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Introduction

If we wish to deal with nasty, badly behaving, time series data...
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Introduction

...we should first be familiar with nicely behaving stochastic
processes and their properties.
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Week 3: Stationary stochastic processes and ARMA

models

@ Stationary stochastic processes
@ Definition
@ Autocorrelation function
© Partial autocorrelation function
@ Lag and difference operators
@ Difference stationarity

@ ARMA models

@ Pure random process
@ Different SARMA models
© Spectrum
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Stochastic processes

@ A stochastic process (x;):c1 is a (time-)indexed collection
of random variables defined on some common probability
space. Each

Xy, teT

is a random variable representing a value attime t € T.
e The joint distribution of the random variables x; defines fully
the behaviour of the process (X;):e7.

@ Here, we consider discrete time stochastic processes for
which the index variable takes a discrete set of values.
That is, we assume that T Z :={...,—2,-1,0,1,2,...}.

@ We do not consider continuous time processes. (For
example processes for which T is the set of positive real
numbers.)
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Time series as a stochastic process

@ In time series analysis an observed time series is
interpreted as a realization of some stochastic process.
e In comparison, i.i.d. observations are interpreted as
realizations of some random variable.
@ In time series analysis, we wish to:
@ Find a suitable stochastic process that fits to the observed
time series.
@ Estimate the parameters of the corresponding stochastic
process and conduct hypotheses testing.

@ Construct predictions of the future behaviour of the time
series.
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Expected value, variance and covariance: Definitions

The expected value of x;, the variance of x; and the covariance
of x; and xs are useful, if one wishes to describe characteristics
of the stochastic process (x;)¢c7:

@ The expected value of x; is denoted by:

E[Xt] = Mt, teT

@ The variance of x; is denoted by:

var(xt) = E[(xt — ue)?] =02, teT

@ The covariance of x; and x; is denoted by:
cov(Xt, Xs) = E[(Xt — put)(Xs — ps)] = s, t,SET.

Here, the expected values are calculated with respect to the
(marginal) distribution of x;.
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Stationarity

Stochastic process (x;):c 7 is called stationary (or weakly
stationary) if:
@ The expected value does not depend on time:

E(xt)=pn, forallteT

@ The variance is finite and does not depend on time:

var(x) = 0% < oo, forallte T

@ The covariance of x; and xs does not depend on the time
points t and s. It only depends on the difference of t and s:

cov(Xt, Xs) = Yt—s, forallt,se T

@ A process (x;):cr is called strictly stationary if the joint
distributions of (x¢1, Xi2, ..., Xtn) @nd (Xt11n, Xt21hy -+, Xinr-n) are the
same for all n, h, 11, t2, ..., tn.
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Stationary stochastic processes

When you take a look at a realization of a stationary stochastic
process you should NOT detect

@ Trend
© Systematic changes in variance
© Deterministic seasonality
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The importance of stationary processes in modeling

time series data

Discussion

MS-C2128 Prediction and Time Series Analysis Stationary stochastic processes and ARMA models



Autocovariance: Definition

The k. autocovariance ~, of a stationary stochastic process
(xt)teT is defined as

Vi = V- (t-k) = cov(Xt, Xt—k) = E[(Xe—p)(Xe—k—p)], te€ T, k€ Z

In particular

Yo =var(xt) =02, teT.
The autocovariance function of a stationary stochastic process
(xt)teT is @ function of the autocovariances, v : Z — R,

v(k) = forall k € Z.
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Autocorrelation: Definition

The k. autocorrelation coefficient p, of a stationary stochastic
process (x;):c1 is defined as:

pk:%’ keZ.
0

@ The autocorrelation coefficient px of (x¢);cT measures how
strong the linear dependence of the variables x; and x;_
is.

Q po=1
@ prk=pcforallkecz
@ |pk] < 1forallk e Z.

@ The autocorrelation function is the function p : Z — [—1,1],

p(k) = px, forallk e Z.
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Partial autocorrelation: Definition

The k. partial autocorrelation coefficient ay of a stationary
stochastic process (x;):c 1 is defined as:

o = cor (X, Xt—k | Xt—1,-oes Xt—k41) LET, KEZ

@ Partial autocorrelation coefficient is the conditional
correlation of x; and x;_ with respect to x;_1, ..., X¢ k1.

@ Partial autocorrelation coefficient measures the correlation
of x; and x;_x, when the values x;_1, ..., X;_x,1 are known.
@ =1
@ ar=oforallkez
@ || <1forallk e Z.

The partial autocorrelation function is the function
a:Z—[-1,1],

a(k) = ak, forallk e Z.
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Autocorrelation and partial autocorrelation:

Yule-Walker equations

1 pr p2 o pr—t| k] [e1]
P 1 P pk—2| | ke p2
p2pt 1 pe3| laks| = (P3|,
| Pk—1 Pk—2 pk—3 -+ 1 | ok | Pk |

where pi is the k. autocorrelation coefficient.
The k. partial autocorrelation coefficient o is obtained by
solving akx from the equations above:

A = Okk-
In particular
2
P2 — Py
Qo = Qoo — 5 -
1 —p3
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Lag and difference: Definitions

Let (x¢):c T be a discrete time stochastic process.
@ The lag operator L is defined by:

Lxt = X1

@ The difference operator D is defined by:
Dxt = Xt — X¢_1

The difference operator D can be given in terms of the lag
operator L

D=1-1L,

as

(1 = L)Xt = Xt — LXt =Xt — Xt—1 = DXt.
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Higher order lags and differences, Seasonal difference

@ The p. lag LP is defined by:
LPxt = Xt—p,
where [P = LL---L (ptimes): [Px; = LP~'Lx; = [P~ x;_5.
@ The p. difference DP is defined by:
DPx; = (1 — L)Px,

where DP = DD - -- D (p times).
e For the p. difference DP it holds that

DPx; = (1 —L)Px; = Z( 1)( )xt /.

@ The seasonal difference Dy is defined by:
DS — 1 - LS’

where s is the length of the season (i.e. the period).
o Now
DSXt = (1 — LS)X[ = Xt — Lth = Xt — Xt—s.
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Example: 2. difference

The second difference of x; can be calculated as follows:
@ Approach 1:

D?x; = DDx; = D(x; — X¢_1)
= Dx¢ — Dx;_1
=Xt — Xt—1 — (Xt—1 — X¢—2)
=Xt —2Xt_1 + Xt_2

@ Approach 2:

D?x; = (1 - L)?x; = (1 — 2L+ L®)x,
= Xx; — 2Lx; + L2Xt
=Xt — 2Xt1 + X2
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Difference stationarity

Definition
Let (x¢):c T be a discrete time stochastic process.
@ The process (x;):cT is difference stationary of order p, if

D9%x; is non-stationary forallg = 0,1,2,...,p — 1,

but DPx; is stationary.

@ The process (x;):c is difference stationary of order p with
respect to the season length s, if

D?x; is non-stationary forall g =0,1,2,...,p— 1,

but DS x; is stationary.
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Trend and seasonality

Differencing can be applied in order to remove a trend.
Seasonal differencing can be applied in order to remove
deterministic seasonality. Sometimes both are needed in order
to obtain a stationary time series.

If the term (season legth) s = 12, we often apply the first
difference (in order to remove the trend) and seasonal
difference with period 12 (in order to remove seasonality). We
then obtain the following series:

D12Dx; = DDyoxe = (1 — L)(1 — L'%)x;
=(1-L-L"%+L")x

=Xt — Xt—1 — (XHz - Xt713)-
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© ARMA models
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ARMA processis

The family of ARMA processes is central in time series
analysis.

@ AR model = Autoregressive model

@ MA model = Moving Average model

@ ARMA model = Autoregressive Moving Average model
@ SAR model = Seasonal AR model

@ SMA model = Seasonal MA model

@ SARMA model = Seasonal ARMA model

@ ARIMA model = Integrated ARMA model

@ SARIMA model = Integrated Seasonal ARMA model
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Pure stochastic process

Discrete time stochastic process ()7 is a pure stochastic
process, if
@ Ele]=pteT
@ var(ef) =02, teT
@ cov(et,es) =0,t#s
@ If the expected value p = 0, then the pure stochastic

process is called white noise and the following notation is
used:

(et)teT ~ WN(0,0?).

@ If the random variables ¢; are independent and identically
distributed, then the pure white noise process is called iid
white noise and the following notation is used:

(et)teT ~ 1ID(0, 0?)
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AR(p) model

An autoregressive process of order p is given by:

Xt = D1Xt_1 + GoXe_2 + . OpXt_p + €1, (et)teT ~ WN(0, 0?).

@ This process is called autoregressive, because x; depends
on X;_1, Xt_2, ..., Xt—p and because it resembles multiple
linear regression model

Y = Bo+ B1X1 + BoXo + ... + BpXp + €

where:
e The response variable is x; and the explanatory variables
aré Xg—1, Xt—2, ..., Xt—p-
e The regression coefficients are Sy = 0 and 3; = ¢;,
i=1,...,p.
@ The residual is ¢;.
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AR(p) model

An AR(1) process is given by:

Xt = P1X—1 + €1, (€t)teT ~ WN(O,UQ)
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White noise vs AR(1)
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MA(q) model

A moving average process of order q is given by:

Xt = €t + 01641 + Oo€p_o + ... + 9q61_q, (Gt)teT ~ WN(O, 0'2)

@ The random variable x; is the weighted sum of the random
variables €;_g, ..., €.

A MA(1) process is given by:

Xt = et +01e-1,  (et)teT ~ WN(O,0?)
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White noise vs MA(1)
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ARMA(p, g) model

An autoregressive moving average process with an AR part of
order p and a MA part of order g is given by:

Xt—P1Xp—1—P2Xt_2—...— PpXt—p = €rt01€t_1+026t_o+...+-0g€t—q,

where (et)ieT ~ WN(0, 02).
@ x; depends on both, the random variables x;_1, .., X;—p and
the random variables €;_1, ..., €¢_g.

An ARMA(1,1) process is given by:

Xt — 91 Xt—1 = €t + 01644

or equivalently

Xt = P1Xt—1 + 0161 + €
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SAR(P)s model and SMA(Q)s model

@ A seasonal AR process of order P, with period s is given
by:

X = O1Xt_s+PoXr_og+...+PpXr_pster,  (er)rer ~ WN(0,0?).

@ A seasonal MA process of order Q, with period s is given
by:

Xt = €1+ O1€t—s+Oper_ost...+Oqer_qs,  (€r)teT ~ WN(0,02).

@ A SAR(2)12 process is given by:
Xt = P1Xt—12 + PoXi_24 + €1

@ ASMA(1)e process is given by:  x; = ¢t + O1¢;_6
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White noise vs SAR(2)1»
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SARMA(P, Q)s model

A seasonal ARMA process with period s, an AR part of order P
and a MA part of order Q is given by:

Xt — P1Xi—s — ... — OpXi_ps = €t + O1€—s + ... + Oq€t_qss

where (et)ier ~ WN(O, 02).

A SARMA(2,1)4 process is given by:
Xt — P1Xp_q4 — PoXp_g = €t + O1614
or equivalently

Xt = ®1Xt_a + PoXi_g + O1€t_4 + €
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Lag polynomials

We next consider cases with an AR part, a seasonal AR part,
an MA part and a seasonal MA part. We start by getting familiar
with lag polynomials.
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Lag polynomials: Definition

Lag polynomial of order r is given by:
6r(L) =1 +61L+ 6202 + ...+ 5,L".

@ It now follows from the linearity of the operator L, that
Sr(L)Xe = (1 + 1L+ 62L% + ...+ 6,L") x;
= X; + 61 LX; + 6oLPX; + ... + 8,L X;
= Xt + 01Xt_1 + 0oXt_o + ... + OrXi—_.

If p(L) := 1 — ¢1L and &(L) := 1 — &{L'2, then we have that

P(L)O(L)xe = (1 — p1L) (1 — &1L2)x;
= (1= 1L — d1L"% + ¢101L"%) x;
=Xt — P1Xt—1 — P1Xt—12 + O1 P Xp_13.
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SARMA(p, 9)(P, Q)s model

A multiplicative seasonal ARMA process with period s, a pure
AR part of order p, a pure MA part of order g, a seasonal AR
part of order P, and a seasonal MA part of order Q is given by:

®B(L)bp(L)xt = ©3(L)0q(L)et,  (et)eT ~ WN(0,0%),

where ¢p, 4, % and ©F, are the following lag polynomials

dp(L) =1 — 1L — ¢ol® — ... — ppLP
Og(L) =1+ 01L + 02L2 + ... + L9
OE(L) =1 — dqLS — dpL25 — ... — dpLPs
O5(L) =1+ O4L5 + ©,L%5 + ... + OqL

(Here, it is customary to assume that the polynomials
®3(L)¢pp(L) and ©F(L)04(L) do not share roots.)
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SARMA(p, 9)(P, Q)s model

Consider a SARMA(p, 9)(P, Q)s process
®3(L)p(L)xe = OF(L)0g(L)et,  (et)rer ~ WN(0,0%),

Now

@ The AR part is of order p; The corresponding parameters
are: (;51 s (ﬁg, ey gbp

@ The seasonal AR part is of order P; The corresponding
parameters are: ¢4, o, ..., Pp

@ The MA part is of order g; The corresponding parameters
are: 04,6-, ..., 9q

@ The seasonal MA part is of order Q; The corresponding
parameters are: ©1,0,,...,0¢q
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SARMA(p, 9)(P, Q)s model

Note that the SARMA(p, q)(P, Q)s models
®B(L)dp(L)Xe = ©F(L)0g(L)er,  (et)reT ~ WN(0,5?)

cover all the following processes:
@ AR(p)
e MA(q)
@ ARMA(p, q)
@ SAR(P)s
@ SMA(Q)s
@ SARMA(P, Q)s
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Roots of the lag polynomials

Based on the fundamental theorem of algebra, the lag
polynomials of order r

6r(L) =1+ 61L462L2 + ... +6,L

have r roots(, that may or may not be complex valued).

Let ¢(L) = 1 — L + 3L2. The the roots of the polynomial ¢(L)

Ly=1+j and Lo=1-—i

lie outside of the unit circle:

IL1)12 = ||L2? = 2.
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In what follows, when we consider different

SARMA(p, q)(P, Q)s models, we assume that E[x;_,¢;] = 0 for
all v > 1. Moreover, we assume that the corresponding
polynomials ®3(L)¢p(L) and ©%(L)04(L) do not share roots.

Stationary stochastic processes and ARMA models
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SARMA(p, 9)(P, Q)s model: Stationarity

SARMA(p, 9)(P, Q)s process x; is stationary, if and only if the
roots of the lag polynomials of the AR part

dp(L) =1 — 1L — ¢ol® — ... — ppLP
OS(L) =1 — L5 — dpl?5 — . — dpLFs

lie outside of the unit circle.

A SARMA process can not be analyzed using auto- and partial
autocorrelation functions unless it is stationary.
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SARMA(p, 9)(P, Q)s model: Stationarity

A SARMA(p, g)(P, Q)s process x; is stationary if and only if it
has an MA(~o) representation

Xt =V(L)er, (er)rer ~ WN(O,0?),

V(L) = ¢ (L) I (DAL)O(L) = Y wil, (w0 =1),
i=0

and where the series -
> Ui
=0

converges absolutely.
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SARMA(p, 9)(P, Q)s model: Invertibility

A SARMA(p, g)(P, Q)s process is called invertible, if it has an
AR(oc0) representation

N(L)xt = e, (et)teT ~ WN(O, 0?),

N =6 (L)o (e(L)e(L) =Y mL', (mo=1)
i=0

and where the series

converges absolutely.
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SARMA(p, 9)(P, Q)s model: Invertibility

A SARMA(p, q)(P, Q)s process is invertible, if and only if the
roots of the lag polynomials of the MA part

O0g(L) =1+ 01L + 02L2 + ... + L9
O5(L) =1+ O4L5 + ©,L%5 + ... + Ol

lie outside of the unit circle.

The autocorrelation function of a SARMA process does not
define the MA and the seasonal MA parts of the process
uniquely unless the process is invertible.
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Stationarity and invertibility

@ An AR(p) process:

Xt = p1Xt_1 +daXp_2+ .. dpXep+er, (et)er ~ WN(0,02).

o Is stationary iff the roots of the lag polynomial (of the AR
part) lie outside of the unit circle.
o Is always invertible.

© A MA(q) process
Xt = €t+01€r_1+0per_o+...+0get—q, (€t)teT ~ WN(0,0?).
o Is always stationary.

e Is invertible iff the roots of the lag polynomial (of the MA
part) lie outside of the unit circle.
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Spectrum of a stationary process

@ If the analysis of a time series is based on correlation
functions, we say that the analysis takes place in the time
domain.

@ The analysis of a stationary time series can also be
conducted in the frequency domain.

e In the frequency domain, the analysis of a time series is
based on the so called spectral density function f(\) of the
process.

e The analysis conducted in the frequency domain is
especially useful in revealing cyclic components of the
process.

@ The autocovariance function ~, and the spectral density
function f(\) of a stationary process have exactly the same
information.
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The spectral density function f(\) (also called the power
spectral function or spectrum) of a stationary process (x¢):c7 is
given by

f(\) = 217 <70 +2) % cos()\k)), A€ [0,7],
k=1

where ~, is the k. autocovariance of (x¢)s 7.
@ ): (angular) frequency
@ 27/\: period
@ \/27:the number of cycles per time unit

Yk = f(X) cos(AK)d\ =2

—T

/ " ) cos(AK)dA,
0

forall k = 0,1,2, ... In particular var(x;) = o = 2 [; f(A)dA
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Spectrum of a stationary process: Aliasing

f(\) = 217 (’yo +2> % cos()\k)), A € [0, 7],
k=1

@ We see that the frequencies A\, — A, A and \ + 2sm,
s=1,2,... have the same values.

@ This phenomena is called aliasing.

@ One can examine the spectral density function only on the
interval [0, ].
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Spectrum and the cyclic components of a stationary

process

Consider a stationary process that has a cyclic component with
period s. Then the corresponding spectral density function
obtains its maximal values at A\s = 27 /s, the basic frequency,
and also at harmonic frequencies

Kxs, k=1,2,..[s/2],

where |s/2| = max{m e Z | m < s/2}.

If s =4, then \y = 7/2 and there is only one harmonic
frequency . If s = 12, then \1» = 7/6 and the harmonic
frequencies are 27/6, 37/6, 47/6, 57/6 and .
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@ Characteristics of the ARMA models
@ Statistical properties of the stationary ARMA models
@ ARIMA and SARIMA models
@ Fitting an ARMA model
@ Estimation
@ Box-Jenkins method
© Decomposition of time series
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