species. Of course one can specify different U values for different species in a
simulation. Only for hard cases where convergence can not be reached easily, it is quite
useful to checkout the other keywords. Some of them can be quite useful such as the
plus_u matrix_control . Here, one first converges the density with help of a fixed
occupation matrix which can be edited by hand. Afterwards one can use the restart
information to calculate everything self-consistently. This can be quite useful as it turns
out that DFT+U is quite sensitive to the initial guess of a calculation. Furthermore, it
is quite useful also to start from a LDA or GGA ground state density.

Tag: plus_u_petukhov_mixing

228 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: plus_u_petukhov_mixing mixing factor

Purpose: only for DFT+U. Allows to fix the mixing factor between AMF and
FLL contribution of the double counting correction [180].

mixing factor is a floating point value, specifying the mixing ratio between
0.0 and 1.0. A value of 0.0 selects the Around Mean Field (AMF) contribution.
A value of 1.0 selects the Fully Localized Limit (FLL). If unspecified, the value
is determined self-consistently according to Ref. [180].

We strongly recommend to use the FLL.

There are two common schemes for dealing with the double counting problem in DFT+U:
The AMF method assumes that the effect of the DFT+U term on the actual occupations
remains small, so that the occupations can be assumed to be equal within each shell for
the purpose of the double counting correction. The FLL method, on the other hand,
assumes a maximal effect of the DFT+U term on the occupation numbers, handling
double counting correctly in the case that all orbitals with in the shell are either fully
occupied or empty. The self consistent mixing of both limits improves the handling of
the intermediate range (see Ref. [180]).

Tag: plus_u_use_mulliken

Usage: plus_u_use mulliken

Purpose: only for DFT+U. Allows to switch from on-site representation to the
dual representation of the occupation matrix.

Default is the on-site representation. Forces are not provided for the dual
representation.

Tag: plus_u_out_eigenvalues

Usage: plus_u_out_eigenvalues

Purpose: only for DFT+U. Allows to calculate the eigenvalues of the self-
consistent DFT4+U occupation matrix at the end of a run.

Tag: plus_u_matrix_control

Usage: plus_u matrix_control

Purpose: only for DFT+U. Allows to write the self-consistent occupation matrix
to a file occupation_matrix_control.txt. If the file is already present in the
calculation folder, the occupation matrix is not calculated during the run. It will
be read out from that file instead. The occupation matrix is then fixed during
the complete run.

3.18. Hubbard corrected DFT (DFT+U) 229

This is extremely useful because one can simply edit the file and manipulate the matrix
according to some specific spin configuration. Consider to use it with restart options.

Tag: plus_u_matrix_release

Usage: plus_u_matrix_release convergence_accuracy

Purpose: only for DFT+U. If this keyword is present in combination with
plus_u matrix_control the occupation matrix is first fixed to the matrix
from the occupation matrix_control.txt file until some certain convergence
criteria of the total energy is fulfilled. Afterwards the occupation matrix is
calculated self-consistently again.

convergence_accuracy this threshold specifies the convergence in total energy
from which point on the occupation matrix should be calculated self-consistently.
The value is a floating point number.

Tag: plus_u_use_hydros

Usage: plus_u_use_hydros
Purpose: experimental — only for DFT+U. If this keyword is present also
hydrogen like basis functions are included in the DFT+U correction.

The code builds up a simple linear combination of all basis functions which
contribute to the angular momentum channel to which DFT+U is applied. All
basis functions will contribute equally (see also hubbard_coefficient).

Tag: plus_u_matrix_error
Usage: plus_u_matrix_error

Purpose: experimental — only for DFT+U. Calculates the idempotence error of
the occupation matrix Tr (n — nn)

Tag: plus_u_ramping_accuracy

230 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: plus_u_ramping accuracy convergence_accuracy

Purpose: experimental — only for DFT+U. If this keyword is present the
calculation starts at U = 0 eV. If the specified convergence accuracy of the total
energy is reached, the U value is slightly increased. This is will be done until the
final U value is reached.

convergence_accuracy Floating point number. Defines the convergence
accuracy from which on the U value is increased stepwise by a certain increment.
The increment can be specified with the plus_u_ramping increment
keyword.

Subtags for species tag in control.in:

species sub-tag: plus_u

Usage: plus u nlU
Purpose: only for DFT+U. Adds a +U term to one specific shell of this species.

n the (integer) radial quantum number of the selected shell.

1 is a character, specifying the angular momentum (s, p, d, f, ...) of the selected
shell.

U the value of the U parameter, specified in eV.

The U here defined equals Uy in eq. 3.46.

species sub-tag: hubbard_coefficient

Usage: hubbard coefficient ¢y ¢y c3 Cy

Purpose: experimental — only for DFT+U. Only works in combination with
the plus_u_use_hydros keyword. Allows the user to specify his one
projector function for DFT+U as long as this function can be represented by
basis functions contributing to a specific angular momentum which is given by
the plus_u keyword. Only four basis functions are allowed in the expansion
and the order corresponds to their appearance in the control in.

c; expansion coefficient of the first basis function
co expansion coefficient of the second basis function
c3 expansion coefficient of the third basis function
c4 expansion coefficient of the 4th basis function

If a basis function should not be part of the linear combination the corresponding
coefficient should be set to 0. Keep in mind that aims performs an on-site
orthogonalization of all basis function located at a certain atom. This means
that the radial shape of a basis function might be different from that, one would
expect from the control.in definition. Within DFT+U all basis functions are
orthogonalized w.r.t. the atomic basis functions.

3.18. Hubbard corrected DFT (DFT+U) 231

species sub-tag: plus_u_ramping_increment

Usage: plus_u_ramping increment increment

Purpose: experimental — only for DFT+U. Specifies the the step by
which the U value should be increased. ~Works only in combination with

plus_u_ramping_accuracy

increment specified in eV.

232 Chapter 3. The Full Monty: All Keywords and Capabilities

3.19 (s/R" corrections for long-range van der Waals
interactions

The correction improves the description of van der Waals (vdW) interactions in DFT. It
is based on the leading-order Cjs/ RS term for the interaction energy between two atoms.
Both energy and analytic forces are implemented.

Two flavors of the correction are implemented:

(1) The Cj coefficients and vdW radii are obtained directly from Hirshfeld partitioning
of the DFT electron density. This scheme only requires a single damping parameter,
which is fitted to binding energies of small organic molecules and hardwired in the code
for PBE, PBEO, revPBE, AMO05, BLYP and B3LYP functionals. For more information
and citation see Ref. [215]. Both cluster and periodic cases are implemented.

(2) The empirical C coefficients and vdW radii must be specified directly. This scheme is
coded for maintaining compatibility with empirical C's approaches. In actual applications,
the usage of scheme (1) is advised, since it is significantly more accurate and less
empirical.

Tags for general section of control.in:

Tag: vdw_convergence_threshold

Usage: vdw_convergence_threshold value

Purpose: When using the vdW correction based on Hirshfeld partitioning of the
electron density (as described in Tkatchenko and Scheffler 2009, Ref. [215]) in
a periodic system, this sets the energy convergence threshold for the supercell
sum over the TS components.

value: A small positive number (in eV). Default: For unit cells with less than
100 atoms: 107% eV. For structures with unit cell sizes above 100 atoms, the
default is adjusted to Natoms - 1075 €V.

Note that the vdw part of the forces may be separately converged to (if set) sc_accuracy_forces.

Tag: vdw_correction_hirshfeld

3.19. Cg/RS corrections for long-range van der Waals interactions 233

Usage: vdw_correction_hirshfeld

Purpose: Enables the vdW correction based on Hirshfeld partitioning of the
electron density (as described in Tkatchenko and Scheffler 2009, Ref. [215]). If
this keyword is set in a periodic calculation, the sum over atom pairs is done
over successively larger supercells, until the energy is converged to the level set
by sc_accuracy_etot or vdw_convergence_threshold and the forces
(if requested) are converged to within sc_accuracy_forces .

No other input required.

This method is commonly referred to as the Tkatchenko-Scheffler method. The proce-
dure is as follows. First, the normal self-consistency cycle is completed for a semilocal
or hybrid density functional, most commonly PBE or PBEQ. Second, the resulting self-
consistent electron density is used to create interatomic (pairwise) Cy coefficients. A
simple pairwise van der Waals term is then added once to the self-consistent total en-
ergy from the preceding semilocal or hybrid functional. In other words, the Tkatchenko-
Scheffler method is normally employed as a post-processing term in a non-self-consistent
way, not during the self-consistency cycle. Since it needs to be combined with a different
density functional, you would normally use it like this (example for “PBE-+vdW"):

XC pbe
vdw_correction_hirshfeld

Three more caveats: (1) Do not use this method together with the local-density approx-
imation (LDA) unless you know exactly what you are doing. The LDA already contains a
spurious interaction term that will lead to very strange results if added to a pairwise van
der Waals term. (2) Do not simply apply this method to a metallic system unless you
know what you are doing. (3) This is also not the (very different) functional commonly
known as the Langreth-Lundqvist or vdw-DF functional. [55] FHI-aims contains at least
two implementations of vdw-DF for those who are interested, but either implementation
is much slower than the Tkatchenko-Scheffler pairwise interatomic sum.

Tag: vdw_correction_hirshfeld_sc

Usage: vdw_correction_hirshfeld_sc

Purpose: Enables the self-consistent version of the vdW correction based
on Hirshfeld partitioning of the electron density (see Tkatchenko and Schef-
fler 2009, Ref. [215]). In a periodic calculation, the energy is converged with
the same criteria of the a posteriori approach: vdw_correction_hirshfeld.

This flag adds the Tkatchenko-Scheffler vdW functional as a part of the given exchange-
correlation (XC) functional. In a self-consistent scheme, the contribution of the vdW
potential, vyaw([n(r)] = dEqw[n(r)]/on(r), is added to the XC potential to form the
total effective potential in the Kohn-Sham equations. As a result, the van der Waals
interatomic contributions affect the total electron density and are computed at each
self-consistent cycle, until convergence is reached. In this way, it is possible to evaluate
the effects of vdW interactions on the electron density and electronic properties, going
beyond the vdW a posteriori correction of the total DFT energy.

234 Chapter 3. The Full Monty: All Keywords and Capabilities

Note: Do not use this self-consistent flag during a relaxation. The self-consistent forces
are not implemented (yet) for the Tkatchenko-Scheffler vdW functional and this will
lead to inconsistency errors.

Tag: vdw_ts
Usage: vdw_ts [option=value...]

Alternative implementation of the TS method via the Libmbd library [98] that pro-
vides some extra features compared to the vdw_correction hirshfeld and
vdw_correction_hirshfeld sc implementations. The main difference is the use
of the Ewald summation to sum the 1/R® sum in the periodic case, which makes the
use of the vdw_convergence_threshold keyword obsolete. Furthermore, forces and
stress are available also in the self-consistent case. This implementation does not honor
the vdw_pair_ignore and hirshfeld_param keywords.

o self consistent=<logical> [default: .false.]| turns on self-consistency as
explained under vdw_correction_hirshfeld _sc .

o vdw_params_kind=<string> [default: "ts"] specifies the set of free-atom vdW
parameters (ag, Cs, Ryaw) used. "ts" uses the original set of parameters,
"tssurf" uses values from the so-called vdWs""f approach [197] for some of the
elements. The used parameters are listed here.

Tag: vdw_correction

Usage: vdw_correction

Purpose: Enables the empirical Cs/RS correction with the Cy coefficients and
vdW radii specified by the user.

The user needs to specify the interaction parameters for all atomic pairs in the system
(i.e. for CNOH, there are 10 atomic pairs). This is done by putting “vdw_pairs N",
where N is the number of pairs. This should be followed by NV lines of “vdw_coeff atom;
atom; Cg;; R?j d", where Cg;; is the Cy coefficient for the interaction between atom; and
atom;;, jo is the corresponding vdW radius and d is the damping function parameter.
A choice d=20 is suggested for all atomic pairs. An example for C-C interaction is:
“vdw__coeff C C 30.00 5.59 20.0".

Tag: vdw_pair_ignore
Usage: vdw_pair_ignore speciesl species2

Purpose: excludes the interaction between speciesl and species2 from
any C6-correction, eg. such that metallic slabs are not affected internally by
introducing C6-interactions. Does not apply to the vdw_ts keyword.

https://github.com/libmbd/libmbd/blob/master/src/pymbd/vdw-params.csv

3.19. Cg/RS corrections for long-range van der Waals interactions 235

Subtags for species tag in control.in:

species sub-tag: hirshfeld_param

Usage: hirshfeld param C6 alpha RO

Default: the values outlined in Ref. [215]
Purpose: To explicitly allow setting the parameters for the Tkatchenko-Scheffler
van der Waals correction. Does not apply to the vdw_ts keyword.

236 Chapter 3. The Full Monty: All Keywords and Capabilities

3.20 Many-Body Dispersion (MBD) method

The many-body dispersion (MBD) method calculates the long-range van der Waals
(vdW) energy of a system by modeling the response of atoms with quantum harmonic
oscillators coupled via a dipole potential [217, 216]. Two versions of MBD are available
in FHI-aims, MBD®rsSCS and MBD-NL, both via the included Libmbd library [98].

STEP 1: Tkatchenko-Scheffler atomic polarizabilities
from DFT electron density and free atom
reference data

j\ a (iw) ,&
% ®

!

STEP 2: Short-range (SR) range-separated self-
consistent screening (rsSCS)

a5 (jw) = a(iw) — a’Tspa™S (iw)

o) Q
| |

STEP 3: Long-range (LR) correlation energy from
rsSCS polarizabilities

= o

1 vt
Ec MBDarsscs = el dwTrln(l — AT r)]

R0

Figure 3.5: Schematic description of the MBD@rsSCS method.

MBD®@rsSCS In the range-separated self-consistently screened (rsSCS) version of
MBD (MBD®rsSCS) [5], the vdW energy is calculated in three steps (Figure 3.5).
First, the free-atom reference vdW parameters (polarizabilities, Cy coefficients, vdW
radii) are scaled with the ratio of Hirshfeld volumes of atoms in the system and of the
respective free atoms. Second, the self-consistent screening equation for the dipole os-
cillators is solved to account for short-range screening between the atoms. Third, the

3.20. Many-Body Dispersion (MBD) method 237

MBD Hamiltonian is solved to obtain the vdW energy.

MBD-NL The more recent nonlocal (NL) version of MBD (MBD-NL) incorporates
several ingredients from the class of nonlocal vdW density functionals to extend the
applicability of MBD®rsSCS to ionic and hybrid metal-organic systems [99]. Compared
to MBD@rsSCS, the atomic vdW parameters are obtained by coarse-graining a modified
Vydrov-Van Voorhis polarizability functional, and the self-consistent screening step is
skipped.

Analytical forces and stress are implemented for both versions of MBD, with the following
caveat. The total nuclear derivatives of the MBD energy consist of the direct terms and
of the implicit terms arising from the dependence on the vdW parameters, which in
turn depend either on Hirshfeld volumes (MBD@rsSCS) or the polarizability functional
(MBD-NL), which depend on the electron density, which finally depends on nuclear
coordinates. Currently, the latter implicit terms are neglected, however, preliminary
testing suggests that these terms are negligible in most systems. In fact, the error
arising from neglecting these terms seems to be in general comparable to or smaller than
the inherent numerical noise in the Kohn—Sham forces. Having said that, please report
any observed discrepancies in the forces during geometry relaxations or MD simulations
to dev@jan.hermann.name.

Tags for general section of control.in:
The following two keywords activate either the MBD@rsSCS (many_body_dispersion)

or the MBD-NL (many_body_dispersion_nl) method. The optional arguments are
shared by both methods.

Tag: many_body_dispersion

Usage: many_body_dispersion [option=value...]

Tag: many_body_dispersion_nl

Usage: many_body_dispersion_nl [option=value...]

o beta=<real> [default: depends on XC functional] sets the damping parameter £3.

o k_grid=<integer>:<integer>:<integer> [default: taken from k_grid| spec-
ifies the k-point grid used for sampling the first Brillouin zone in the MBD calcula-
tion. The grid is shifted by half a distance between the k-points from the I'-point.
[only for periodic systems|

» freq_grid=<integer> [default: 15] controls the size of the imaginary-frequency
grid used for the Casimir—Polder integral.

mailto:dev@jan.hermann.name?subject=%5Baims%20mbd-std%5D

238 Chapter 3. The Full Monty: All Keywords and Capabilities

o self_consistent=<logical> [default: .false.]| turns on self-consistency as
explained under vdw_correction_hirshfeld sc .

o vdw_params_kind=<string> [default: "ts"] specifies the set of free-atom vdW
parameters (ag, Cg, R,gw) used. "ts" uses the original set of parameters,
"tssurf" uses values from the so-called vdWs“'f approach [197] for some of the
elements. The used parameters are listed here.

Examples:

« many_body_dispersion (this uses the default settings)

» many_body_dispersion_nl beta=0.8 k_grid=3:3:3 (explicit settings of the
damping parameter and of a 3 x 3 x 3 k-point grid)

Deprecated FHI-aims implementation (pre-2019 default)

Tag: many_body_dispersion_pre2019

Usage: many_body_dispersion_pre2019 [option=value...]

Purpose: Calculates the MBD®rsSCS energy for the active XC functional
(available for PBE, PBEO, and HSE).

This was the default method prior the official 2019 FHI-aims release. The default has
changed to the Libmbd implementation many body_dispersion described above.

k_grid=<nk1>:<nk2>:<nk3> [default: taken from k_grid] specifies the k-point
grid used for sampling the first Brillouin zone in the MBD calculation. The grid is
shifted by half a distance between the k-points from the I'-point. [only for periodic
systems|

« vacuum=<a>::<c> [default: all .false.] controls whether some of the lattice
vectors correspond to vacuum dimensions.

» self_consistent=<logical> [default: .false.] controls the calculation of the
MBD XC potential.

» beta=<real> [default: depends on XC functional] sets the damping parameter £.

https://github.com/libmbd/libmbd/blob/master/src/pymbd/vdw-params.csv

3.21. Calculating nonlocal correlation energy within density functional approach 239

3.21 Calculating nonlocal correlation energy within
density functional approach

Warning: This functionality is available in FHI-aims, but has not seen extensive testing
by ourselves. It should therefore be treated as experimental. If you intend to use this
functionality, by all means ensure that literature results obtained using this functional
are reproducible using the implementation presented here.

There are currently two separate working implementations of van der Waals DF in FHI-
aims:

o Sec. 3.21.1: One version that allows post-processing only (i.e., compute the self-
consistent density by another XC functional, the evaluate only the vdw-DF energy
term again after the fact), using a Monte Carlo integration scheme. This version
works for non-periodic as well as periodic systems. The original code was developed
in the group of Claudia Ambrosch-Draxl at University of Leoben, Austria.

o Sec. 3.21.2: A second version that relies on an analytical integration scheme
developed by Simiam Ghan, Andris Gulans and Ville Havu at Aalto University in
Helsinki. This version allows non-self-consistent and self-consistent usage, as well
as gradients (forces). It also has a number of numerical convergence parameters
that can be adjusted.

3.21.1 Monte Carlo integration based vdW-DF

As a postprocessing step after a self-consistent calculation, the nonlocal part of the corre-
lation energy can be calculated using the van der Waals density functional proposed by M.
Dion et al. [55]. This task follows exactly the recipe presented in the original paper [55].
This calculation can be performed by choosing 11_vdwdf asa total_energy method
(please see Section 3.3).

Important acknowledgment: The Langreth-Lundqvist functional and basic Monte
Carlo integration scheme used here was made available to us by the group of Claudia
Ambrosch-Drax| and coworkers at University of Leoben, Austria. If you use this func-
tionality successfully, please cite their work (currently, Ref. [164] and “unpublished").

In order to perform the calculation, one should define an even spacing grid (followed by
the vdwdf tag explained below), where the total charge densities of a system obtained
after the scf cycle are projected.

In order to effectively solve the nonlocal correlation energy part, presented in Equation(1)
of [55], the Monte Carlo integration scheme of Divonne integration method of CUBA
library (Please visit http://www.feynarts.de/cuba for details).

This means that you should (yourself) compile the CUBA library as an external depen-
dency to FHI-aims. The alternative Makefile Makefile.cuba the contains examples of
how to link FHI-aims to the CUBA library, and enable the vdW-LL functional

Parameters for tuning the performance of Monte Carlo integration are defined under

240 Chapter 3. The Full Monty: All Keywords and Capabilities

the mc_int tag explained below. Also, the kernel values are tabulated in terms of the
parameters in the formula of Equation(14) of [55]. The aims package comes with the
tabulated kernel data (a file called kernel.dat) and the name of the file should be
included in control.in.

Necessary input file: In your FHI-aims distribution, a version of the kernel.dat file
as well as an example control.in file should be located in subdirectory src/Il_vdwdf .
For an actual FHI-aims program run, the kernel.dat file (currently, kernel my.dat
is provided) must be copied to your working directory and must be referenced in your
control.in file, using the kernel data sub-keyword of the mc_int keyword
(see below).

3.21. Calculating nonlocal correlation energy within density functional approach 241

Tags for general section of control.in:

Tag: mc_int
Usage: mc_int subkeyword(s)

Purpose: A line that begins with vdwdf is associated with the Monte Carlo
integration performed to evaluate the non-local Langreth-Lundqvist functional.
The mc_int keyword must be followed on the same line by a subkeyword that
indicates the specific setting made here.

subkeyword(s) are one or more subkeywords or data for the Monte Carlo
integration.

To use the Monte Carlo integrated Langreth-Lundqvist functional, more than one sub-
keyword for mc_int must be specified in the control.in file. See below for valid /
necessary subkeywords. You may also want to check the documentation for the CUBA
Monte Carlo integration library (http://www.feynarts.de/cuba) that you must have built
and linked to the FHI-aims code in order to use the Langreth Lundqvist functional.

Tag: vdwdf

Usage: vdwdf subkeyword(s)

Purpose: A line that begins with vdwdf is associated with the non-local
Langreth-Lundqvist functional. The vdwdf keyword must be followed on the
same line by a subkeyword that indicates the specific setting made here.

subkeyword(s) are one or more subkeywords or data for the Langreth-Lundqvist
functional.

To use the Langreth-Lundqvist functional, more than one subkeyword for vdwdf must
be specified in the control.in file. See below for valid / necessary subkeywords.

Subtags for vdwdf tag in control.in:

vdwdf sub-tag: cell_origin
Usage: cell origin z y 2

x y z indicates the cartesian coordinates (in A) of the origin of an even-spacing
cubic cell. Default: 0.0 0.0 0.0.

This option is only valid for a cluster calculation. For the case of periodic system, a cell
origin is automatically determined at the center of a supercell.

vdwdf sub-tag: cell_edge_steps

242 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: cell_edge_steps N, N, N,

Purpose: the total number of grids in each direction are defined by integer
numbers, x y z.

vdwdf sub-tag: cell_edge_units

Usage: cell_edge_units d, d, d..

Purpose: The real numbers d, d, d. (in A) define the length of grid units in
each direction. Therefore, the full grid length is (N,d,,N,d,, N.d.).

vdwdf sub-tag: cell_size

Usage: cell_size L, L, L,

Purpose: this defines number of interacting cells in %, y, z directions for van der
Waals interactions. This option is meaningful for periodic calculation.

L, L, L, are integer. Default: 0 0 0.

Note: As a temporary restriction, FHI-aims currently supports only grids with vectors
aligning along x, y, and z axes.

Calculations for periodic systems: In defining even spacing grid of a periodic system,
only information of cell_edge_steps and cell_size (if needed) is necessary and other
parameters will be automatically determined from that.

3.21. Calculating nonlocal correlation energy within density functional approach 243

Subtags for mc_int tag in control.in:

mc_int sub-tag: kernel_data

Usage: kernel data kernel.dat

Purpose: the name of the tabulated kernel file.

mc_int sub-tag: output_flag

Usage: output_flag flag

Purpose: this controls output of Monte Carlo integration process, level 0 for no
output, level 1 for “reasonable”, and level 3 prints further the subregion results(if
applicable). flag is an integer number. Default: 0

mc_int sub-tag: number_of_MC

Usage: number_of MC N
Purpose: the total number of Monte-Carlo integration steps.

N is an integer number. Default: 5E5

mc_int sub-tag: relative_accuracy

Usage: relative_accuracy Eg,.

Purpose: control the accuracy of Monte-Carlo integration performed by Cuba
library.

Eqcc is a real number. Default: 1E-16

mc_int sub-tag: absolute_accuracy

Usage: absolute_accuracy Eg
Purpose: control the error bar of nonlocal correlation energy.

Eups is a real number (in the unit of Hartree). Default: 1E-2

244 Chapter 3. The Full Monty: All Keywords and Capabilities

3.21.2 Analytic integration scheme for non-selfconsistent and
self-consistent vdW-DF

This method calculates the non-local part of the correlation energy as described in [55]
allowing for both non-self-consistent and self-consistent treatment. It works for both
cluster and periodic geometries and can be used to compute forces. The implementation
as well as the kernel function are from [84]. At each scf-cycle the following steps are
performed:

o An octree is built to interpolate the current electron density to the new integration
grid below.

e To each grid point of the main integration grid another grid of similar form is
attached. The non-local correlation is then integrated on this grid using density
and its gradient interpolated from the octree. In each node of the tree a tricubic
interpolation is used.

The first step of building the octree is not parallel but the second step of integration is
MPI-parallel the usual way.

3.21. Calculating nonlocal correlation energy within density functional approach 245

Tags for general section of control.in:

Tag: nlcorr_nrad

Usage: nlcorr_nrad number

Purpose: Sets the number of radial shells used in the integration of the non-local
correlation potential and energy. Default: 10

Tag: nlcorr_i_leb

Usage: nlcorr_i_leb number

Purpose: Sets the index of angular Lebedev grid used in the integration of
the non-local correlation potential and energy. Maximum value available is 15.
Default: 7

Tag: vdw_method

Usage: vdw_method type accuracy

Purpose: Sets the method for density interpolation for the integration of the
non-local correlation potential and energy.

type is the method selected, either octree, mixed, or multipoles. Default:
octree

accuracy applies to methods octree and mixed. It is the targer accuracy
of the interpolation. In case of multipoles all available multipoles are used.
Default: 1E-6

The point of providing three different options for type is simply that any prospective user
should test which one is fastest for a given problem. The difference is simply the style
of integration of the non-local part. ldeally, the results should be the same. However,
as always, please check in case of doubt.

246 Chapter 3. The Full Monty: All Keywords and Capabilities

3.22 Hartree-Fock, hybrid functionals, G\, et al.:
All the details

The basic keywords to invoke different exchange-correlation methods (ground state and
excited states) are given described in Sec. 3.3. Usually, invoking the relevant keyword
together with the normal infrastructure required to run FHI-aims should be sufficient to
produce a correct, converged result.

For Hartree-Fock and hybrid functionals, particularly for their periodic implementations,
see also the dedicated next section, Sec. 3.23.

For methods that rely explicitly on a two-electron Coulomb operator (Hartree-Fock, hy-
brid functionals, GIW, MP2, RPA, etc.) and/or a frequency-dependent response function
(GW, RPA, ...), some considerable numerical trickery enters the computation in order
to keep it efficient yet manageable for practical purposes. We hope to provide resilient,
system-independent default settings, but there is a lot of freedom beyond those defaults
to either tighten up things or speed up calculations (at the price of reduced accuracy).

The present section describes all numerical settings for the aforementioned exchange-
correlation treatments.

Specifically, we describe:

o All settings that relate to the setup of the (over-)complete auxiliary basis that
expands the products of pairs of basis functions into a separate basis to represent
the Coulomb operator

o All settings that rely to the frequency grid, analytic continuation from the imagi-
nary to the real axis and contour deformation in GW related methods.

Even if you do not know what this is all about, you should know that the “auxiliary
basis” is determined as an overcomplete basis, and superfluous basis functions are then
reduced out by a threshold criterion, using singular value decomposition. This threshold
is a value to be tested in case something unexpected happens.

There are four key references that provide the technical background for these sections:

1. Principle of how we calculate the two-electron Coulomb operator by so-called
resolution of identity: Xinguo Ren et al. (2012), New J. Phys. 14, 053020, Ref.
[187]. The approach summarized below and implemented in Keyword RI_method
V is still the default for any non-periodic many-body perturbation calculations
beyond DFT (i.e., for MP2, RPA, GW, etc.)

2. Localized resolution of identity (Keyword RI_method LVL), which is used
by default for all Hartree-Fock and hybrid functional calculations, and which is
the only option for any periodic calculations including the two-electron Coulomb
operator: Arvid lhrig et al. (2015), New J. Phys. 17, 093020, Ref. [111].

3. Linear-scaling and periodic implementation of periodic Hartree-Fock and hybrid
functionals based on RI_method LVL, described in Sergey Levchenko et al.
(2015), Comput. Phys. Commun. 192, 60-69, Ref. [145].

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 247

4. Technical details of self-energy evaluation in GW related methods, described in
Ref. [187] and more detailed in Golze et al. (2018), J. Chem. Theory Comput.,
14, 4856 [77]. The latter contains also a comparison of different techniques.

Mathematical background:

Any feature beyond standard DFT (e.g., HF, hybrid functional, MP2, GW, etc) requires
the two-electron Coulomb repulsion integrals, and in FHI-aims an additional auxiliary
basis set is introduced to deal with them. By utilizing the auxiliary basis functions the
N{ i many 4-center integrals are reduced to N2 - N,ux many 3-center integrals and
N2, many 2-center integrals (where Np.gs and N, are the numbers of regular basis
functions and auxiliary basis functions, respectively). There are different ways to do so,
and here we describe two versions of these, namely, the “V" and “SVS" [221] versions
which have been implemented in this code. In the “V" version, the 4-center integrals

are approximated by

(igld'5") = Y _(ijlp) Ve (v]i'5"), (3.52)
/,I/l/
and in the “SVS" one,
(ig)i'5") m 32> (i) S, Vi S, (vi'§), (3.53)
By
where i, 5,7, 7', ... denote the regular basis functions and y, v, ... denote the auxiliary

basis functions. Here V,,, is the Coulomb repulsion integral between two auxiliary basis
functions, and S, is the corresponding overlap integral. (ij) and (ij|u) are the overlap
and Coulomb repulsion between the regular basis orbital product ¢;¢; and the auxiliary
basis function P, respectively. Eq. (3.52) and (3.53) are often refered to as resolution
of identity (Refs. [30, 3, 221, 61] and others). In practice satisfactory accuracy can be
gained with an auxiliary basis size NV,,, of 4-5 times of Np,ss. In addition, we implement
a modified localized version of RI-V known as “RI-LVL", described in Ref. [111] and also
in Sec. 3.23.

How is the auxiliary basis functions constructed? In FHI-aims, it is built up as the
“on-site” pair products of the regular basis functions (hence the auxiliary basis is also
called the “product basis” in this context). These products are then orthonormalized
at each atom using the gram-Schmidt method. These auxiliary basis functions are
hence atom-centered numeric functions with a radial function times spherical harmonics
P,(r) = m)ﬁm(ﬁ,w). The radial part of the auxiliary basis function is formally

r

linked to that of the regular basis functions by

{gat,n,l(r>} - {uat,nl,ll (T)uat,ng,l27 ’ll — l2| S l S |l1 + l2’} (354)

In Eq. (3.54) we make it clear that the set of auxiliary basis functions centered on
certain atom originates from the pair products of regular basis functions centered on
the the same atom. The angular momentum of the auxiliary basis and those of the
two constituent regular basis satisfy the triangular true. The number of auxiliary basis
function for a give [(enumerated by n) is controlled by the allowed pairs of regular
basis functions, and the accuracy threshold in the Gram-Schmidt orthormalization. The
process is described in Ref. [187] and in more detail with an illustrating figure in Ref.

248 Chapter 3. The Full Monty: All Keywords and Capabilities

[111] (open access). The parameters that controls the construction of the auxiliary basis
functions can be found below.

GW: Self-energy evaluation

Practical guidelines how to conduct GW calculations and a summary of numerical tech-
niques are given a recent, comprehensive review article [75]. In GWW, we have to calculate
the self-energy >, which is given by

Y(r,r',w) = ZL/dw’ei‘”/”Go(r,r’,w + W) Wo(r, v’ W), (3.55)
m

The frequency integration in Eq. (3.55) presents one of the major challenges in a GoW)
calculation because GGy and W, have poles close to the real frequncy axis. Different nu-
merical techniques were developed, which are summarized in Ref. [75]. In FHI-aims, the
self-energy can be calculated with the analytic continuation and the contour deforma-
tion. The contour deformation is computationally more expensive, but more accurate.
The implementation of the analytic continuation in FHI-aims is described in [187] and
the implementation of the contour deformation in [77].

Analytic continuation

When using the analytic continuation, the self-energy is first calculated on the imaginary
frequency axis

Y(r, 1’ iw) = 2L / dw'G(r,r'siw + i)W (r, r'; i) (3.56)
m

and then analytically continued to the real frequency axis. A proper frequency grid is
needed for the analytic continuation, i.e., a set of imaginary frequencies {iw} for which
Y(iw) is computed. One popular way of performing the analytical continuation is to
model the self-energy with a multi-pole expression [194], namely,
. ATL
Y(iw) = Ag + Y ——— (3.57)

)
—~ iw — B,

where n is the number of poles, and A, and B, are complex numbers. Eq. (3.57) is
used to fitted the calculated self-energy on imagninary axis using the non-linear least
square fitting algorithm. Once the the the parameters A, and B,, are obtained that give
the best fitting, the self-energy on the real frequency axis can be obtained by

ATL
= (3.58)

S(w) ~ Ao+

In practice n = 2 (the so-called two-pole fitting) is often found to give good performance.

A Pade approximation based variant with more poles is also implemented in FHI-aims.
In the Pade approximation, the self-energy is parameterized as

a1
as(iw — iwy)
as (zw — iWQ)

S (iw) = (3.59)

1+

1+

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 249

For a given, chosen set of calculated self-energy data points {iw,, X(iw,)} with n =
1,---, N, the N complex parameters aq,--- ,ay can be uniquely determined. The self-
energy on the real frequency axis is then obtained by replacing iw by w in Eq. (3.59).
We note that the Pade approximation given by (3.59) can be interpreted as a multipole
expression, with the number of poles N, = N — 1.

The type of the analytical continuation used in GIW (Egs. (3.58) or (3.59)) is determined
using the anacon_type and n_anacon_par keywords. The number of frequency
points used on the imaginary axis (this determines the accuracy of the input used for
fitting the expressions Eqgs. (3.58) or (3.59)) can be set using the frequency_points
keyword. The frequency grid used is a modified Gauss-Legendre grid that ranges from
zero to infinity. Our experience suggests that highly accurate results for molecules (few
meV accuracy for electronic excitations, compared to exact expressions for the self-energy
on the real axis) can be obtained using a 16-parameter Pade approximation with 200
frequency points [223]. However, the numerical accuracy is then much higher (and
much more costly) than the accuracy of the underlying G approximation itself, and
thus somewhat reduced defaults are set in the code (see keyword descriptions below).

More importantly, the Pade approximation is also numerically less stable than the two-
pole approximation. This means that, for some systems with a complicated pole structure
of the self-energy, the Pade fit might not converge for certain eigenvalues. The results
must therefore be inspected carefully, even if (for normal light-element molecules and
valence-like states) its accuracy can be much higher than the two-pole approximation.
This is, in fact, not a simple implementation issue but rather one that goes back to the
mathematical structure of the true self-energy.

Contour deformation

The analytical continuation becomes increasingly inaccurate for deeper states since the
structure of the self-energy is typically more complicated, i.e., has more poles. The fitted
pole models fail to represent these more complicated structures, see Ref. [77]. In these
cases, the self-energy should be calculated on the real-frequency axis using the contour
deformation technique, where the correlation part of the self-energy is then expressed as

1 0o
Y (r,rw) = — —/ dw'Go(r, v, w + i YW(r, r', i)
- Z¢z r)Wg(r, ', e — w| +in)f(e; — w) (3.60)
+ Zqﬁa r W5 (r, 7', e, — w| +in)0(w — €,)

0 is the Heaviside step function, {¢,,} molecular orbitals and W (r,r’, w) = Wy(r,r’,w)—
v(r,r’) with the bare Coloumb interaction v(r,r’). The index i refers to occupied and a
to unoccupied orbitals. The evaluation of the self-energy with the contour deformation
technique is controlled by the keyword contour_def gw . An example input file for
GW with the contour deformation can be found in [74].

250 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: hf_version

Usage: hf version version

Purpose: Allows to switch between the standard density-matrix based setup of
the Fock operator, and an orbital based exchange operator.

version is a number, either 0 (alias density_matrix) or 1 (aliases
eigencoefficients and overlap). Default: 0

The exchange operator can be constructed either by summing over all states first to
construct the density matrix (version 0), of by a straightforward setup of orbitals and
computation of the exchange operator only then (version 1).

Both versions are pure matrix algebra. For small systems (few states), version 1 is
vastly more efficient, but towards large systems (many states) an efficiency crossover
clearly favors the density matrx based update.

By default, FHI-aims relies on the density-matrix based update always, because this is
more memory efficient, but for small systems (atoms) with lots of basis functions, this
choice should be reconsidered. Please note that both versions should work seamlessly
with Pulay mixing.

Tag: anacon_type

Usage: anacon_type string

Purpose: Specifies type of analytical continuation for the self-energy (we calculate
the self-energy on the imaginary frequency axis, and hence need to continue it to
the real axis)

string is a string that indicates the self-energy type, either 'two-pole’ or 'pade’.
Default: No default (must be set by the user if the self-energy is required).

» string = 'two-pole’ or '0' : The normal two-pole fitting (Eq (3.58)).

e string = 'pade’ or '1' : Pade approximation (Eq. (3.59)).
The number of parameters in either approximation can be set using the keyword n_anacon_par

Note that the anacon_type only makes sense if qpe_calc or sc_self_energy
is set, i.e., the post-processing-type self-energy calculation is required.

This keyword must be set in control.in if the self-energy on the real axis is needed
(usually, for GW). In past versions of FHI-aims, the code would set a silent default
for anacon_type if a self-energy calculation for the real axis was required. This is no
longer the case in present versions. Users must make this choice explicitly in 'control.in’;

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 251

if that is not the case, the code will stop with a (hopefully gentle and instructive) warning
message.

The reason is that the choice of the analytical continuation used can have a noticeable
effect on the accuracy of GWW-calculated eigenvalues. The two-pole approximation is well
established, but less accurate than the Pade approximation when the latter works.[223]
On the other hand, systems with a complicated self-energy structure can lead to numeri-
cal problems with the Pade approximation that can result in seemingly random values for
certain predicted quasiparticle eigenvalues (this can be tested, for instance, by modifying
the frequency_points keyword and tracking the results).

Tag: freq_grid_type
Usage: freq_grid_type value
Purpose: If set, specifies the type of the grid for the imaginary frequency.

e value = 0 : Normal Gauss-Legendre grid ranging from 0 to a maximum
frequency, specified by the keyword maximum frequency .

e value = 1 : Modified Gauss-Legendre grid ranging from 0 to positive
infinity.

o value = 2 : Logrithmic grid ranging from 0.01 a.u. to a maximum value
specified by maximum_frequency .

Default: value=1

Note that the freq_grid_type only makessenseif qpe_calc or sc_self energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: n_anacon_par

Usage: n_anacon_par value

Purpose: If set, specifies the number of parameters used in the two-pole fit-
ting (Eq. (3.57)) or Pade approximation (Eq (3.59)). The default value for
n_anacon_par is 5 if anacon_type is set to 'two-pole’ (two-pole fitting),
and 16 if anacon_type is set to 'pade’ (Pade approximation).

Note that the n_anacon_par only makes senseif qpe_calc or sc_self energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: contour_def_gw

252

Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: contour_def_gw stategtart,o Stateena,n Stategstart,s Stateenq,s

Purpose: If set, specifies the range of states for which the GW quasiparticle en-
ergies are computed with the contour deformation, see Ref. [77] for a description
of the implementation. The range can be specified for the o and [spin chan-
nel separately. Giving the range for the 3 channel is optional. If not specified,
the range set for o will be also used for the 5 channel. For spin-unpolarized
calculations specify only the o channel.

The quasiparticle energies for the other states are computed with the analytic
continuation, i.e., the parameters anacon_type and n_anacon_par should
be set as well. Setting frequency_points is mandatory (200 grid points is
a solid choice).

Tag:

contour_spin_channel

Usage: contour_spin_channel integer (1 or 2)

Purpose: If specified, restricts the contour deformation to a certain spin channel.
If not given, QP energies for both channels will be calculated.

Tag:

contour_eta

Usage: contour_eta real

Purpose: Specifies the broadening parameter 7 used for the contour deformation.
It might be useful to set this parameter to higher values (e.g 0.002 a.u.) when
printing the self-energy or spectral function. Otherwise the default setting ensures
numerical accuracy and stability.

Default: 0.001 a.u.

Tag:

contour_restart

Usage: contour_restart task

Purpose: The iteration of the QP equation can become expensive for large sys-
tems. A restart is possible.

task is a string, specifying the desired restart task.

Available options for task are:

write : Writes restart info to file contour_gw_qp_energies.dat.

read : Reads restart info from contour_gw_qp_energies.dat and continues
the QP iteration cycle.

read_and_write : Performs what the write and read options do. If the restart
files do not exist, the code will still proceed normally.

Tag:

full_cmplx_sigma

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 253

Usage: full_cmplx_sigma boolean

Purpose: Technical keyword for the contour deformation. If set to .true., the
complex broadening term i7 enters also the integral term of the self-energy. This
requires more grid points in the frequency integration, i.e., frequency_points
should be set to 2000. Including in is not necessary when calculating the quasi-
particle energies, but gets rid of (the very small) unphysical steps in the spectral
function at the KS/HF energies.

Default: .false.

Tag: gw_zshot

Usage: gw_zshot boolean

Purpose: If set to .true., the Z-factor is calculated and the quasiparticle equation
is not calculated iteratively, but linearized using a Taylor expansion. Less exact
than the iterative solution. Works with analytic continuation an contour defor-
mation.

Default: .false.

Tag: contour_zshot_offset

Usage: contour_zshot_offset real

Purpose: When using gw_zshot , the Z-factor is calculated, which contains
the dervative of the self-energy with respect to the frequency. For the contour
deformation, this derivative is calcuated numerically. This keyword defines the
offset (delta value) to calculate the derivate numerically and should be a small

number.
Default: 0.002 a.u.

Tag: gw_hedin_shift
Usage: gw_hedin_shift boolean/state

Purpose: If set, the poor-man'’s self-consistency proposed by Hedin [93] is enabled.
The Hedin shift is referenced to a particular state, typically the HOMO. This
procedure can be also considered as fixing the zero of the energy scale in a GyW,
calculation employing an overall energy shift AE. When including this shift,
the starting point dependence is significantly reduced, similar to an ev-scGW,
calculation. The computational overhead is negligible. The Hedin shift can be
calculated individually for each state. In this case, set “true.! The shift can be
also calculated for a particular state, which is then applied to all other states. For
the latter, give an integer for the state instead of a boolean. Note that this is
the common way to apply the Hedin shift with the HOMO as reference level.
Default: .false.

Tag: print_self_energy

254 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: print_self_energy state freqstart £redena

Purpose: If set, the diagonal self-energy matrix elements for the requested state
are printed in the given frequency range that should be given in eV. Setting the
frequency range is optional.

Tag: calc_spectral_func

Usage: calc_spectral_func freqgiart £reqeng resolution

Purpose: If set, the total spectral function A(w) is printed in the given frequency
(w) range that should be given in eV. The spectral function is defined as

I ST (w)
Alw) = —)
= D e TS Ay s o A G

where m runs over all occupied and virtual states and where we include also
the imaginary part of the complex self-energy Y. See reference [76] for further
details. Implemented for GoW,, evGW, and evGW in combination with
contour deformation. Unlike for fully self-consistent GW, we include only the
diagonal matrix elements of >. Note that the calculation of the spectral is
computationally much more expensive than solving the QP equation and is not
recommended for prodcution runs. However, it gives access to the underlying
physics, e.g., to investigate multisolution behavior and peak intensities.

Setting the resolution is optional. If not given, the resolution is 0.001 eV.

Tag: spectral_func_state

Usage: spectral func_state state

Purpose: If set, the spectral function is only calculated for state n

AL 9T, (w)
7 [=& — (R, (w) - o3 + (3T, ()P

(3.62)

where the total spectral function defined in Eq. (3.61) is A(w) = X, Am(w).

Keyword is only active if calc_spectral func is set.

Tag: iterations_sc_cd

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 255

Usage: iterations_sc_cd integer

Purpose: Sets the maximum number of iterations in the eigenvalue self-consistent
loop in an evGW (ev_scgw) or evGTV, (ev_scgw0) calcuation using the contour
deformation (contour_def_gw). Note, this keyword does not set the number
of iterations to converge the QP equation, but the number of iterations in the
outer loop (iteration of eigenvalues in G and 1W). Convergence of the outer loop
is usually reached within 10-20 steps.

Default: 20

Tag: nocc_sc_cd

Usage: nocc_sc_cd integer

Purpose: Sets the number of occupied states that enter in the eigenvalue self-
consistent loop in an evGW (ev_scgw) or evGW) (ev_scgw0) calcuation using
the contour deformation (contour_def_gw). Ideally all states should enter,
but such a calculation is expensive with the contour deformation. If set to, e.g,
3, the first three occupied states (HOMO, HOMO-1 and HOMO-2) will enter
in addition to the ones specified in contour_def gw . A scissor shift will
be applied to the rest of the occupied orbitals. It is recommend to include all
occupied states if possible.

Default: 5

Tag: nvirt_sc_cd
Usage: nvirt_sc_cd integer

Purpose: Sets the number of virtual states that enter in the eigenvalue self-
consistent loop in an evGW (ev_scgw) or evGW, (ev_scgwO0) calcuation using
the contour deformation (contour_def_gw). ldeally, all states should enter,
but such a calculation is expensive with the contour deformation. If set to, e.g,
3, the first three unoccupied states (LUMO, LUMO+1 and LUMO-+2) will enter
in addition to the ones specified in contour_def _gw . A scissor shift will be
applied to the rest of the virtual orbitals. It is recommended to include only 5
to 10 virtual states explicitly, in particular if the states of interest are, e.g., core
states.

Default: 5

Tag: sc_reiterate

256 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: sc_reiterate boolean

Purpose: Keyword for evGW (ev_scgw) or evGW,, (ev_scgw0) calcuations using
the contour deformation (contour_def_gw). States that have converged in
the eigenvalue self-consistent (outer) loop exit the eigenvalue iteration in G and
W . If this keyword is set and if the states given in contour_def_gw converge
before convergence of the evGW or evGW) calculation is reached, they are re-
iterated at the end. The changes upon re-iteration is typically smaller than 0.1 eV.
Re-iteration is recommended for calculations that require benchmark accuracy.

Default: .false.

Tag: try_zshot

Usage: try_zshot boolean

Purpose: Keyword for evGW (ev_scgw) or evGW) (ev_scgw0) calcuations using
the contour deformation (contour_def_gw). The QP solution might not
converge for core states or high-energy virtual states when using a GGA starting
point for the Gy calculation due to a lack of a distinct QP peak, which has been
explained in [76]. For the first few iterations of the evGW or evGWj, calculation,
the QP equation for some states might thus not converge. If this keyword is
set to true, an approximation of the non-converged QP energies is obtained by
linearizing the QP equation (Z-shot). Check that the Z-shot solution is not used
in the last iterations of the evGW and evGW), calculation since it is numerically
not very exact, in particular for deep states.

Default: .true.

Tag: auxil_basis
Usage: auxil_basis type

Purpose: Specifies the type of auxiliary basis used in the “beyond-DFT" calcula-
tion.

type is a string, which can be set either as full or opt. Default: full. Here is
a brief explanation.

o full : The auxiliary basis is constructed as the “on-site" pair products of
the regular basis functions. The allowed pair products are controlled by the
parameters max_n_prodbas and max_l_prodbas (see later). These
pair products are then orthonormalized using Gram-Schmidt procedure for
each atom.

o opt : The auxiliary basis is obtained from an optimization procedure, and
must be specified by hand in control.in — in the same spirit as the basis
sets used in standard Gaussian-bases RI-MP2 calculations.

Tag: default_prodbas_acc

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 257

Usage: default_prodbas_acc threshold
Purpose: Specifies the default for prodbas_acc

threshold is a real value, defining the onsite threshold for the auxiliary basis
construction.

Default: 107* for ~ RI_method 1v1, depends on species (species_z)
otherwise.

See prodbas_acc for more details. Default settings are:

e 1072 for Z <10 (light elements)
e 1073 for 10< Z <18

e 107 for Z >18 (all heavier elements)

The old default (version 042811 and earlier) was simply 1072 for all elements. For light
elements, this setting produces accurate total energies and energy differences to the sub-
meV level in all our tests. For heavier elements, significant inaccuracies could happen
in atomic total energies. These inaccuracies would cancel out in energy differences; to
guarantee total energy accuracy as well, we now set significantly tighter defaults for
prodbas_acc in this range (alas, also more expensive, both in time and memory use).

Tag: default_max_1_prodbas

Usage: default_max_1 prodbas value
Purpose: Specifies the default for max_1_prodbas

Default: 20 for RI_method 1vl, 5 for RI_method V and nuclear charge
Z <=54, and 6 for RI method Vand Z > 54.

Tag: default_max_n_prodbas

Usage: default _max_n_prodbas value
Purpose: Specifies the default for max n_prodbas

Default: 20 for RI_method 1vl, 6 otherwise.

Tag: frequency_points

Usage: frequency_points value

Purpose: If set, specifies the number of (imaginary) frequency points for the self-
energy calculation.

The default value for the frequency points depends on the choice of the analytical
continutation type. For two-pole fitting (anacon_type ='two-pole’), the
default value for frequency_points value is 40; for the Pade approximation
(anacon_type ='pade’) the default value for ~ frequency_points is 100.

258 Chapter 3. The Full Monty: All Keywords and Capabilities

Note that the frequency_points only makessenseif qpe_calc or sc_self energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: maximum_frequency
Usage: maximum_frequency value

Purpose: If set, specifies the maximal (imaginary) frequency value for the
self-energy self-consistent calculation. The unit for value here is Hartree.

Note that the maximum_frequency only makes sense when the freq_grid_type
is set to be 0 or 2, i.e., when the stdandard Gauss-Legendre grid or logrithmic grid is
used. For freq grid_type =0, the default value for = maximum_frequency is
10 Hartree; for freq_grid_type =2, the default value is 5000 Hartree. However,
when self-consistent GW is involked (both scGW and scGW,), the default value for
maximum_frequency is 7000 Hartree.

Tag: maximum_time

Usage: maximum_time value

Purpose: |If set, specifies the maximal (imaginary) time value for the self-
consistent self-energy calculation. The unit for value here is Hartree™!. The
default value is 1000 a.u..

Note that the maximum_time only makes sense if sc_self_energy is set, i.e.,
the self-consistent self-energy calculation is required.

Tag: n_poles

Usage: n_poles value

Purpose: If set, specifies the number of poles (i.e. the number of functions of
the form f;(w) = 1/(b; + iw)) adopted in the pole-based computation of the
Fourier transform in self-consistent GW-type calculations.

Note that the n_poles only makes sense if sc_self energy is set, i.e., the
post-processing-type self-consistent self-energy calculation is required.

Tag: pole_max
Usage: pole max value

Purpose: If set, specifies the position in the (imaginary) frequency axis of the
largest poles (i.e. the largest b; coefficient in f;(w) = 1/(b; + iw)) used in
computation of the Fourier transform in self-consistent GW-type calculations.
The unit for value here is Hartree.

Note that the pole_max only makes sense if sc_self_energy is set, i.e., the

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 259

post-processing-type self-consistent self-energy calculation is required.

Tag: pole_min
Usage: pole min value

Purpose: If set, specifies the position in the (imaginary) frequency axis of the
smallest poles (i.e. the smallest b; coefficient in f;(w) = 1/(b; + iw)) used in
computation of the Fourier transform in self-consistent GWW-type calculations.
The unit for value here is Hartree.

Note that the pole_min only makes sense if sc_self_energy is set, i.e., the
post-processing-type self-consistent self-energy calculation is required.

Tag: prodbas_nb

Usage: prodbas_nb nb

Purpose: For very large scale beyond-GGA calculations, the distribution of aux-
iliary basis functions among the CPUs becomes problematic because each CPU
only gets very few. The default Scalapack distribution is more taylored to efficient
calculations and distributes these functions in chunks of finite size. In massively
parallel runs, often each CPU gets either one or two of these chunks, leading to
bad memory distribution. This can be circumvented, possibly sacrificing some
performance, by setting the chunk size nb to “1".

nb is the chunk size of auxiliary basis functions.
Default: min (16, | Nawx/Nproc])-

Tag: prodbas_threshold

Usage: prodbas_threshold threshold

Purpose: Prevent the possible ill-conditioning of the auxiliary basis, similar to
basis_threshold for the regular basis.

threshold is a small positive real number for the eigenvalue of the Coulomb
matrix for the auxiliary basis. Default: 107°.

The the auxiliary basis functions centered on different atoms are nonorthogonal, and
the possible linear dependence (with certain accuracy) between them and the resultant
behavior has to be carefully eliminated. This is achieved by setting the cutoff threshold
for the auxiliary basis prodbas_threshold . From many test calculations, it is
found that the reliable value for threshold here are between 107° to 1073, Within this
window, the total energy may still have some noticable change, but the energy difference
is usually negligible. It is suggested that the user should play with this value if he/she is
not sure about his/her result.

Tag: RI_method

260

Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: RI_method type

Purpose: Specifies the version of the resolution of identity used in the beyond-
DFT calculations. Here type is a string, with possible options listed below.

Default: Non-periodic: type=1vl for Hartree-Fock and hybrid functional
calculations, which can be used for geometry relaxations. type=v for MP2,
RPA and GW etc. calculations that require unoccupied states. This gives
better accuracy for a given auxiliary basis, but is usually more expensive
and provides no geometry relaxation at present. Periodic: type=LVL_fast,
which provides the necessary reduction to what is essentially an O(/N') framework.

Different options for the type option include:

Rules

svs (for the “SVS" version, i.e., Eq. (3.53))

v (for the “V" version, i.e. Eq. (3.52))

1vl (for the “LVL" version)

LVL, LVL_fast, or 1vl_fast are all synonymous with option 1v1

1vl_full implements a non-linear scaling version of the “LVL" approach for total
energy evaluations only

1vl 2nd implements the so-called “robust Dunlap correction” for total energies
only, which essentially follows up an s.c.f. calculation with an additional RI-V-
like step. In our experience, similar results are better accomplished without this
correction (see also Ref. [111]).

of thumb:

type=V is the preferred method for non-periodic calculations. For formal reasons,
this is clearly the most accurate version. However, neither a periodic version nor
gradients (forces and relaxations) are implemented at present.

type=LV1_fast is the preferred version for periodic calculations, as well as for
non-periodic Hartree-Fock and hybrid functional calculations with forces and re-
laxation. It scales as O(N) and greatly limits the memory use compared to RI-V.
RI_method LVL_fast localizes the expansion of the Coulomb potential of basis
function products to two centers, as described in Sec. 3.23 and in Refs. [111, 145].
It also relies extensively on screening near-zero elements of the density matrix and
of the Coulomb operator. On the other hand, the localized version has slightly
larger errors than RI-V for hybrid functionals, and significantly larger errors for
correlated methods like MP2 or RPA. These can be remedied by adding a few
extra functions to the construction of the auxiliary basis set using the for_aux
keyword, as described in detail in Ref. [111].

At present, do not use RI-LVL for MP2 and RPA unless you know what you are
doing. It is possible to repair their accuracy in RI-LVL, by increasing the size of

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 261

the auxiliary basis set using the for_aux keyword, as described in detail in Ref.
[111], but please see the figures and benchmarks in that reference before trying.

o type=LVL_full is a slower, non-screened version of LVL for non-periodic systems.
Very useful as a reference to make sure.

o type=SVS is here only for testing purposes. This is the naive, purely overlap based
version of Rl and should not be used in production.

There is an additional option for non-periodic systems, 1v1l_2nd, which adds a correction
term to the nonlocal exchange energy to make it “robust” in the Dunlap sense [58], that
is, the error in the energy is quadratic in the error in the product expansion.

Tag: sbtgrid_lnrange
Usage: sbtgrid_lnrange lnrange

Purpose: for use_logsbt , set the range of the logarithmic grid (in logarithmic
units). Default is 45, which corresponds to nearly twenty orders of magnitude.
Please note that the range should be larger than intuitively guessed because the
range is the same both in real and reciprocal space (for algorithmic reasons) and
the tails in reciprocal space have to be captured.

Tag: sbtgrid_lnr0
Usage: sbtgrid_lnr0O 1nrO

Purpose: for use_logsbt ,set the onset of the logarithmic grid in real space.
The default is —38.

Tag: sbtgrid_1lnkO

Usage: sbtgrid_1nkO 1nkO

Purpose: for use_logsbt , set the onset of the logarithmic grid in Fourier
space. The default is —25.

Tag: sbtgrid_N
Usage: sbtgrid_N N

Purpose: for use_logsbt , set the number of logarithmic grid points both in
real and Fourier space. The default is 4096.

For the accuracy, the density of points N/1nrange is relevant. Additionally, one has to
make sure that the tails in real and Fourier space are properly included.

Tag: state_lower_limit

262 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: state lower limit value

Purpose: If set, specifies the lowest single-particle eigenstate to be included for
the quasiparticle calculation.

Note that the state_lower_limit only makes sense if qgpe_calc is set, i.e., the
post-processing-type self-energy calculation is required.

Tag: state_upper_limit

Usage: state_upper_limit value

Purpose: If set, specifies the highest single-particle eigenstate to be included for
the quasiparticle calculation.

Note that the state upper_limit only makes sense if gpe_calc is set, i.e., the
post-processing-type self-energy calculation is required.

Tag: time_points
Usage: time_points value

Purpose: If set, specifies the number (imaginary) time points for the self-energy
calculation.

Default: value=80.

Note that the frequency_points only makessenseif qpe_calc or sc_self_energy
is set, i.e., the post-processing-type self-energy calculation is required.

Tag: use_logsbt
Usage: use_logsbt bool

Purpose: If set, the two-center integrals are calculated by one-dimensional
integrations in Fourier-space. In the case of RI _method LVL, also the
three-center integrals are computed by this method.

Default: .true.

use_logsbt .true. is faster and more accurate than the alternative.

The algorithm for the overlap and Coulomb integrals is described by Talman in [212]. It
uses an efficient spherical Bessel transform on a logarithmic radial grid [213, 86, 87] to
obtain the Fourier transform of the auxiliary basis functions and calculates the integrals
in Fourier space.

Tag: use_ovlp_swap

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 263

Usage: use_ovlp_swap

Purpose: if set, the atomic orbital (AO) based 3-index overlap matrix (“ovlp_3fn"
in the source code) is written to the disk before transforming to the molecular
orbital (MO) based 3-index overlap matrix (“O_2bs1HF" for HF calculations and
“ovlp_3KS" for GW calculations in the source code). This avoids the double
allocation of both the AO-based 3-index integral matrix and MO-based 3-index
integral matrix at the same time and thus reduces the memory cost by about a
factor of two.

264 Chapter 3. The Full Monty: All Keywords and Capabilities

Subtags for species tag in control.in:

species sub-tag: aux_gaussian

Usage: aux_gaussian L N [alpha]
[alpha_1 coeff_1]
[alpha_2 coeff_2]

[alpha_N coeff_N]

Purpose: For auxil_basis opt, adds a Gaussian basis function to the
auxiliary basis set for the Coulomb operator.

L is an integer number, specifying the angular momentum

N is an integer number, specifying how many primitive Gaussians comprise the
present radial function

alpha : If N=1, this is the exponent defining a primitive Gaussian function [in
bohr—2].

alpha i coeff i : /f N>1,¢=1,..., N additional lines specify exponents «;
and expansion coefficients g; for a non-primitive linear combination of Gaussians.

See the description of gaussian basis functions; Gaussian basis functions in the
auxiliary basis use essentially the same infrastructure.

species sub-tag: for_aux
Usage: for_aux basis options

Purpose: Add a extra basis function to constructor of auxiliary basis function.

Basis is a either hydro or ionic basis function keyword and options
are options for that basis function.

Adds extra basis function ONLY to the construction of the auxiliary basis set used to
expand the Coulomb operator (resolution of identity, see keyword RI_method). In
particular, the accuracy of RI_method LVL can be increased by adding extra high-
angular momentum radial functions to the auxiliary basis set. The improvement becomes
less and less relevant as the orbital basis set itself increases. For instance, there may be
a noticeable change for tier 1, but much less or not at all for tier 2. Currently supports
only hydro and ionic basis functions.

For a detailed description with benchmarks, please see Ref. [111].

Here is an example for the use of the for_aux , which was obtained by altering the
“light” settings of the C atom:

[...]

"First tier" - improvements: -1214.57 meV to -155.61 meV
hydro 2 p 1.7
hydro 3 d 6
hydro 2 s 4.9

3.22. Hartree-Fock, hybrid functionals, GW, et al.: All the details 265

"Second tier" - improvements: -67.75 meV to -5.23 meV
for_aux hydro 4 £ 9.8

hydro 3 p 5.2
hydro 3 s 4.3
for_aux hydro 5 g 14.4
hydro 3 d 6.2
[...]

Adding those two high-angular momentum functions does improve the quality of the
RI _method LVL noticeably, at the price of more CPU time. On the other hand ...
“light” settings are specifically chosen because not everything is completely converged.
In fact, the orbital basis set error itself may be larger than the accuracy gained by
amending the two-electron Coulomb operator expansion.

species sub-tag: prodbas_acc

Usage: prodbas_acc threshold

Purpose: Technical cutoff criterion for on-site orthonormalization of auxiliary ra-
dial functions. Here threshold is a small positive real value. Default: See below.

To construct the set of auxiliary basis functions, the radial functions for a single species
are “on-site" Gram-Schmidt orthonormalized. If the norm of the function after orthonor-
malization is smaller than threshold, that function is omitted.

The present default values are:

e 1072 for Z <10 (light elements)
e 1073 for 10< Z <18

e 107 for Z >18 (all heavier elements)

The old default (version 042811 and earlier) was simply 1072 for all elements. For light
elements, this setting produces accurate total energies and energy differences to the sub-
meV level in all our tests. For heavier elements, significant inaccuracies could happen
in atomic total energies. These inaccuracies would cancel out in energy differences; to
guarantee total energy accuracy as well, we now set significantly tighter defaults for
prodbas_acc in this range (alas, also more expensive, both in time and memory use).

For simplicity, it is also possible to use default prodbas_acc to set a global value
of prodbas_acc across all elements.

Note that the prodbas_acc should not be confused with the prodbas_threshold
. The former is used when constructing the auxiliary basis functions for each species,
whereas the latter is used to deal with the ill-conditioning behavior of the Coulomb
repulsion and/or the overlap matrix between the set of auxiliary basis functions for the
whole systems.

species sub-tag: max_n_prodbas

266

Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: max_n_prodbas value

Purpose: Specifies the maximal principal quantum number for the regular basis
function to be included in the auxiliary (product) basis construction.

value is a positive integer number here.

Note that max_n_prodbas has an effect only when auxil basis is setted to
full.

species sub-tag: max_1_prodbas

Usage: max_1 prodbas value

Purpose: Specifies the maximal angular quantum number for the auxiliary (prod-
uct) basis function. Any possible auxiliary basis with an angular momentum
higher than max_1 _prodbas is excluded.

value is a positive integer number here.

Note that max_1 prodbas controls the auxiliary basis whereas max n_prodbas
controls only directly the regular basis. max_1 prodbas has an effect regardless
whether auxil_basis is setted to full or opt.

3.23. Hartree-Fock and hybrid functionals, including periodic systems 267

3.23 Hartree-Fock and hybrid functionals, including
periodic systems

Periodic versions of the Hartree-Fock method and of and hybrid density functionals are
implemented in FHI-aims. Generally, our experiences are very good. The implementation
is stable and seems to scale well towards large systems. However, we still ask you to
exercise some care. If you encounter any unexpected difficulties, consult the developers.

Periodic versions of MP2, RPA and GW are not yet part of the main FHI-aims distri-
bution, as they are in various stages of development. Please feel free to ask at aimsclub
regarding these methods for periodic systems. They are very important to us, and we
will be happy to share them as they become ready and more usable.

Complete descriptions of the material described below, as well as extensive benchmarks,
are summarized in Ref. [145], as well as Ref. [111] (for the non-periodic implementation
of the “LVL" approach). Forces and the stress tensor are also implemented, with a clear
description of the stress tensor given in Ref. [124].

There are two specific issues from a usability point of view which should be considered:

e The RI method “LVL" described below is implemented in a linear scaling and
is therefore the only reasonable pathway for large and/or periodic systems. It
is, however, slightly less accurate (for formal reasons) than the non-linear-scaling
version for non-periodic systems, RI-V. Please bear this in mind. For standard
solids and hybrid functionals, the effects seem very small. See reference [111] for
quantitative tests. In general, RI-LVL has been extremely reliable for us.

o For band structure output, the exx band_structure version keyword allows
to toggle between a faster real-space version that works only when a relatively dense
k-space grid has been used during the regular s.c.f. cycle and a slow(!) fallback
version that is calculated in reciprocal space. The underlying reason is that the
real-space Born-von Karman cell of the regular s.c.f. cycle may become too small
to accommodate some k-vectors that are not exact reciprocal lattice vectors of
the Born-von Karman cell. The slow fallback version should not simply be used by
default since it can easily become the computational bottleneck — both regarding
time and memory.

In periodic Hartree-Fock (and hybrid functional) implementations, the key quantity that
needs to be evaluated is the exact-exchange matrix,

(1) Pha (1) Piq (') P2 (r')

v — |

Ki;(k) = Y Di(q) / / drdr’ (3.63)

kl,q

where k,q are the Bloch vectors, ¢;(r) is the Bloch summation of the i-th atomic
orbital ¢;(r — R) living in the unit cell R, and Dy;(q) is the density matrix. K;;(k) can
be obtained from its Fourier transform,

Kii(k) =Y e X;(R), (3.64)
R

268 Chapter 3. The Full Monty: All Keywords and Capabilities

where

" / / / "
ZZDM R/ Z//drd’gbl Cbk:(R)¢j(r+R)¢l(r+R+R)
Kl R R v — /|

(3.65)
In FHI-aims, periodic Hartree-Fock and hybrid density functionals are implemented in
two different ways. One implementation is based on the “k-space” formulation, where
one computes [;;(k) directly from Eq. (3.63). An alternative, and more efficient im-
plementation is based on the"real-space” formulation, where one first computes X;;(R)
from Eq. (3.65), and then Fourier transform it to K;;(k). The “real-space” implemen-
tation is used in the code by default, and the “k-space” implementation is only used for
crossing-check purposes.

Both implementations are based on a localized resolution-of-identity approximation,
which we termed as “RI-LVL", in analogy to “RI-SVS" and “RI-V" introduced in Sec. 3.22.
Under “RI-LVL", the products of two normal basis functions (7, j) centering at atoms
A; and A; are expanded only in terms of auxiliary functions centering on these two
atoms. Possible contributions of auxiliary functions from a third center are excluded in
this approximation, in contrast to “RI-V". Specifically, one has

pi(r — Aj)pj(r — A ZCMA)i(A +Z V(E;lA)j(A) y(r—4;), (3.66)

where 1 and v enumerate the auxiliary basis functions centering on atom A; and A;
respectively. This approximation has been extensively benchmarked with respect to the
more accurate “RI-V" approximation for finite systems, and with respect to other inde-
pendent implementations for molecular systems. The achieved accuracy is remarkable
and should be sufficiently good for production calculations.

Periodic Hartree-Fock and hybrid-functional calculations can be run in the same manner
as the periodic LDA and GGA cases, by setting the keyword xc to hf or desired hybrid
functionals, and setting the k_grid mesh to appropriate values. As mentioned above,
by default the “real-space” periodic Hartree-Fock implementation will be invoked. There
are two thresholding parameters (detailed below) which control the balance between the
computational load and accuracy in the calculation. One may also switch to the “k-
space” implementation of periodic Hartree-Fock and hybrid functionals for testing or
comparison purposes by setting the keyword use_hf_kspace to be true (see below).
The thresholding parameters do not apply to the “k-space” implementation, however.

3.23. Hartree-Fock and hybrid functionals, including periodic systems 269

Tags for general section of control.in:

Tag: coulomb_threshold

Usage: periodic_hf coulomb_threshold value

Purpose: This sets a threshold value for a key ingredient in the construction of
the exact-exchange matrix — the Coulomb matrix. The Coulomb matrix elements
below the specified threshold value are discarded in the calculation. Suggested
values are between 107% and 0. The default value is 10719,

Tag: exx_band_structure_version

Usage: exx_band_structure_version value

Purpose: A periodic band structure calculation can be performed either using
a real-space version (value=1) or a reciprocal-space version (value=2). No
default — user must decide.

value is an integer, either 1 or 2. exx_band_structure_version 1 is
preferred (but see below).

The distinction between real-space and reciprocal-space pertains to the method used to
calculate the Fock matrix; in both cases, the coordinate system used when specifying
the k-path via the output band keyword is expressed in terms of reciprocal
coordinates.

If output band is requested for a periodic Hartree-Fock or hybrid functional
calculation, adhere to the following rules:

e Do not use excessively many £ points in each band segment, for instance no more
than 11. We also note that 21 is a reasonable value to sample the fine features of
a band structure.

e exx_band_structure version 1 is preferred. The real-space band structure
version value=1 has low overhead and is accurate IF a reasonably dense k_grid
is used during the preceding s.c.f. calculation. exx_band_structure_version
1 is therefore the recommended approach. For very sparse s.c.f. k_grid
settings, it can, however, fail. In that case, the failure is so obvious that one
cannot miss it. For better results, please avoid particularly k_grid dimensions
of 1 (one) in the s.c.f. part of the calculation. We apologize for this inconvenience.
On the bright side, if you use exx_band_structure_version 1 correctly, it
will give reliable results without much overhead compared to the underlying s.c.f.
calculation. We recommend to test to be sure.

e exx_band structure version 2 is a fallback method that will always work but
comes with significant time and memory overhead. If the plotted band structure
from the real-space version exx_band_structure version value=1 has ob-
vious numerical problems, please switch to a denser k_grid during s.c.f. Only if

270 Chapter 3. The Full Monty: All Keywords and Capabilities

this approach is not successful or possible, consider exx _band_structure version
2. The latter will always work, as the critical part of the work is handled in re-
ciprocal space. As a consequence, though, sparsity in real space can no longer
be exploited, and the band structure calculation becomes much slower than the
real-space version.

o In case of doubt, the band structure ONLY at k-points used during the s.c.f.
cycle itself can also be printed along certain directions by using the output
band_during scf keyword, which ensures that only the information that went
into the s.c.f. cycle is actually used. This is mainly useful for debugging purposes.

We apologize that this decision process is a bit rough around the edges and leaves an
essential decision up to the user (because we want you to know). However, consider this:
The above procedure provides a simple way to make band structure output work, and
works safely. It is now generally not a problem to produce band structures with hybrid
functionals in FHI-aims and this functionality has produced much successful science.

Tag: screening_threshold

Usage: periodic_hf screening threshold value

Purpose: This sets a screening parameter in a periodic Hartree-Fock (or hybrid
functional) calculation. The real-space exact-exchange matrix elements below
the specified threshold value are neglected in the calculation. Suggested val-
ues are between 107% and 0. Smaller values mean better accuracy but heavier
computational loads. The default value is 1077,

Tag: use_hf_kspace
Usage: use_hf kspace flag

Purpose: The “k-space” periodic HF implementation can be invoked by setting
flag to be .true. This is, however, very expensive.

Tag: split_atoms
Usage: split_atoms flag

Purpose: The “split_atoms” periodic HF implementation can be switched off by
setting flag to be .false.

The keyword split_atoms helps to reduce the peak memory and increases perfor-
mance for systems with heavy elements or systems containing atoms of different size
(that is the number of basis functions). Internally, the number of basis functions
per atoms are split into smaller batches. The batch size is calculated according to
basis_functions_per_atom/split_batch, where the default value of split_batch
is 14. Its value can be changed in control.in with split_batch value, where value
is a positive integer number.

The implementation seemed to improve the performance of systems containing heavy

3.23. Hartree-Fock and hybrid functionals, including periodic systems 271

elements. If you encounter performance problems, especially systems with many atoms,
it might be worth to switch-off the split_atoms feature and test the old routine.
However, we could not find systems where the current implementation significantly harms
the performance. In the case you do, please report the issue.

272 Chapter 3. The Full Monty: All Keywords and Capabilities

3.24 Periodic GW in FHI-aims

A periodic version of GV (more precisely the one-shot GoWj) has been implemented in
FHI-aims. The current implementation is based on the k-space formalism, similar to the
k-space implementation of periodic HF (can be invoked by setting use_hf_kspace
to be true), and only works for insulating systems. So far, tests show that it is rather
stable, but if you encounter any problem, consult the developers.

Complete descriptions of the key algorithm and implementation details can be found in
Ref. [190]. Here we only present the central equation for computing the periodic GoW)
self-energy,

Bk, iw) = / drdr' ke (r) S50 (x, v/ iw) Yy, (r)
_ ZZ/ Ol K = @) Wo (0, 16)Ch o (k — 0K
T .
T mq gy’ — zw—zw—l—u—em,g
(3.67)
where the expansion coefficients CJ/, ,(k,k — q) are determined using the “RI-LVL"

(or localized RI) approximation, similar to the periodic HF and hybrid function case
discssued in Sec. 3.23.

At present, only the one-shot GGy, scheme is implemented for periodic systems. The
periodic GoWj can be run in much the same way as the cluster (finite system) case.
That is, one needs to specify a starting point by setting xc to a desired funcitonal. At
the moment, LDA, GGAs and global hybrid functions can be employed as the starting
points.

The periodic GoWj is invoked by setting qpe_calc to gw_expt and setting k_grid
to appropriate values. Similar to the cluster case, the periodic GoW, self-energy is first
computed on imaginary frequencies and then analytically continuted to the real frequency
axis. Assuch, one needs to explicitly specify the type of analytical continuation procedure
by setting the anacon_type to 0 (two-pole fitting) or 1 (Padé approximation.) The
number of frquency points and the number of analytical continuation parameters can be
specified by setting frequency_points and n_anacon_par to appropriate values.
If not, the same default values as the clusters will be used for these two parameters.
Further details can be found in Sec. 3.22.

As mentioned above, peroidic GW calculations rely on the RI-LVL scheme. This implies
one typically needs a larger set of auxiliary basis functions to achieve a satisfactory
level of numerical accuracy. In practice, one usually needs to add so-called "for_aux"
basis functions in species_default, that are used to generate additional auxliary basis
functions. Tests show that the following “for_aux" basis setting usually works rather
well, and is recommended as a first choice.

for_aux hydro 4 £ 3.0
for_aux hydro 5 g 3.0

However, this does not mean the above setting is optimal, or always sufficient. If in
doubt, one is encouraged to vary the effective charge parameter Z (the value “3.0"
above) to check how the obtained results (e.g., the band gap) change.

3.24. Periodic GW in FHI-aims 273

The outputs from periodic GoW, calcualtions are the GoW,, quasiparticle energies within
a window of energy levels at pre-set k points. The specification of the k points can be
done in two ways. In the first way, one can directly compute the quasiparticle energy
band structures along a set k-point paths. The way to set up the k-point paths is
exactly the same as in KS-DFT calculations, through the keyword output band . In
the second way, one can choose to print out the quasiparticle energy level on a sef of k
points belonging to the uniform k grid, that is used in the preceding SCF calculations.
This is set through the keyword output gw_regular_kgrid . At each k point,
the set of energy levels for which one asks for quasiparticle energy calculations can be
specified through the keyword state_lower limist and state_upper_limit
, in exactly the same way as in the cluster case. If keywordstate_lower_limist and
state_upper_limit are not explicitly specified, GoWj quasiparticle calculations will
be done for all the occupied states and a few low-lying unoccupied states.

274 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in:

Tag: gpe_calc
Usage: qpe_calc gw_expt

Purpose: If set, and if a finite k grid is also set via the keyword k_grid ,
peroidc GoW, calcualation will be started.

Here we choose to use a different keyword gw_expt instead of gw as in the cluster
case, in order to emphasize that this is still an experimental version. In future we
may change the setting gw_expt back to gw.

Tag: output gw_regular_kgrid
Usage: output gw_regular_kgrid

Purpose: If set, the quasiparticle energy levels at the regular k grid will be printed
out. However, one does not automatically print out the information on all k points
(which would be often too much), but rather for a number specified through
output k_eigenvalue number. That is, the k points where quasiparticle
energy levels are printed out are precicely the same as those on which the preceding
KS/HF eigenvalues are printed.

3.25. TDDFT - linear response 275

3.25 TDDFT - linear response

These routines are not completed yet. For now it is only possible do use f,. kernels from
LDA. The development goes on and more funcionality will be added. When publishing
results obtained from this routine, please do cite me, Jan Kloppenburg as the author, as
well as of course the usual people in the aims references. When problems, questions or
suggestions arise, feel free to contact me at kloppenburg@fhi-berlin.mpg.de. Only
use there routines if you know what you are doing!

Theory

The goal is to calculate excitation energies w; and corresponding oscillator strengths f;
from

QF; = wiF; . (3.68)

Linear response theory (see [36]) is the basis for this calculation. We construct

Qias,jbt = 6i,j5a,b55,t(€a - Ei)g +2 V €as — EisKias,jbt\/ €bt — Ejit (369)

with the coupling kernel

Kios jor = //gpf(r)apa(r) [\r—lr’\ + fxc(nr’)] (p;(r/)%(r/)drdr’) (3.70)
In this notation | refer with the indices 7, j to occupied and with a, b to virtual orbitals,
while s and ¢ denote the spin. The input energies ¢ are obtained from either ground
state Hartree-Fock or DFT calculations. Going by this rule we contruct the matrix 2
which then is solved for eigenvalues and eigenvectors. The excitation energies w; then
follow from From the eigenvectors F; the oscillator strengths f; can be obtained from

fo= B)+ (o

A,

Y]w,) |+ | (wo|2|w,) ﬂ , (3.71)

with the X being the spatial operator for the X direction and the others respectively
with U being the all electron ground state wave function and ¥; being the all electron
excited state wave function for the state I with excitation energy w;y.

For the TDHF calculation mode, the kernel Kj,; j»: is modified to become
Kios jor = (ias|jbt) + 654(ij|ab) (3.72)

that has only the bare Coulomb part (ia|jb) and the exact exchange part (ij|ab) from
Hartree-Fock theory. This Hartree-Fock Kernel creates a non-Hermitian matrix €2.
Please not that this calculation mode is as yet only available for single processor runs
due to the lack of a non-Hermitian parallel eigenvalue solver.

276 Chapter 3. The Full Monty: All Keywords and Capabilities

Available Kernels and libxc

As of now, there is only the pw-1da f,. kernel available for the TDDFT calculation in
aims. If the user wants to make use of additional f,. kernels he is requested to install
libxc. libxc is a library of exchange-correlation functionals for density-functional theory
(see [155]) available free under the LGPL license v3 from the internet. > Additionally, for
the full TDDFT calculation it is possible to choose functionals at will that are available
from this libxc. It is not required to have the DFT level calculation that generates the
input energies ¢ for 3.70 using the same XC functional as the TDDFT calculation. You
should really know what you are doing when you choose to experiment with different
functionals and always keep in mind that the results might be unpredictable and not
necessarily have any physical meaning at all. Nevertheless it might come in handy to
be able to mix different hybrid functionals or do a DFT ground state calculation with a
functional that does not provide and f,. and still be able to do a TDDFT calculation
on top of that when switching to functionals that do provide an f,..

Tags for general section of control.in

Tag: neutral_excitation

Usage: neutral_excitation type
Purpose: Triggers the calculation of neutral excitations.
type: String that defines the type of calculation to be performed.

o tddft: Full TDDFT calculation
o tdhf: Full TDHF calculation (Kernel from 3.72, serial CPU only)
« rpa: random phase approximation only (set f,. = 0 in 3.70)

With the keyword neutral excitation the user can specify the calculation mode

for the linear response theory.

Also the keyword empty_states should be set to 1000, or the keyword calculate_all_eigensta
should be used, to make sure the code generates all possible empty states provided from

the basis set. This number will also be reduced automatically by the code to the maxi-

mum number that can be generated from the basis set.

Tag: tddft_kernel

2http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc

3.25. TDDFT - linear response 277

Usage: tddft_kernel string

Purpose: Specify the origin of the TDDFT kernel for 3.70

string: pw-lda/pz-lda or libxc

Both pw-Ida or pz-lda are built-in options in FHI-aims. They are equivalent to
the keywords defined in xc .

When using libxc, one must specify the desired kernels through keywords
tddft x and tddft_c . Note that libxc is only possible when the user
has compiled aims with libxc binding.

Tag: tddft_x

Usage: tddft_x string

Purpose: Set the desired exchange kernel to use from libxc. The definition is
from libxc's manual and can be found at the libxc® website.

string: The name of the selected exchange functional, i.e. XC_LDA_X

“http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:manual

Tag: tddft_c

Usage: tddft_c string

Purpose: Set the desired correlation kernel to use from libxc. The definition is
from libxc's manual and can be found at the libxc website as well.

string: The name of the selected correlation functional, i.e. XC_LDA_C_PW

Tag: excited_mode

Usage: excited_mode string

Purpose: Select which excitations will be calculated.

string: one of {singlet|triplet|both}. To calculate both singlets and triplets is
set as the default when this keyword is omitted.

Tag: excited_states

Usage: excited_states n

Purpose: Specify the number of excited state energies and oscillator strengths to
be printed.

n: Integer numbern € N, n > 0

With the keyword excited _states the user can specify the number of excited states
that will be printed in the output. The default for this is 50 if there are that many. Nor-
mal production runs will generally have many more (depending on the basis set and the
number of electrons involved) that can easily reach beyond 10000. So to avoid a really
huge output from this routine this defaut is set rather low. Feel free to choose any num-
ber of your liking, if it should be too large it will automatically be defaulting to all excited
states. At the end of a calculation the file TDDFT_LR_Spectrum_(singlet/triplet).dat
will be written into the directory the FHI-aims program was run in. It contains all

http://www.tddft.org/programs/octopus/wiki/index.php/Libxc:manual

278 Chapter 3. The Full Monty: All Keywords and Capabilities

computed excitation energies and the corresponding oscillator strengths.

Tag: casida_reduce_matrix

Usage: casida reduce matrix boolean
Purpose: Set to .true. if you want to reduce the energy range for the Kohn-Sham

eigenvalues to be included in the computation.
boolean: .true. or .false.

Tag: casida_reduce_occ

Usage: casida_reduce_occ x
Purpose: Specify the energy in Hartree below which the occupied states are cut
off.

x: Cutoff energy in Hartree

Tag: casida_reduce_unocc

Usage: casida_reduce_unocc x
Purpose: Specify the energy in Hartree above which the virtual states are cut off.

x: Cutoff energy in Hartree

3.26. Real-Time TDDFT 279

3.26 Real-Time TDDFT

This functionality is experimental and currently under active development. Please treat

results with caution. If you have any questions regarding usage and/or functionality, if

you encouter problems/bugs, or if you have suggestions - please contact joscha.hekele@uni-
due.de or peter.kratzer@uni-due.de. Please cite our preliminary arXiv publication [94]

when you publish results obtained with this functionality.

Treatment of periodic systems is soon being finished, don't expect this to work cor-
rectly right now.

The current implementation incorporates a large set of control keywords of which only
the most important are noted here. Several keywords controlling debugging/development
features are not captured here but can be found in the code. Please contact us if you
want to learn more about this.

Theory
Basic Principles

Real-Time TDDFT - as the name suggests - calculates the response of a Kohn-Sham
system in real time. The time-dependent Kohn-Sham equation

S 1) = HS (), (S, 1) (3.73)

is solved and describes the time-evolution of the electronic wave function ¢*5(r,¢). The
Hamiltonian has an explicit time-dependence in this case, e.g. by an external electric
field and/or a time-dependent external ionic potential.

In contrast to the linear response approach, real-time TDDFT is able to capture the whole
nonlinear characteristic of the given system in real time. Possible applications include
absorption spectrum calculations based on the dynamical dipole response, high-harmonic
generation simulations or ion bombardment simulations based on non-adiabatically cou-
pled electron-ion dynamics (Ehrenfest dynamics). Please see [154] for a comprehensive
review.

Real-Time Propagation in FHI-aims

What is actually done is the time propagation of the atomic basis function coefficients
{cin(t)} from the LCAO ansatz

Nbasis

%Ifs(r,t) = Z Cin(t)di(r — Rl(z’)) , n&e N
The coefficients are expressed as a matrix by considering all (occupied) states and basis
indices: C € CNbasisxNoce . The time-dependent KS matrix equation to be solved is then

d .
C() = —iSTH(HC()

280 Chapter 3. The Full Monty: All Keywords and Capabilities

where S <> (¢;|¢;) is the overlap matrix and H > (¢;|H"5|¢;) is the Hamiltonian
matrix. The efficient and accurate solution of this equation is the key mechanic in a
real-time TDDFT implementation. Note that very large basis sets will lead to an ill-
conditioned overlap matrix, causing S™! to be a problematic object, yielding entirely
wrong results or blow-up.

The time-dependence of the Hamiltonian is implicit via the time-dependent density and
explicit by the possible dependence on an external field, e.g. a laser or a dynamical ionic
potential. An external electric field can here be incorporated via

Length gauge : H;;(t) = Hj5°[p(t)] + E(t) - (¢i]r|¢;)
Velocity gange : Hiy(1) = HIS[o(t)] + iA(1) - (0V]6) + S A%(D)S,

where the dipole approximation — neglecting any spatial dependence of the electric field —
is used. Electric field E and vector potential A are connected by the relation E = —0,A.
Both gauges are physically equivalent but have different technical implications. In this
implementation, only the velocity gauge can be applied in case of periodic systems. We
note here that the (atomic ZORA) relativistic kinetic operator is currently not considered

in the expression for the velocity gauge but that is on the to-do list (it can nevertheless
be used). Scaled ZORA can not be applied.

Ehrenfest Dynamics

In Ehrenfest dynamics, non-adiabatically coupled motion between the electronic and
ionic subsystems is simulated. Mobile atoms and thus mobile basis functions lead to a
modified differential equation for the electrons,

iC(t) = —iST'(H + G)C(t),

dt '
Gij = i<¢i’RI(j) ’ V‘¢J>’

where the matrix G describes the time-dependence of the atomic basis functions and
effectively conserves the norm of the time-propagated wavefunctions.

Furthermore, the forces on the nuclei are complemented by specific non-adiabatic con-
tributions,

Fr=F/" + F}" + FF© + F?P° + F°,

where FIIF are the standard Hellmann-Feynman forces, FY* are multipole force contri-
butions and F?C are XC related forces, e.g. GGA. The force term

Noce Nbasis

FPPO = = 35 5% ot (VI 1 10,) + (MY 16,)

n i

stands for "Dynamical Basis Correction" and can be seen as the time-dependent analogue
to Pulay forces. The last term is denoted as the nonadiabatic coupling force, possibly
consisting of two terms:

NC _ REC MC

3.26. Real-Time TDDFT 281

Including the full above-mentioned expression guarantees full energy- and momentum
conservation, but usually only incorporating F¥C is sufficient and noticeably cheaper.
The energy-conserving force term can be written as

Noce
FEC = Y focl [HS‘lBI + (HS‘lB[)Tcn,

Bijr = (¢i|Vil9;).

The remaining force term restoring momentum conservation is given as
N,
. occ _ _ .‘_
FMC — i Y foch [W} ~ W, +DIS"'B, - (D'S"'B,) }cn,
n

W1 =Ri(Vi¢i|Vig;),

Dijr = Ry (¢ Vi|9;).
The integration of the nuclear equations of motion is performed via a Velocity Verlet
based algorithm, i.e.,

R;(t + At/2) = R(t) Q—MIFI(t),
R;(t + At) = Ry(t) + AtR;(t + At/2),

where At is the corresponding Ehrenfest time stepping. Based on each coordinate
change, a geometry update is performed. Please see [135, 170] for further details.

Observables

Depending on what task has to be performed, different physical observables are of
interest in a RT-TDDFT simulation. The computation of the most important ones is
briefly explained here. These are also computed and sent to output by default.

o Electronic energy: The time-dependent electronic energy for the current time
step is computed via

Egs(t) = Eel,kin(t) + Ees,N [p(t)] + Eel,XC[p(t)]
= 5 S S (D (BIT?165) + Beaslolt)] + Eaxclo(t)

nij
where the total electrostatic energy E.sn and the exchange-correlation energy
Eq xc are computed from the density p(t) analog to time-independent DFT. The
electronic energy is not necessarily a conserved quantity, e.g. when energy is
absorbed from an external field.

« Total electronic and nuclear kinetic energy: In case when Ehrenfest dynamics
is performed, the nuclear kinetic energy contribution to the total energy has to be
taken into account, i.e.

Etot (t) = Egs (t) + Enuc,kin(t)
1 .
= EXS(t) + 3 > MR(t).
I

282 Chapter 3. The Full Monty: All Keywords and Capabilities

In the absence of external fields, this quantity must be conserved.

o Electronic dipole moment: Important quantities that can be computed from
the dynamical electronic dipole response are the polarisability o/(w) and absorption
strength S(w):

p(t) = /d3r rp(t) — ai(w) = ;m — Sw) = ?):Im{Tr[a(w)”

The electronic dipole moment is by default computed for cluster systems.

« Electronic current: From the current density j(r,), one can compute the con-
ductivity o(w) and the dielectric function €(w) via the total current I(¢):

(.0 = 53 et Oen@)o] - ¥ + AWy +ec| > 10 =~ [Eriwn

— 0ij(w) = W — (w)=1 —|—i47r0£}w)

Please note that a python-based post-processing tool named eval_tddft.py is located
in the utilities/rt-tddft folder which is made for RT-TDDFT output files. It can
currently compute, visualize and write the absorption strength function/polarisability (by
input electronic dipole and external field) and also the conductivity/dielectric function
(by input electronic current and external field) with possibly more functionality to come.

Important Notes

Some general important remarks regarding different topics are given here. Please also
pay attention to this.

» Exchange-Correlation: Due to technical and/or formal limitations, not all avail-
able XC functionals can be used. We tested for LDA- and GGA-based functionals
which should work fine. Other choices were not tested or are in development
process and the code will stop for unreasonable settings.

Tags for general section of control.in

Tag: RT_TDDFT_input_units
Usage: RT_TDDFT_input_units units

units: String that specifies in which unit system the input is given. If atomic,
the remaining parameters are read in atomic units, if spec, the remaining
parameters are read in as what we call spectroscopic.

3.26. Real-Time TDDFT 283

Quantity atomic spec Example
Time h/E}, fs Sim. time, steppings, pulse center/width
Frequency Ey/h fs7! Ext. field frequency

Electric field Ej/age eV/A -

This setting affects every physical input quantity given such that one has to pay attention
to the consistent use of units. The following table depicts possible unit sets. Quite
"typical’ values for time steppings are 0.1 a.u. = 0.0024 fs or for electric field amplitudes
0.01 a.u. = 51.42 eV/A.
This keyword must be set by the user or the code will not run which is intended to
prevent unit confusions.

Tag: RT_TDDFT_run

Usage: RT_TDDFT _run t_tot dt_prop dt_output

Purpose: Performing a real-time TDDFT simulation.

t_tot: Total simulation time for which the time-propagation will be performed.
dt_prop: Time step which will be used.

dt_output: Time step for which output like energy, dipole, etc. is sent to
standard output and is written to file/s.

The choice of the timestep heavily affects the accuracy and stability of the time-
propagation and is restricted by internal or external degrees of freedom, e.g. the spectral
range of the Hamiltonian or the frequency of an external field oscillation. Generally, a
small timestep yields better results but significantly increases the computation time. The
possible timestep also depends on the propagation scheme which is explained later. A
conservative choice is dt_prop < 0.1 a.u. (= 0.0024 fs) but 0.2 a.u. to 0.5 a.u. might
also be possible. Remember using consistent units set by =~ RT_TDDFT_input_units
keyword.

Tag: RT_TDDFT_td_field_gauge
Usage: RT_TDDFT_td_field_gauge gauge
Purpose: Setting gauge of a possible external field (in the dipole approximation).

gauge: String. The field can be applied either in length gauge (electric field)
or velocity gauge (vector potential). Default: length for cluster systems,
velocity for periodic systems.

While this makes no difference formally, it has some technical implications. When doing
periodic simulations, only the velocity gauge can be used. In the cluster case, the length
gauge should be used because it is computationally cheaper.

Note that the gauge is a universal setting for each individual RT-TDDFT simulation and
applies to all fields specified.

284 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: RT_TDDFT_td_field
Usage: RT_TDDFT_td_field t_start t_end type freq cycle
center width Ex Ey Ez

Purpose: Setting the type, and shape of a possible external field (in the dipole
approximation).

t_start: Start time after which the field is evaluated.
t_end: End time before which the field is evaluated (0 = infinite).

type: Integer that defines the field type as in rt_tddft_external_field.f90.
Possible choices are defined below.

freq: Frequency if applicable (see type).
cycle: Cycle if applicable (see type).
center: Center if applicable (see type).
width: Width if applicable (see type).
Ex, Ey, Ez: Electric field amplitudes.

The choice of the external field depends on the type of calculation that one wants to
perform. To obtain the absorption spectrum via the dynamical electronic dipole response,
a delta-kick field can be applied by e.g. setting type = 2, center, width and Ez to
some values which will apply a gaussian pulse of given amplitude at center time/width
and along the z-axis. width should then be chosen quite small, e.g. to 0.05 fs.

To apply a field pulse with a defined wavelength, one can e.g. set type = 3, freq,
cycle, Ez which will result in a modulated gaussian pulse of given wavelength around
center time.

Multiple instances of this keyword with different settings can be given, e.g. to apply
multiple different pulses over time. Internally, all defined fields are simply added up, so
pay attention to temporal localization (if intended).

Note that the field amplitudes are always given as the amplitudes of the electric field,
even in the case when the velocity gauge is used (see RT_TDDFT_td_field_gauge).
Currently, the following field types are implemented:

e 0: No field at all. This is the default when RT_TDDFT_td_field is not specified.
o 1: Constant field.

e 2: Delta kick pulse via Gaussian:

b0 = oo () (14w (1))
=172)

3.26. Real-Time TDDFT 285

3: Localized field oscillation via sine-modulated Gaussian:
(t—t)%\ .
E(t) = Egexp <_2w? sin <w(t — to)>
A(t) :=E(t)

with w = t,,/(24/210g(2)), t, = FWHM.

4: Sinusoidal field with reference frequency:

E(t) = Eosin (i(t - to))
A(t) :=E(t)

5: Pulse train:

E(t) = Eosin (2:(15 _ t0>)2 cos(w(t — to))

6: Ramp field:

B(t) = (1 — 10)Bo
A(t) :=E(t)

where ty = t_start, w = 27 f and f = freq, ¢ = cycle, t. = center, t,, = width,
Ey = (E,, E,, E.)". Parameters not occuring in a function definition are not referenced
and can be set to any value.

Note that user-defined fields can easily be included in the corresponding subroutine
src/rt-tddft/src/rt_tddft _ext field.f90.
Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_propagator
Usage: RT_TDDFT_propagator propagator
Purpose: Setting the propagation scheme used in RT-TDDFT.

propagator: String that defines the numerical integration scheme. See below
for possible options. Default: exponential midpoint.

The choice of the propagator can have major impacts on performance and there is active
research going on trying to answer the question which propagation scheme is best for
real-time TDDFT. Nevertheless, several well-proven choices exist and can be chosen
here. Additionally, some more or less experimental choices are also implemented but
should be used with caution. The possible integration schemes are listed here:

» exponential_midpoint (EM): Solid standard implicit scheme, see [37].

C(t + At) = exp (—iAtST'H(t + At/2)) C(t)

286 Chapter 3. The Full Monty: All Keywords and Capabilities

« crank_nicolson (CN): Also a solid standard implicit scheme, see [37].

S — iATH(t + At/2)
Clt+ A0 = g am + a2 OV

 etrs (Enforced Time-Reversal Symmetry): Another solid standard implicit scheme,
slighlty more expensive than EM, see [37].

C(t + At) = exp <—iA2tSlH(t + At)) exp <—iA2t81H(t)> C(t)

» cfm4 (Commutator-Free Magnus Expansion 4): A newer implicit scheme that has
proven very well-working and will probably become standard soon, see [78].

C(t + At) = exXp (-ZAtSil (OélHl -+ OéQHQ)) exXp (-ZAtSil (OélHQ + CYng)) C(t)

1 V3 1 V3
a2 =7 F == H1/2—H<t+<2:F6>At>

o runge kutta_4: Standard explicit Runge-Kutta 4 scheme. Works only for very
small time steps but is a good choice for doing accurate reference simulations
because its properties are well-known. See [2] for details.

Note that all above mentioned implicit schemes are defined as implicit as they re-
quire evaluation of the Hamiltonian matrix at some future time. Currently, there are
two ways implemented on how to solve this type of equation which can be set by the
RT_TDDFT_propagator_solver keyword.

It should also be noted here that, when using a predictor-corrector scheme (which is the
default solver for all implicit propagators), accuracy can be enhanced by using extrapo-
lation, see the keyword RT_TDDFT extrapolate_predictor .

Tag: RT_TDDFT_propagator_solver

Usage: RT_TDDFT_propagator_solver solver

Purpose: Lets one choose the solver technique used for time propagation and for
the selected propagator.

solver: String that can be
e predictor_corrector: Standard predictor corrector scheme.

o forward extra: Uses extrapolation to approximate future Hamiltonian in
implicit schemes.

« anderson: Anderson acceleration to solve implicit schemes. [EXPERI-
MENTAL]

» gragg bulirsch_stoer: GBS algorithm [EXPERIMENTAL — do not use].

3.26. Real-Time TDDFT 287

This keyword must usually not be set since every RT_TDDFT_propagator has its own
default setting for the solver. Anyway, one can set the solver manually, e.g. to use one
of the implicit exponential propagators with extrapolation which is much cheaper since
the corrector integration of the Hamiltonian matrix is not applied. Some combinations
are not possible and a warning will be given that default settings will be used. Please
use this option with caution.

Tag: RT_TDDFT_use_precor_tol

Usage: RT_TDDFT use_precor_tol tol

Purpose: Sets a tolerance of density change after which no more corrector steps
are applied when multiple corrector steps may be performed.

tol: Float that sets convergence criterion to exit corrector-loop. Not used by
default.

Performing additional corrector steps until a convergece criterion is reached will formally
increase accuracy. It should nevertheless be noted that the biggest error is probably
introduced already by the predictor step and that significant improvements by doing
additional corrector steps are not to be expected. Every corrector update involves another
integration of the Hamiltonian matrix which is the most expensive part in RT-TDDFT
usually. Before doing more corrector steps, it probably makes more sense to choose
a smaller time step — if accuracy is a problem. If one wants to use this functionality
anyway, values of 107°-107Y would make sense usually. Note that a maximum number
of 10 corrector steps is hardcoded to avoid unnecessary many corrector updates (one
should check settings when this happens).

Tag: RT_TDDFT_precor_steps

Usage: RT_TDDFT_precor_steps steps

Purpose: Lets the user choose the (fixed) number of corrector steps to be done
in the predictor-corrector solver.

steps: Integer setting a fixed number of corrector steps. Default: 1

Please see ~ RT_TDDFT use_precor_tol for further remarks. The default value is
usually a good choice.

Tag: RT_TDDFT_extrapolate_predictor

Usage: RT_TDDFT_extrapolate_predictor extrapol

Purpose: Extrapolation is used for the predictor step in case a predictor-corrector
scheme is used.

extrapol: Bool that defines whether the Hamiltonian in a predictor propagator
is extrapolated. Default: .false.

288 Chapter 3. The Full Monty: All Keywords and Capabilities

The Hamiltonian (matrix) used in the predictor step will be extrapolated by a given
method which can be set via the RT_TDDFT_ham_extrapolation keyword. This
also means that additional storage is needed. The extrapolated Hamiltonian (matrix) is
applied in the predictor step. Tests indicate that extrapolation can noticeably improve
accuracy.

Tag: RT_TDDFT_ham_extrapolation

Usage: RT_TDDFT_ham_extrapolation method order

Purpose: Controls order and method of extrapolation for the Hamiltonian matrix
if applicable.

method: String that can be either linear or lagrange. Default: linear.

order: Integer that defines the order of the extrapolation, i.e. how many past
Hamiltonian matrices are used (and saved) for extrapolation. Default: 1.

The default setting indicating linear extrapolation works well in tests, whereas, in con-
trast, the Lagrange extrapolation approach sometimes produces odd results and should
be used only with great caution.

Tag: RT_TDDFT_propagator_predictor

Usage: RT_TDDFT_propagator_predictor prop

Purpose: A specific predictor propagator can be set in case a predictor-corrector
scheme is used.

prop: String that defines the propagator to be used in the predictor step.

This only makes sense if an explicit scheme like runge_kutta_4 is used as a predic-
tor, or, and this is the usual setting here, if any applicable implicit scheme is used in
combination with extrapolation. A very well-functioning scheme consists of an extrap-
olated exponential midpoint predictor in combination with the CFM4 propagator for
the corrector. This keyword is ignored if no predictor-corrector scheme is in use.

Tag: RT_TDDFT_exponential_method

Usage: RT_TDDFT_exponential method method

Purpose: Lets one choose the method for the calculation of matrix exponentials
as required by some propagators.

method: String that can be either eigenvectors or scaling squaring.
Default: eigenvectors.

Currently, two different approaches to compute matrix exponentials needed for the expo-
nential propagators can be used. The eigensolver-based approach [160] is usually working
perfectly but in the current implementation, it cannot be used for non-hermitian ma-
trices — this can be the case for effective Hamiltonian matrices occuring in Ehrenfest

3.26. Real-Time TDDFT 289

dynamics. In this case, the Scaling and Squaring - method [103] will be applied. Anyway,
this setting will then be adjusted automatically. One can modify this setting mainly for
benchmarking or testing.

Tag: RT_TDDFT_ehrenfest

Usage: RT_TDDFT_ehrenfest type dt_geo

Purpose: Performing a RT-TDDFT-+Ehrenfest simulation, i.e. coupled electron-
ion dynamics.

type: String that defines the Ehrenfest scheme. Must currently only be chosen
as default.

dt_geo: Timestep for geometry update and force computation.

The timestep for Ehrenfest dynamics must obviously be at least the same value as for
electron propagation. Usually, it can be chosen around 2- to 4-fold while maintaining
stable propagation. Since updating the geometry and calculating forces is expensive, the
Ehrenfest time step shoud be as large as possible. Additionally, the specific interplay
of time propagation, force update and geometry update works very good when dt_geo
= Nx dt with N = 4 (in general, even numbers should be chosen when trying out). A
reasonable choice for doing Ehrenfest dynamics should be dt = 0.1 a.u. in combination
with dt_geo = 0.4 a.u. Monitoring energy conservation and norm conservation of the
eigenvectors is advised when trying out settings.

Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_ehrenfest_start_time

Usage: RT_TDDFT_ehrenfest_start_time t_start
Purpose: Setting the start time for Ehrenfest dynamics.

t_start: Time after which non-adiabatic forces are calculated and geometry is
updated in case an Ehrenfest simulation is requested. Default: 0.

Usually, Ehrenfest dynamics start with the begin of a RT-TDDFT simulation when
requested but employing this key can modify the start time in case specific tasks require
this.

Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_ehrenfest_full_nc_forces

Usage: RT_TDDFT_ehrenfest_full nc_forces key
Purpose: When requested, the full non-adiabatic Ehrenfest forces are evaluated.

key: Boolean that controls whether the full force contributions are calculated at
each force computation step. Default: .false.

Usually, it seems that using the 'normal’ non-adiabatic Ehrenfest forces conserving the

290 Chapter 3. The Full Monty: All Keywords and Capabilities

energy (but not necessarily the momentum) is sufficient but by using this keyword, the
complete expression is evaluated — this might be important in specific situations and is
of course more general. Anyway it is more expensive.

Tag: RT_TDDFT_ehrenfest_remove_com

Usage: RT_TDDFT_ehrenfest_remove_com key

Purpose: Controls whether the center of mass is set to origin in Ehrenfest
dynamics.

key: Boolean. Default: .true.

Tag: RT_TDDFT_write_file_prefix
Usage: RT_TDDFT write_file prefix prefix

Purpose: Controls naming of all output files produced by the RT-TDDFT
module.

prefix: String that is used to specify output files. Default: output

All output files have the format PREFIX.rt-tddft.0BSERVABLE.SUFFIX or

PREFIX.rt-tddft-ehrenfest.0BSERVABLE.SUFFIX where PREFIX can be set by the
user to specify simulation settings. For example, energies are by default written to a
file named output.rt-tddft.energies.dat. The corresponding quantities are al-
ways specified (format, units, etc.) in comment headers inside the files. Note that
for any file output, existing files will not be overwritten. Instead, new files named
PREFIX.N.rt-tddft.0OBSERVABLE.SUFFIX with N = 1,2, .. will be created.

Tag: RT_TDDFT_write_ext_field
Usage: RT_TDDFT_write_ext_field key
Purpose: Controls whether the time-dependent external field is written to a file.

key: Boolean. Default: .true.

The external field and all corresponding parameters are written to a file before a real-
time simulation in this case. This information can e.g. be used for postprocessing or
visualization.

Tag: RT_TDDFT_write_cube

3.26. Real-Time TDDFT 291

Usage: RT _TDDFT write cube dt_cube
Purpose: Controls whether time-dependent cubes are written to files.

dt_cube: Real value determining the timestep for which output will be gen-
erated. If possible, this value should be much higher than the real-time time
stepping since computing cubes is costly.

Default cube output is deactivated until this flag is given and the output frequency is
specified. All options that can be used for cube output via the output cube
keyword can be applied here and must be set in addition to this keyword.

Remember using consistent units set by the RT_TDDFT_input_units keyword.

Tag: RT_TDDFT_output_level
Usage: RT_TDDFT_output_level 1level
Purpose: Controls the amount of output written by the RT-TDDFT subroutine.
level: Integer with valid values of:

0: Min output - nearly nothing except basic information is written (NOTE:

no information about physical observables is written in this case, too — use
file output then)

1: Low output - some additional information is written, e.g. energies, dipole
moment

2: Mid output - more is written out, e.g. convergence or accuracy param-
eters, timings

e 3: Max output - this prints info on anything that is being performed

Default: 1

Since real-time TDDFT simulations are usually performed for a significant number of
time-integration /density update/force calculation/etc. operations, the associated output
will result in very large amounts of mostly unnecessary data which can be avoided setting
this keyword. The default should yield sufficient information on what is happening, but
setting it to 2 will give some more information about numerical properties which can be
important to follow.

Please note that important observables, e.g. energies, dipole moment, geometry, etc. are
written to separate files which can be controlled further and which eases post-processing
(see RT_TDDFT write file prefix).

Tag: RT_TDDFT_output_energies

292 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: RT_TDDFT_output_energies key_std key_file

Purpose: Controls whether time-dependent energies are calculated, sent to
output and written to file.

key_std: Boolean controlling whether energies are written to standard output.
Default: .true.

key_file: Boolean controlling whether energies are written to a file. Default:
.false.

Energy should always be observed in order to validate a properly running simulation, i.e.
total energy conservation. Note that when values written to a file too, the correspond-
ing file is named PREFIX.rt-tddft.energies.dat where PREFIX can be changed via the
RT_TDDFT write_file prefix keyword.

Tag: RT_TDDFT_output_dipole

Usage: RT_TDDFT_output_dipole key_std key_file

Purpose: Controls whether time-dependent dipole moment is calculated, sent to
output and written to file.

key_std: Boolean controlling whether dipole moment is written to standard
output. Default: .true. for cluster systems, else .false.

key_file: Boolean controlling whether dipole moment is written to a file.
Default: .false.

The electronic dipole is usually an observable of major interest in many real-time TDDFT
applications. Note that when values written to a file too, the corresponding file is named
PREFIX.rt-tddft.dipole.dat where PREFIX can be changed via the

RT_TDDFT write_file prefix keyword.

Tag: RT_TDDFT_output_state_dipoles

Usage: RT_TDDFT_output_state_dipoles key_std

Purpose: Controls whether time-dependent dipole moments of individual
occupied states are calculated and sent to standard output.

key_std: Boolean. Default: .false.

If given, the dipole expectation values for all occupied (and thus, time-propagated) states
are computed and sent to output. Note that this computation requires the explicit
evaluation of the dipole matrix (¢;|r|¢;) and could cause additional computational cost.

Tag: RT_TDDFT_output_current

3.26. Real-Time TDDFT 293

Usage: RT_TDDFT_output_current key_std key_file

Purpose: Controls whether time-dependent electronic current is calculated, sent
to output and written to file.

key_std: Boolean controlling whether current is written to standard output.
Default: .false. for cluster systems, else .true.

key_file: Boolean controlling whether current is written to a file. Default:
.false.

The electronic current is often the main observable of interest in periodic RT-TDDFT
simulations (analog to the dipole in finite systems). Note that when values written to a
file too, the corresponding file is named PREFIX.rt-tddft.current.dat where PREFIX can
be changed via the RT_TDDFT write_file prefix keyword.

Tag: RT_TDDFT_ehrenfest_output_trajectory

Usage: RT_TDDFT_ehrenfest_output_trajectory key_std key_file

Purpose: Controls whether time-dependent coordinates, velocities and forces are
sent to output and written to file in Ehrenfest dynamics.

key_std: Boolean controlling whether trajectory information is written to
standard output. Default: .true. for Ehrenfest dynamics, else .false.

key_file: Boolean controlling whether trajectory information is written to a
file. Default: .false.

Note that when values written to a file too, the corresponding file is named PREFIX.rt-
tddft-ehrenfest.trajectory.xyz where PREFIX can be changed via the
RT_TDDFT write_file prefix keyword.

Tag: RT_TDDFT_restart_write

Usage: RT_TDDFT restart_write t_write_restart
Purpose: Writes a RT-TDDFT restart file for a specified time.

t_write_restart: Real value corresponding to specific time for which a restart
file should be written.

All neccessary information to perform a RT-TDDFT restart is written to file/s in this
case. In detail, all the eigencoefficients, coordinates, settings, etc. Multiple entries of
this keyword for different times can be given.

Tag: RT_TDDFT_restart_write_period

294 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: RT_TDDFT_restart_write_period t_write_restart_period

Purpose: Writes a RT-TDDFT restart file repeatedly after each specified time
period.

t_write restart: Real value corresponding to specific time period after which
a restart file should be written.

See RT_TDDFT restart _write for details. When doing very demanding simulations
and/or very long simulations, one should set a sensible value here to avoid needing to
restart from the beginning after a job was cancelled. Writing a restart file automatically
when a kill signal is received is on the do-to list.

Tag: RT_TDDFT_restart_read

Usage: RT_TDDFT_restart_read restart_file
Purpose: Reads a RT-TDDFT restart file and starts the simulation based on it.

restart_file: String describing the corresponding restart file.

Besides the physical quantities, the restart file contains all relevant real-time simulation
parameters which are compared to what is given in control.in. The settings must be the
same or the simulation will abort. This also works for Ehrenfest dynamics. Note that
when performing a restart, FHI-aims will run a SCF cycle, but the resulting eigenvectors,
etc. will be overwritten from what is read in the restart file - based on this, the real-time
simulation will be re-initialized.

Tags for geometry.in

Tag: RT_TDDFT_initial_velocity
Usage: RT_TDDFT_initial_velocity v_x v_y vVv_z

Purpose: Initial velocity of corresponding (i.e. last specified) atom when
peforming RT-TDDFT-Ehrenfest dynamics.

v_x, v_y, v_z: Initial velocities in units of A/ps.

Putting initial kinetic energy into the ionic subsystem is a common initial condition used
in Ehrenfest dynamics, e.g. when simulating ion bombardment or to evaluate molecular
potential energy surfaces.

3.27. Bethe-Salpeter equation: BSE 295

3.27 Bethe-Salpeter equation: BSE

The serial BSE runs both with and without Tamm-Dancoff Approximation (TDA) and
print out both results by default. The parallel BSE runs only with TDA at the moment.

The BSE eigenvalue equation in matrix form is:
A B X1 Xl
—-B —A| | X; X5

where A: Excitation energies; X, X5: Excitation eigenvectors; matrix element A and B
are calculated by quasiparticle energies, Coulomb and screened Coulomb integrals;

A = 5T < qa|V]jb > + < ij|W(w = 0)|ab > +(ESF — EP")5,;0u

B = —o%T <ia|V]bj > + < ib|W(w = 0)|aj >
S/T

=A

where 7, j: occupied states; a,b: unoccupied states; « = 2 for singlet states; 0 for
triplet states. The TDA considers only block A, which is symmetric and easy to solve.

Tags for general section of control.in

Tag: neutral_excitation

Usage: neutral_excitation type
Purpose: Triggers the calculation of neutral excitations.
type: String that defines the type of calculation to be performed.

o bse: Full BSE calculation without TDA for serial run; TDA BSE for parallel

Also the keryL\l/\rl]érd empty_states should be set to a large number (e.g., 1000), or
the keyword calculate_all_eigenstates should be used, to make sure the code
generates all possible empty states provided from the basis set. This number will also
be reduced automatically by the code to the maximum number that can be generated
from the basis set.

Tag: read_write_qpe

Usage: read_write_qpe type

Purpose: Specify write quasiparticle energies (qpe) in GW calculation or read gpe
in BSE calculation

type: String that specify read or write gpe, or both.

e w: write gpe to a file, used together with qpe_calc

 r: read gpe from a file, if this value('r') is set, a file "energy_qp" should
be provided by the user. The energy in the file "energy_qp" should be in
hartree unit.

o wr or rw: write gpe in GW and read gpe in BSE

296 Chapter 3. The Full Monty: All Keywords and Capabilities

Tag: bse_s_t

Usage: bse_s_t type

Purpose: Specify whether singlet or triplet excitation energies should be calculated
in BSE calculation.

type: String that specify wheter singlet or triplet, can not do both at the moment.

o singlet: Singlet states calculated in BSE.

o triplet: Triplet states calculated in BSE.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 297

3.28 DFPT - density functional perturbation theory

for lattice dynamics and homogeneous electric
fields

All these DFPT features are written by Honghui Shang and coworkers at FHI, when
using routines related to DFPT, please contact shang®fhi-berlin.mpg.de.

The density functional perturbation theory (DFPT) is in principle the perturbation form
of DFT, which is only needed for the second and higher order derivatives (2n + 1 the-
orem). For example, for the calculation of vibrational frequencies and phonon band-
structures (second order derivative) the response of the electronic structure to a nuclear
displacement (first order derivative) is needed. These derivatives can be calculated in
the framework of density-functional perturbation theory (DFPT). DFPT provide access
to many fundamental physical phenomena, such as superconductivity, phonon-limited
carrier lifetimes in electron transport and hot electron relaxation, Peierls instabilities, the
renormalization of the electronic structure due to nuclear motion, Born effective charges,
phonon-assisted transitions in spectroscopy as well as infrared and Raman spectra.

We support DFPT calculations

» For vibrations in non-periodic systems and phonons in periodic systems.

» For homogeneous electric fields in non-periodic systems (polarizability) and in
periodic systems (dielectric constant).

There are three key references that provide the technical background for these sections:

1. Lattice dynamics calculations based on density-functional perturbation
theory in real space
Honghui Shang, Christian Carbogno, Patrick Rinke, Matthias Scheffler
Comp. Phys. Comm.215, 26 (2017)

2. The moving-grid effect in density functional calculations of harmonic vi-
bration frequencies using numeric atom-centered grids
Honghui Shang, to be submitted to J. Chem. Phys.

3. All-Electron, Real-Space Perturbation Theory for Homogeneous Electric
Fields: Theory, Implementation, and Application within DFT
Honghui Shang, Nathaniel Raimbault, Patrick Rink, Matthias Scheffler, Mariana
Rossi, Christian Carbogno
New J. Phys. 20, 073040 (2018)

298 Chapter 3. The Full Monty: All Keywords and Capabilities

digectric

atomic displacement

@ For molecules:
"DFPT vibration”, "DFPT vibration_reduce_memory”

@ For solid :
"DFPT phonon”, "DFPT phonon_reduce_memory”

electric field

@ For molecules:
"DFPT polarizability”

@ For solid :
"DFPT dielectric”

Figure 3.6: The DFPT feathers in FHI-aims.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 299

Theory
Lattice Dynamics

In order to get vibration/phonon frequencies, first we need to get dynamical matrix,
Let's define a lattice vector Ry, as

Rrm =Rr + Ry, (3.74)

whereby R,,, denotes an arbitrary linear combination of a;, as, and a3. And the dynam-
ical matrix D;y;(q) is a Fourier transform of harmonic Hessian matrix (Force constant)

oy
Drs(q) = \/72@?%? exp (iq - Rm)
- ! 3 s exp (iq - Run) (3.75)

MiM; 47 dRmdRy

Since the finite (3N x 3N) dynamical matrix D(q) would in principle have to be deter-
mined for an infinite number of g-points in the Brillouin zone. Its diagonalization would
produce a set of 3N g-dependent eigenfrequencies wy(q) and -vectors e, (q).

In order to derive the second order derivatives for total energy analytically (which is
the key idea for the DFPT approach), the ground state total energy and force is derived
first and we could get this second order derivatives directly. It is should be noted that,
here real-space DFPT method is used, so that we could get the real-space force constant
directly.

In FHI-aims, the total energy is calculated by using band-energy, a derivation for cluster
systems is a following, and the extending to extended systems is straightforward.

1 Zr
Exs=—=% < ¢:|V?|6s —/ P
KS 2 - <¢| |¢ > TL(I’) - |I'—R]| r+

AR,
drdr + = + E.c(n) (3.76)
= PN e
using
N 1
M = —=V2 — / d ve
= k 2 Z| R[| + |I' r+uv ()
we have

=3 < Gilhnlon > / (1) Vg (1)) + Fpe(n)

2// ddr+ ZZ 2121

T o7 u—

= Z fi€i — / [n(r)vge(r)]dr + Eype(n)

(3.77)

300 Chapter 3. The Full Monty: All Keywords and Capabilities

Sl

- Z e — / 1)0so(1)]dr + Epo(n)

1 n(r)n(r , Zr
_2//\1'—1"\ drdr +2/n(r)zlz‘r_RI‘dr

L1 ZZ|RIZI—Z;{J| 2/n(r)zlj|r_ZIRI|dr (3.79)

I JAI

L2y

d dr' + - (3.78)
IR

=3 fiei = [[n(r)ene(m)ldr + Ere(n)

- /n(r)[; VI7(r = Ryl) + 6Vi(Jr — Ry)]dr

1 7’66
527 Z VI (Ry — Ral) + Y 6Vs(|Ry — Ry)] (3.80)
T

JAI

[\

- Z fiei — / () 0z (x)]dr + Eoe(n)
Zves tot | - R]D]dr

= Z Z es tot) + Z VJes,totORJ o RID] (381)
J#I

Here Eq.(3.81) is exactly the one to calculate Kohn-Sham total energy. An extension
expression to extended system is in Eq.3.82

Eipp = —— kalekl — [[n(r)ve(r)]dr + Epe(n) (3.82)
1 €S,10
3 POV e~ Rl
1 €S,10 es,to
—5 2.2V O+ > V(R — Ral)]
I (J;m)#(1,0)

Then we get the analytical force expression for cluster systems:

dEkgs
FI:—dIfI =FIF L FP 4 FY
Zr 1 Z1 7,
a([n(r —————dr (= _
NG = T bad i T
aR[a]-:{I

dx . Ox 95,
- Z[P /(aR hkSXl/ + X,uhks 8R)d - W'LWTR,]]

uv

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 301

~ [ntr) - nMP(r)]avaRI(r)dr (3.83)

Here P, refers to density matrix and W, refers to energy density matrix. Here the first
term is Hellmann-Feynman force using Hellmann-Feynman theorem ; The second term
is Pulay term, it comes from basis set dependence of atomic coordinate; The third term
is multipole force, it count the contribution from multipole expansion error for Hartree
energy calculation (multipole Poisson solver).

Under periodic boundary conditions, we get the following expression for force for extended
systems:

av@&,tOt(O) avesvtOt(’RJ _ R[)’
Fill=Z)—0——+ > (—) (3.84)
R, (Im)#(,0) Ry
0
25 (R s, 69
k,i,p,v

In our real-space DFPT method, this harmonic Hessian matrix is calculated directly, as
explained in our paper. The Hessian can be split into two part

d’E
2 KS HF
By = pm, = O + o7, + Phi}!! (3.86)
Z] 1 Z]ZJ
82 n\r ———dr 82 - e —
:[_ (f ()EI ‘I‘—R[|) <2ZIZJ7$I ’R[_RJ‘)]
aRfﬁuJ aRlaRJ
8PW 8)(“ <~ Oy
Pos X hs dr
aRJ/ ks X+ Xuhks g)

Xy 2 8)(Ohy 8)(ox
P., / X vy X ks E s X0 gy
+; w | GRom, ™Y + 3R, oR, X T OR, " oR,

Xy OXy Ohys X %X,
Z / hwsoR, TXeaR, R, X s RoR, ™
OE,, 0S,, S
— E,—_
%: OR,; OR; ; H 8R[0RJ)

v

On(r) — nMP(r)] OVME (1)
+ [, R, "

aQVMP()
+/ "SRR, O

It can also be divided into three part: Hellmann-Feynman Hessian, Pulay Hessian, Mul-
tipole Hessian. In real calculation, we drop multipole Hessian due to its value is only
103 times small compared with the other two.

302 Chapter 3. The Full Monty: All Keywords and Capabilities

Under periodic boundary conditions, we get the following expression for force constants:

d*EXS dF; _ dF;
pharm — 7 — 5 — ir oL 3.87
T T P T (3.87)
HE = 7 _d_ovirO)) (3.88)
Ia.J "\dr, oR,)" '
d OV ' (|Ry — Ryy)
_z 1— 675 ,
/ <dRJ IR, (= 100

in which &7 70 = 017050 denotes a multi-index Kronecker delta.

For the sake of readability, its total derivative is split into four terms:

O ;=00 + O+ 01 + LT (3.89)
The first term
_ dP, OX (1) 2
P-P _o pmvn / s G xom(T) d 3.90
P2y (D) [Pl e (3.90)
accounts for the response of the density matrix P7..", . The second term
O = 2% Pumn- (3.91)
pm,rn
Xy (r) 2
————— hps Xun(r) d .92
(/S vty (3.92)
aXum()dhks
d 3.93
H SR R, R, (3.93)
8Xum A 8len()
s d 3.94
+/ oRs, ™ om, (3:94)

accounts for the response of the Hamiltonian ﬁks(k), while the third and fourth term

vn aX m(r)
oP-W — 9 W, / " (1) d 3.95
Is,J ;m;n iR, OR;. X (r) r ()
ox
o5 = 2% Wi / pm Xom(r) dr 3.96
Is,J ‘W;n w aR aRIs) ()

for the response of the energy weighted density matrix W, ., and the overlap ma-
trix Spum,n, respectively, Please note that in all four contributions many terms vanish
due to the fact that the localized atomic orbitals x ., (r) are associated with one specific
atom/periodic image R j(uym, which implies, e.g.,

Nian(r) _ (1)
a:R/Is a]-:{/Is

5J(,u)m,[s . (397)

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 303

. o . . . 0P
In in above force constants, it is clear that the first order density matrix 6I£W and
J

the first order energy density matrix ——"~

are needed. These first order qualtities are

J
obtained in the DFPT cycle. The flowchart of our DFPT cycle for lattice dynamics is
shown in Fig.3.7.

Our resulting frequencies look like this:

DFPT-Results:

List of all frequencies found:
Mode number Frequency [cm™(-1)] IR-intensity [D~2/Ang~2]

1 -2282.47061452 0.00000000
2 -2282.47061452 0.00000000
3 -0.00004008 0.00000001
4 0.00003217 0.00000000
5 0.00006390 0.00000000
6 5546.30603353 0.00000000

For vibration calculation, there are there keywords to choose:

e DFPT vibration
o DFPT vibration_reduce_memory

o DFPT vibration_with_moving_grid_ effect

A comparison for these three features as well as DFT calculation is shown in Fig.3.8

In phonon calculation, only Gamma point results is printed in the output like this:

DFPT-Results: for ql= 0.000000000000000E+000 0.000000000000000E+000
0.000000000000000E+000

List of all frequencies found:
Mode number Frequency [cm™(-1)]

1 -2376.08047043
2 -2376.08047043
3 -0.00004497
4 0.00001694
5 0.00009141
6

5113.49725256

A typical phonon band structure is shown for Graphen in Fig. 3.9

A scaling test for DFPT code for lattice dynamics is has been done for Si system, with
up to 1024 atoms in the unit cell see Fig.3.10.

304 Chapter 3. The Full Monty: All Keywords and Capabilities

electronic density l’l(l‘) DFT

|
(" ™\
1%-order overlap S (1)
N\ J

o | PO e

density matrix ﬂ o

1*-order density n(2 (r)

\§ J
1%-order total (DU
electrostatic Ves fot (1‘) } DFPT
potential 2 Tl
- N
1*t-order H(1)
Hamiltonian {)

(" ™\
15-order expansion C(1)
coefficients |)

e N\
1%%-order energy ‘N 7(1)
density matrix)

J
4 N\
force constants (I)

G J

— 4
dynamical matrix ()

_Dlq

J

Figure 3.7: Flowchart of the lattice dynamics implementation using a real-space DFPT
formalism.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 305

_ ﬁ Basis set: minimal
H2 molecule - Grid: tight setting

Delley partition-tab XC : LDA
(1) DFT (2) DFPT vibration_reduce_memory
(Time = 22 000 ms) (Time = 73 000 ms)
. vf*‘ - T l o | .] o w0
|
peak memory = 28.0 |\”|B : || peak memory = 28.4 MB
‘use_partition_deriv = .false. " use_partition_deriv = .false.
-~ hamiltonian(*) . .|\l first_order H(*)
(3) DFPT vibration (4) DFPT vibration_with_moving_grid_effect
(Time = 161 000 ms) (Time = 169 000 ms)
A
' peak memory = 33.2 MB ' peak memory = 34.6 MB
'use_partition_deriv = .false. | use_partition_deriv = .true.
rl'JﬁrsoL_oﬁdeeH(BTn@tﬂm‘%—*)— - .| first_order H(3,n_atoms, *)

Figure 3.8: The memory profiles using valgrind are shown for DFT and three DFPT vi-
bration keywords. It is clearly shown that the DFPT _vibration reduce memory(28.4
MB) code just use nearly the same memory as DFT (28.0MB) calculation, while
DFPT_vibration(33.2 MB) and DFPT_ vibration_ with_moving_ gird(34.6 MB) need
higher memory because they stored matrix as (3,n_atoms, *).

306 Chapter 3. The Full Monty: All Keywords and Capabilities

Graphene

2500 .)
finite-difference ©

DFPT =—
2000 |

T

1500

1000

Frequency (cm_l)

500

Figure 3.9: Vibrational band structure of graphene computed at the LDA level using both
DFPT (solid blue line) and finite differences (red open circles). All calculations have been
performed using a 11x11x1 k-grid sampling for the primitive Brillouin zone, tight settings
for the integration, and a tier 1 basis set.

Homogeneous Electric Fields

Suppose we have an external electrical field £, the Hamitonian is changed by adding the
following term:

Hp=-r-¢ (3.98)
and the induced total energy becomes:
1
Eior = E?Ot - Z prér — 9 Z arg€rés (3-99)
I=x,y,z I,J

Here 1i; label the dipole moment,

pr = /n(r)r;dr (3.100)

and the corresponding polarizability is defined as the first order derivative of dipole
moment with respect to external electrical field :

0 0
- /r[gg)dr (3.101)

“nr= oc;

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 307

Si, light, tier 1, 128 cores EOS

2400 T T
2200
2000
1800
1600
1400
1200
1000

800 |-

600

401 DFPT-scalapack -8]

“R28 256 510 1024
number of atoms in unit cell

For one atom one coordinate

Time per DFPT s.c.f. iteration ()

Figure 3.10: The CPUT time per DFPT cycle as a function of the number of atoms in
unit cell on 128 CPU cores.

The polarizability for cluster system can be calculated using 3.101 without any problem.
However, for extended systems, the position operator is unbound, in order to deal with

. _ W), (k))
It, we use <w1(k>’ —I“w]’(k» - (82(1{) —€j(k)) '
(Eq.3.101) for extended system as

OéIJ—/ 1 (%J (3.102)

%%IWM»&%&%%C 3.103)

and the corresponding dielectric constant is

so we can rewritten polarizability

47

VucOé]J (3104)

(o0}

P
"” is needed to

Similar to the lattice dynamic case, the first order density matrix
J

be calculated using DFPT cycles. The flowchart of our DFPT cycle for electric field is

shown in Fig.??.

In order to validate our implementation for extended system, we compare the polaris-
ability with cluster extended method, We use hydrogen line (Hz) as a showcase. All

308 Chapter 3. The Full Monty: All Keywords and Capabilities

electronic density [n(l') J DFT
Il

1%"-order (P(D \ \

density matrix - =

N

| \
1*-order density n(:) (r)
I J

1%-order total [)
electrostatic Ves fot (I‘) J DFPT
potential - 2 il
4 N
15t-order H(1)
Hamiltonian |_ y

i}

4 N
1%-order expansion (1)
\ coefficients |_ U (k) J /

I
Polarizability CL/

Figure 3.11: Flowchart of the electric field implementation using a real-space DFPT for-
malism.

calculations have been performed with a geometry shown in Fig.3.12 using the tight
integration grids and "minimal" basis sets. For the periodic chain, a reciprocal-space
grid of 35 x 1 x 1 electronic k-points (in the primitive Brillouin zone) has been utilized
as substantiated convergence in Tab. 3.2. The convergence with respect to electronic
k-points is reasonably fast, in which k grid 35 x 1 x 1 has already get converged with
absolute and relative errors of 0.09 Bohr® and 0.07 % compared with k grid 70 x 1 x 1.

For cluster extended method, the results are fitted with an equation

b
In (OCN — OéN_l) =a++ N (3105)

k 10 20 35 40 70
0y | 18049 134.76 130.17 130.29 130.26

Table 3.2: The k-convergence tes for polarizabllities per Hs unit cell.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 309

So the limiting value of the polarizability per unit cell with N going to infinity is given :

]\}131)0 Qe = expla) (3.106)

Here we fit the DFPT results (N=52 to 64) with an equation

b
1n(aN—aN_1) :CL—FN (3107)

So the limiting value of the polarizability per unit cell with N going to infinity is given :

A}l_l}n Qe = exp” (3.108)

and finally get
a = 4.857 (3.109)
b=—1.123 (3.110)

(3.111)

so we have a(Extrapolation),,. = 128.718

Some Technical details

Screened Method

In periodic systems, the Coulomb potential is long range, e.g. in a H atom as shown in
Fig. 3.13, both Vijeeiron—ion and VAT are (separately) never zero (they decay
as 1/r but the number of atoms which they interact with in a periodic system grows as
r? with distance). If we use the neutral free atom potential instead, the potential will
approach zero at the radius where the electron charge integrates to exactly —1, which

is a finite radius determined by the confinement potential in FHI-aims.
The general idea of screened scheme is to use free part of electronic Coulomb potential
to screening the ion charge Coulomb potential and get short-range neutral potential:

Vi (It = Ril) = Vitectron—ion + Vilees (3.112)

neutral lectron—electron
7 free r — R
Ir — R;| Ir — 1’|

So the total electrostatic potential can be written as[26]

Zi n(r')
=—) — d 3.113
Z\r—RImI+/|r—r’] ' ()
nf7e (') + on(r')
d/
Iz: le] +/ lr — /| ’
=Y [V = Rml) + 6V (It = Ryl (3.114)

Im

310 Chapter 3. The Full Monty: All Keywords and Capabilities

Hy (aw) | offFT oDFFPT
2 9.923 9.923
4 34.042 24.118
6 73134 39.092
8 126.619 53.485
10 193.231 66.612
12 271.317 78.086
14 359.107 87.790
16 454.896 95.789
18 557.150 102.254
20 664.553 107.404
22 776.018 111.464
24 890.662 114.644

26 1007.790 117.128
28 1126.853 119.064
30 1247.430 120.577
32 1369.190 121.760
34 1491.883 122.693
36 1615.312 123.429
38 1739.328 124.016
40 1863.812 124.485
42 1988.677 124.865
44 2113.848 125.171
46 2239.272 125.423
48 2364.903 125.631
50 2490.709 125.806
52 2616.657 125.949
54 2742.728 126.071
o6 2868.902 126.174
o8 2995.166 126.264
60 3121.505 126.339
62 3247909 126.404
64 3374.371 126.462

Table 3.3: Total longitudinal polarizabllities calculated using PZ-LDA molecular hydrogen
chains, with bond length alternation scheme A (H-H = 2.0 a.u., Ho-Hs = 4.5 a.u. Also we
list the longitudinal polarizabllities per Ha unit cell calculated by (ay — an—1).

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 311

Electric field

>»» 2.0 a.u.
&& COEE 6L O (O

2.5 a.u.

180} Oligomers (DFPT) -9- T
160 Extrapolation — |
140 - Polymer (DFPT-PBC) — |

0~ 10 20 30 40 50 60

Number of hydrogen atoms

Longitudinal polarizabilities per H, unit

Figure 3.12: Total longitudinal polarizabllities per Hy unit cell calculated using DFPT
with PZ-LDA for molecular hydrogen chains, the bond length is H-H = 2.0 a.u., Ho-Hs =
4.5 a.u., as shown in the figure. The extrapolated value of a2FPT is 128.7, hsted with red
line. The DFPT-PBC value is 130.2, listed with black line.

Velectron-ion -
Vfree .
05 electron-electron
— free _
S \Y neutral
8
8 o
©
2
-05
10 10 15 20
r(au.)

Figure 3.13: The screened scheme can remove long-range tail of Coulomb potential. Here
we use H atom as an example.

312 Chapter 3. The Full Monty: All Keywords and Capabilities

T

1
\ electron-ion ~
Vfree(l) -
electron-electron

free(1
\ ool)neutral -

051

First order potential (a.u.)

! ! ! ! ! !

0 2 4 6 8 10
r(au.)

'
=

Figure 3.14: The screened method for first order potential. Here we use H atom as an
example.

We follow the line of screened scheme, the first order total electrostatic potential Xfe(sllot(?*)
can be written as

Z nM (r')
(1) _ 1 (1) / /
Ves tor(T) (%: = Rznl) S A (3.115)
ZI nfree(r/) 4 (571(1")
0— n T 0 dr’
_ (Z[, |r_RIn|> N (f ’I'—I'/’)
OR 1, OR [,
OV (e —Runl) | o)
B OR 1, lr —r/|
avFe(|r — Rynl) 96V(r)
= 11

avfree(|r7R1m|)

In this way, the first order total electrostatic is divided into two part: free part IR,

90V(r) - 35 shown in Eq. (3.116).

and residual part .

Sparse Matrix

Pleas note that, all matrices in our real-space implementation are in sparse matrix form.
see Fig 3.15 We choose the matrix elements which is just in touch with unit cell basis
sets, as labelled by i-place in the middle.

Using Pulay mixer

The Pulay mixer is the same as the one used in Magnetic Response. However, in current

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 313

Figure 3.15: The sparse matrix storage in FHI-aims for overlap matrix, Hamiltonian matrix
and density matrix, here is an example for Ho-line. In total, there are 13 cells (i-cell), with
cell-index from [-6,0,0] to [6,0,0]. Only centers (i-center) within these cells are considers
to build sparse matrix (i-place), the other original centers are just dropped because of no
overlap with unit cell.

cell-index i-cell i-center i-place origin-cell origin-center
0 1 | [1] 1 1 1]
2 2]3 2
-6 2 3 i 33 65|
4 5]6 66/
5 3 5 F2l 42 83!
6 89 84
-4 4 7] 10 | 51 101
8 1112 102
-3 5 | o 13 | 60 | 119
10| 1415 120
-2 6 | 11 16 | 69 137
12 17]18 138
1 7 | 13 19 | 78 155
14 2021 156
1 8 | 158 22 | 95 | 189
16 2324 190
2 9 | 17 25 104 | 207
18 2627, 208
3 10 | |19 o8 113 | o5
20 2930 226
4 11 | 21 31 122 | 943
22 3233 244
5 12 | (23 34 | 131 | 261
24 3536 262
6 13 | |25 37 140 | 279
% 260

DFPT phonon

DFPT phonon_reduce_memory

DFPT polarizability

DFPT dielectric

by default, the Pulay mixer (pulay step 8) is used, and the mixing parameter is set by

DFPT _mixing 0.2
DFPT_sc_accuracy_dm 0.001

The Pulay mixer can be changed by writing the number of pulay steps in contron.in.

dfpt_pulay_steps 8

314 Chapter 3. The Full Monty: All Keywords and Capabilities

Tags for general section of control.in

Tag: DFPT vibration

Usage: DFPT vibration [subkeywords and their options]

Purpose: Allows to calculate vibrations using density-functional perturbation
theory, use Acoustic Sum Rule (ASR) to get Hessian matrix, do not use
moving-grid-effect.

Usage: DFPT vibration with moving grid_effect [subkeywords and
their options]

Purpose: give the results for vibrations with moving-grid-effect, do not use ASR
for Hessian matrix.

Usage: DFPT vibration_without_moving grid_effect [subkeywords
and their options]

Purpose: give the results for vibrations without moving-grid-effect, ONLY served
as comparison with vibration_with_moving_grid_ effect.

Tag: DFPT vibration_reduce_memory

Usage: DFPT vibration_reduce_memory [subkeywords and their
options]

Purpose: Allows to calculate vibrations density-functional perturbation theory
by using nearly the same memory as DFT. At present, functionals LDA,
PBE are supported, relativistic is also supported. It should be noted that
PBE and PBE+TS is supported only for DFPT cycle (first-order-H), but
not for Hessian. Only linear-mix (no Pulay-mixer) can be used for DFPT
vibration__reduce_memory at present.

Here is an example, the following need to be added to control.in:

DFPT vibration_reduce_memory
DFPT_mixing 0.2 #default is 0.2
DFPT_sc_accuracy_dm 1E-6 # default is 1.0d-6

Tag: DFPT phonon_gamma

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 315

Usage: DFPT phonon_gamma [subkeywords and their options]

Purpose: Allows to calculate phonon for PBC systems using density-functional
perturbation theory. This feather use the dense matrix in FHI-aims, which
cost a lot of memory, so this keyword only served as a benchmark for DFPT
phonon__reduce_memory.

Tag: DFPT phonon

Usage: DFPT phonon [subkeywords and their options]

Purpose: Allows to calculate phonon (real space method) for PBC systems using
density-functional perturbation theory. This method could get force constants
using real space method and give the phonon band structures. At present, only
functionals LDA without relativistic is supported.

Here is an example for using DFPT phonon, the following need to be added to control.in:

DFPT phonon

DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT phonon_reduce_memory

Usage: DFPT phonon_reduce_memory [subkeywords and their
options]

Purpose: Allows to calculate phonon (reciprocal space method) at q point
for PBC systems using density-functional perturbation theory. At present, this
keyword only works to get dynamic matrix at ¢ = 0. This feature is under
developing. At present, functionals LDA, PBE are supported, relativistic is also
supported. It should be noted that PBE and PBE+TS is supported only for
DFPT cycle (first-order-H), but not for Hessian.

Here is an example for using DFPT phonon_reduce_memory, the following need to be
added to control.in:

DFPT phonon_reduce_memory

DFPT_mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT polarizability

316 Chapter 3. The Full Monty: All Keywords and Capabilities

Usage: DFPT polarizability [subkeywords and their options]

Purpose: Allows to calculate polarizability for cluster systems using density-
functional perturbation theory.

For "DFPT polarizability", functionals LDA, PBE, HF(RI-V) are supported, rela-
tivistic is also supported.

Here is an example for using DFPT polarizability, the following need to be added to
control.in:

DFPT polarizability

DFPT _mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT dielectric

Usage: DFPT dielectric [subkeywords and their options]

Purpose: Allows to calculate dielectric constant for extended systems using
density-functional perturbation theory. For "DFPT dielectric", functionals LDA,
PBE, are supported, relativistic is also supported.

Here is an example for using DFPT dielectric, the following need to be added to con-
trol.in:

DFPT dielectric

DFPT mixing 0.5 #default is 0.2
DFPT_sc_accuracy_dm 1.0d-6 # default is 1.0d-3
dfpt_pulay_steps 6 # default is 8

Tag: DFPT_width

Usage: DFPT_width width

Purpose: Removes the divergence that can arise in case of small eigenvalue dif-
ferences and/or fractional occupation numbers. This keyword is to employ in
combination with a DFPT dielectric calculation. Note that it has not been thor-
oughly tested, and some small adjustments might be needed.

width is a real number that corresponds to the width of the smearing function
(in eV). A value of 0.01 eV proves reasonable in most cases.

The usual expressions employed to calculate the first-order quantities fail when
tiny eigenvalue differences are present and/or when the system under study has
some fractional occupation numbers, potentially leading to divergences when cal-
culating the polarizability and dielectric constant. In order to circumvent this, we
use a similar scheme as the one proposed by de Gironcoli [51], which makes use
of smearing functions to convolute the density of states.

3.28. DFPT - density functional perturbation theory for lattice dynamics and
homogeneous electric fields 317

318 Chapter 3. The Full Monty: All Keywords and Capabilities

3.29 Calculating polarization of solids with FHI-aims

This section describes the relevant keywords connected to the implementation of the
Berry-phase formalism within FHI-aims. The theory behind these flags will soon be
summarized here.

Tag: output polarization

Usage: output polarization pol_direction n_kpoints_dirl
n_kpoints_dir2 n_kpoints_dir3

Warning: At the current stage, ScalaPACK is not supported, yet.