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Week 5: Predicting using ARMA models, Kalman filter
and Dynamic regression
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1 Predicting using ARMA models
2 Exponential smoothing

2 Kalman filter
3 Dynamic regression
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Predicting using ARMA models: Idea

Consider a time series xt , t = . . . ,−2,−1,0,1,2, . . . . We
wish to predict the value xt+s based on the observed
values up to the time point t .
The prediction x̂t+s|t is thus some function of the values
. . . , xt−2, xt−1, xt .
The goal is to find a function of . . . , xt−2, xt−1, xt such that
the obtained value is as close as possible to the true value
xt+s

An optimal prediction (in the sense of the mean square
error) is obtained from the conditional expected value

x̂t+s|t := E
[
xt+s | xt , xt−1, . . .

]
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Predicting using ARMA models: Idea

Assume that the process (xt)t∈T has an MA representation

xt =
∞∑

j=0

ψjLjϵt , ψ0 = 1,
∞∑

j=0

|ψj | <∞,

and assume that the process (ϵt)t∈T has been observed until
the time point t (that is, we have the observations
ϵt , ϵt−1, ϵt−2...).
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Predicting using ARMA models: Idea

Now

xt+s = ϵt+s +ψ1ϵt+s−1 + ...+ψs−1ϵt+1 +ψsϵt +ψs+1ϵt−1 + ...

and the optimal prediction at the time point t (in the sense
of the mean square error) is

x̂t+s|t := E
[
xt+s | ϵt , ϵt−1, ...

]
= ψsϵt+ψs+1ϵt−1+ψs+2ϵt−2+...

The mean square error of the prediction is

E
[(

xt+s − x̂t+s|t
)2]

=
(
1 + ψ2

1 + ψ2
2 + ...+ ψ2

s−1
)
σ2.
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Predicting using ARMA models
Instead of observing the stationary process (ϵt)t∈T , one usually
observes the process (xt)t∈T ,(

1 − ϕ1L − ...− ϕpLp)xt =
(
1 + θ1L + ...+ θqLq)ϵt

and it is often not reasonable to use the MA(∞) representation
for predicting. However, invertibility of the process guarantees
that it is irrelevant whether one observes (xt)t∈T or (ϵt)t∈T .

If the process is invertible, the s-step prediction at time
point t is

x̂t+s|t =


ϕ1x̂t+s−1|t + ϕ2x̂t+s−2|t + ...+ ϕpx̂t+s−p|t

+θsϵt + θs+1ϵt−1 + ...+ θqϵt+s−q s = 1,2, ...,q,
ϕ1x̂t+s−1|t + ϕ2x̂t+s−2|t + ...+ ϕpx̂t+s−p|t s ≥ q + 1,

where x̂τ |t = xτ , when τ ≤ t and the terms ϵt can be
calculated recursively using the formula ϵt = xt − x̂t |t−1.
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Predicting using ARMA models

Remark
If one predicts far to the future, that is s > q, the prediction
does not take the moving average into account as there is
not enough data to calculate it.
Above, it was assumed that we observe infinitely long
history of the values xt . In practice, one can set the
unobserved (historical) values to be equal to 0. This works
well assuming that there are still plenty of observations
and that the coefficients |θi | and |ψi | are reasonably small.
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Predicting using ARMA models: Optimality

If the series xt is a realization from ARMA(p,q) process
with known parameters ϕ1, ϕ2, ..., ϕp, θ1, θ2, ..., θq, then the
prediction x̂t+s|t is optimal in the sense of the mean square
error

MSE(x̂t+s|t) = E
[(

xt+s − x̂t+s|t
)2]

.

In practice, the parameters of the ARMA(p,q) are not
known and have to be estimated. Then the mean square
error depends on estimations errors and the prediction is
not, strictly speaking, optimal anymore. However, it can
usually be thought to be close to optimal.
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Predicting using ARMA models

Consider x̂t+s|t as a function of s.
I Under pure AR models or ARMA models, x̂t+s|t → 0

exponentially, as s → ∞.
II Under MA(q) model, x̂t+s|t is equal to 0 for s > q.

Thus ARMA models are suitable for short term forecasting,
but not for long term forecasting!

MS-C2128 Prediction and Time Series Analysis Characteristics of the ARMA models



Exponential smoothing

Ad-hoc forecasting method, that does not rely on modeling.
Applied widely.

Easy to calculate in practice.
Gives reasonably good predictions in practice, but is rarely
optimal.

MS-C2128 Prediction and Time Series Analysis Characteristics of the ARMA models



Simple exponential smoothing

The value of xt+1 is predicted using a weighted sum of the
previous observation xt , xt−1, xt−2, ...,

x̂t+1|t =
∞∑

i=0

wixt−i

The weights wi = α(1 − α)i , 0 < α < 1, decrease
exponentially. (That is why the method is called exponential
smoothing.)
The parameter α is called the smoothing factor.

One can update the prediction using the formula

x̂t+1|t = αxt + (1 − α)x̂t |t−1 = αϵ̂t + x̂t |t−1,

where ϵ̂t = xt − x̂t |t−1 is the prediction error at time point t .
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Simple exponential smoothing

x̂t+1|t = αxt + (1 − α)x̂t |t−1

One can show that simple exponential smoothing gives
optimal predictions in the case that xt is an ARIMA(0,1,1)
process:

Dxt is a MA(1) process

Dxt = xt − xt−1 = ϵt + θ1ϵt−1, (ϵ)t∈T ∼ WN(0, σ2)

Choose α = θ1 + 1
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Simple exponential smoothing

x̂t+1|t = αxt + (1 − α)x̂t |t−1

One can also show that simple exponential smoothing
gives optimal predictions in the case that xt is a noisy
random walk, that is in the case:

xt = mt + ϵt ,where
mt = mt−1 + ηt , is a random walk

(ϵt)t∈T ∼ IID(0, σ2
1), (ηt)t∈T ∼ IID(0, σ2

2)

Optimal α depends on the signal-noise-ratio var(ϵt )
var(ηt )

.
The proof relies on using the Kalman filter. (We talk about
Kalman filter later.)

Level mt (of the random walk) can be estimated from the
observations xt :

mt = αxt + (1 − α)mt−1 and x̂t+1|t = mt .
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Double exponential smoothing

Simple exponential smoothing does not provide good
predictions when there is a trend in the data. Double
exponential smoothing is an extension of the simple
exponential smoothing to the cases when there is a trend.
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Double exponential smoothing
In double exponential smoothing, on top of predicting, the level
m and the trend β are updated:

x̂t+l|t = mt + lβt

mt = α1xt + (1 − α1)(mt−1 + βt−1)

βt = α2(mt − mt−1) + (1 − α2)βt−1.

One can write

mt = mt−1 + βt−1 + α1ϵ̂t

βt = βt−1 + α1α2ϵ̂t ,

where ϵ̂t = xt − x̂t |t−1.
The parameters α are called the data smoothing factors.
The parameters β are called the trend smoothing factors.
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Exponential smoothing: Comments

Exponential smoothing is sometimes applied using fixed
smoothing parameters.
Usually smoothing parameters are estimated (optimized)
from the data. That usually provides a better fit.
Applying SARIMA models is recommended, if possible.
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Kalman filter

Kalman filter is a tool for predicting xt+1 = (x1(t+1), ..., xk(t+1)),
when we only observe a noisy version, yt = (y1t , ..., ydt), of xt .
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State space representation

Consider a situation where we wish to predict
xt+1 = (x1(t+1), ..., xk(t+1)), but we only observe
yt = (y1t , ..., ydt).
Assume that this system has the following state space
representation

xt+1 = Fxt + vt+1

yt = H⊤xt + wt

where yt and wt are d-variate random vectors, xt+1 and vt+1
are k -variate random vectors and

cov(vt ,vs) =

{
Q, t = s
0, t ̸= s

and cov(wt ,ws) =

{
R, t = s
0, t ̸= s.

Assume also that vt , wt , and xt are mutually independent for
all t ≥ 1.
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Kalman filter

Kalman filter provides a prediction for xt+1 = (x1(t+1), ...xk(t+1)),
based on the observations yt = (y1t , ..., ydt).

Prediction for xt+1 at time point t is the conditional
expected value

x̂t+1|t := E[xt+1 | Yt ], Yt := (y⊤
t , ...,y

⊤
1 ).

Kalman filter calculates the predictions x̂1|(), x̂2|1, ..., x̂T |T−1
recursively and every prediction is associated with the mean
square error matrix

Pt+1|t := E
[
(xt+1 − x̂t+1|t)(xt+1 − x̂t+1|t)

⊤]
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Kalman filter: Algorithm
1 The initial values (has to be selected):

x̂1|() = E[x1]

P1|() = E
[
(x1 − E[x1])(x1 − E[x1])

⊤]
2 Recursion formulae for the prediction x̂t+1|t and for the

matrix Pt+1|t are

x̂t+1|t = Fx̂t|t−1 + FPt|t−1H
(
H⊤Pt|t−1H + R

)−1(yt − H⊤x̂t|t−1
)

Pt+1|t =
(
F − KtH⊤)FPt|t−1

(
F − HK⊤

t
)
+ KtRK⊤

t + Q,

where Kt is the Kalman gain

Kt := FPt|t−1H
(
H⊤Pt|t−1H + R

)−1
.

3 Prediction ŷt+1|t is obtained by applying the formula

ŷt+1|t = H⊤x̂t+1|t ja

E
[
(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)

⊤] = H⊤Pt+1|tH + R.
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Kalman filter: Generalization

It is possible to apply the Kalman filter approach also when
one wishes to drop the linearity assumption. Then, the
state space representation is given as

xt+1 = ft(zt ,xt) + vt+1

yt = ht(xt) + wt ,

where xt+1, yt , vt+1 and wt are as above, zt is exogenous,
independent of all the other variables, and ft and ht are
functions that depend on time t , state xt and on the input
zt .
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State space representation: MA(1) process

Example
Consider the MA(1) process

yt = ϵt + θ1ϵt−1.

Define the state vector xt and the noise vt+1 by setting

xt =

[
ϵt
ϵt−1

]
and vt+1 =

[
ϵt+1

0

]
.

Then

xt+1 = Fxt + vt+1, F =

[
0 0
1 0

]
and

yt = H⊤xt , where H⊤ =
[
1 θ

]
.
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Example: GPS navigation

Assume that there are m1 satellites that measure the
pseudo-distances and their differences between an object
and the satellite at time points t . Assume also that there
are m2 support stations that measure the distances
between the object and the station. The vector
yt = (y1t , ..., ydt)

⊤, d = 2m1 + m2, contains the measured
distances.
State vector xt contains the location coordinates ξt and the
speed vt of the object.

xt =

[
ξt
vt

]
.
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Example: GPS navigation

Now, the corresponding state space model for the location
(and the speed) of the object is

xt+1 = Fxt + ut

yt = h(xt) + wt ,

where h(xt) is a well chosen nonlinear function and ut and
wt are the noise.
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Dynamic regression models

Dynamic regression models are models that may involve the
time series to be forecasted and the history of another time
series as well.
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Static linear regression

Consider the linear time series regression model

yt = α+ βxt + ϵt , t ∈ T ,

where the response variable yt and the explanatory variable xt
come from time series and where

1 E[ϵt | xt ] = 0, t ∈ T
2 var(ϵt | xt) = σ2, t ∈ T
3 cor(ϵt , ϵs | xt , xs) = 0, t ̸= s.

Then the conditional expected value of the response variable yt
conditional on xt = x is

E[yt | xt = x ] = α+ βx .
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Static linear regression

Assume that the explanatory variable xs is the same constant x
for all s ≤ t :

xs = x , s ≤ t

Then the conditional expected value of ys is a constant for all
s ≤ t :

E[ys | xs = x ] = α+ βx = y .
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Static linear regression

yt = α+ βxt + ϵt , t ∈ T ,

Assume that, at time point t + 1, the explanatory variable
grows by one unit:

xt+1 = x + 1.

Then the conditional expected value of the response
variable yt+1 is

E[yt+1 | xt+1 = x + 1] = α+ β(x + 1) = y + β.

The conditional expected value remains the same until the
value of the explanatory variable changes.
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Static linear regression

yt = α+ βxt + ϵt , t ∈ T ,

The parameter β models the instant change in the
conditional expected value of the response variable yt as
the value of xt changes by one unit.
The model is static:

The conditional expected value of the response variable
does not change unless the value of the explanatory
variable changes.
The conditional expected value of the response variable
changes immediately, without any lags, when the value of
the explanatory variable changes.
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Dynamic regression

In dynamic regression, the conditional expected value of
the response variable may also changes slowly, or
progressively, when the value of the explanatory variable
changes.
A very simple example of a dynamic regression model is
the distributed lag model. The distributed lag model is a
model for time series data in which a regression equation
is used to predict the current values of the response
variable based on both, the current and the lagged (past)
values of an explanatory variable.
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Distributed lag model

A simple distributed lag model is given by

yt = α+ β0xt + β1xt−1 + ...+ βpxt−p + ϵt , t = p + 1,p + 2, ...,

where the residual ϵt is white noise on condition xt , ..., xt−p.
In this model, there are p + 1 explanatory variables. Those
are the values of xs at time points t , t − 1, ..., t − p.
The response variable yt , at time point t depends on

The value of the variable xs at time point t .
The lagged (past) values of the variable xs.

The conditional expected value of the response variable yt
is

E[yt | xt , xt−1, ..., xt−p] = α+ β0xt + β1xt−1 + ...+ βpxt−p.
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Distributed lag model

yt = α+ β0xt + β1xt−1 + ...+ βpxt−p + ϵt , t = p + 1,p + 2, ...,

Remark
The distributed lag models are stationary with respect to time in
the sense that the regression parameters depend only on the
corresponding lags, not on the actual time points:

The regression parameters can be seen as the derivatives
of y with respect to x with different lags:

βs =
∂yt

∂xt−s
=
∂yt+s

∂xt
.

Without this condition, the parameters β0, ..., βp would
depend on time, and not only on the length s of the
corresponding time interval.
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Distributed lag model

yt = α+ β0xt + β1xt−1 + ...+ βpxt−p + ϵt , t = p + 1,p + 2, ...,

Assume that the explanatory variable xs is the same
constant x for all s ∈ {t − p, ..., t},

xs = x , s ∈ {t − p, ..., t}.

Then the conditional expected value of yt

E[yt | xt , xt−1, ..., xt−p] = α+ β0x + β1x + ...+ βpx = α+ βx = y ,

where β = β0 + β1 + ...+ βp.
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Distributed lag model

Assume that

xs =

{
x when s ∈ {t − p, ..., t}
x + 1 when s = t + 1, t + 2...,

Then

E[yt | xt , ..., xt−p] = α+ β0x + β1x + ...+ βpx = α+ βx = y
E[yt+1 | xt+1, ..., xt−p+1] = α+ β0(x + 1) + β1x + ...+ βpx = y + β0

E[yt+2 | xt+2, ..., xt−p+2] = α+ β0(x + 1) + β1(x + 1) + β2x + ...+ βpx
...

E[yt+p+1 | xt+p, ..., xt ] = α+ β0(x + 1) + ...+ βp−1(x + 1) + βpx
E[yt+p+1 | xt+p+1, ..., xt+1] = α+ β0(x + 1) + ...+ βp(x + 1) = y + β
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Distributed lag model

Assume that the value xs is the same constant x + 1 and does
not change after the time point t + 1. Then the the conditional
expected value of ys

E[ys | xs, ..., xs−p] = α+ β0(x + 1) + ...+ βp(x + 1) = y + β

remains the same for s ≥ t + p + 1.
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Distributed lag model

yt = α+ β0xt + β1xt−1 + ...+ βpxt−p + ϵt , t = p + 1,p + 2, ...,

The regression parameters of the model can be interpreted as
follows.

(i) The parameter β0 models the instant change in the
conditional expected value of the response variable yt as
the value of xt changes by one unit.

(ii) The sum
β = β0 + β1 + ...+ βp

models the long term change in the conditional expected
value of the response variable yt as the value of xt
changes by one unit.
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Distributed lag model: Parameter estimation

The parameters of the distributed lag model

yt = α+ β0xt + β1xt−1 + ...+ βpxt−p + ϵt , t = p + 1,p + 2, ...,

can be estimated using classic linear regression.
Problems:

If the autocorrelations of the process (xt)t∈T are non-zero,
the explanatory variables of the regression model are
multicollinear.
If we have n observations of the series (xt)t∈T , we have
n − p observations for estimating p + 2 parameters.
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Distributed lag model: General form

In distributed lag models, yt might depend on the entire history
of the explanatory process, and the explanatory process may
be k -variate. That is

yt = α+
∞∑

i=0

β1ix1(t−i) +
∞∑

i=0

β2ix2(t−i) + ...+
∞∑

i=0

βkixk(t−i) + ϵt ,

where (ϵt)y∈T ∼ WN
(
0, σ2).

If infinitely many of the regression parameters βji differ
from zero (for example, βji = βj0δ

i
j , |δj | < 1), then a change

in the value of the explanatory variable has an effect on the
conditional expected value of yt infinitely long after that.
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Simple ARMAX model
An ARMAX model is a combination of an ARMA model and a
linear regression model, where the response process yt
depends on

the history of the autoregressive part of the process
noise
an exogenous variable xt .

yt = ϵt +

p∑
i=1

ϕiyt−i +

q∑
i=1

θiϵt−i +
b∑

i=0

ηixt−i ,

where
(ϵt)t∈T ∼ WN(0, σ2),
ϕ1, ..., ϕp are the parameters of the AR part,
θ1, ..., θq are the parameters of the MA part, and
η0, ..., ηb are the parameters related to the exogenous
variable xt .
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ARMAX model

As when applying ARMA models, also when applying ARMAX
models, one can model seasonal changes. In ARMAX models,
the number of exogenous variables is not limited to one. An
ARMAX model, in general form, can be given as

Φ(L)yt = Θ(L)ϵt +
k∑

j=1

Hj(L)xjt ,

where Φ(L),Θ(L) and Hi(L) are similar lag polynomials as in
the case of ARMA models and the xj· = (xj1, xj2, ...xjt) are the
observed explanatory variables.
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ARIMAX model

An ARIMAX model is like an ARIMA model, but it contains one
or more exogenous variables.

The differences Dhyt (for some order h) of an ARIMAX
model form an ARMAX model and the parameters for the
differences can be estimated similarly as in the case of
ARIMA models.

R: arima(), arimax().
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ARIMAX models are reasonably general, but they are not
suitable for long term forecasting. Moreover, ARIMAX
models are linear on the explanatory variables.
In general, we may consider models

f (yt) = g
(
(ys){s≤t−1}, (xs){s≤t}

)
+ ϵt ,

where the d-variate yt = (y1t , ..., ydt) depends on its own
history and on the history of the k -variate time series
(xt)t∈T , xt = (x1t , ..., xkt), t ∈ T , through some nonlinear
functions f and g.
In practice, we often have to rely on these general models,
but developing theory for them is very difficult.

One has to know (or estimate) the functions f and g and
then proceed case by case.
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