Decision Analysisprobability calculus revision material

Why probabilities?

- Most decisions involve uncertainties
- "How many metro drivers should be recruited = trained, when future traffic is uncertain?"
Probability theory dominates the modeling of uncertainty in decision analysis
- Theoretically sound rules for probabilistic inference
- Understandable, testable, can be calibrated
- Other models (e.g., evidence theory, fuzzy sets) are not covered here
\square Learning objective: refresh memory about probability theory and calculations

The sample space

\square Sample space $S=$ set of all possible outcomes
\square Examples:

- A coin toss: $S=\{$ Head, Tails $\}=\{\mathrm{H}, \mathrm{T}\}$
- Two coin tosses: $S=\{\mathrm{HH}, \mathrm{TT}, \mathrm{TH}, \mathrm{HT}\}$
- Number of rainy days in Helsinki in 2018: $S=\{1, \ldots, 366\}$
- Grades from four courses: $S=G \times G \times G \times G=G^{4}$, where $G=\{0, \ldots, 5\}$
- Average m^{2}-price for apartments in Helsinki area next year $S=[0, \infty)$ euros

Simple events and events

Simple event: an individual outcome from S

- A coin toss: T
- Two coin tosses: TT
- Number of rainy days in Helsinki in 2018: 180
- Grades from four courses: $(4,5,3,4)$
- Average m^{2}-price for apartments in Helsinki in 2019: 4000 €
\square Event: a collection of one or more outcomes (i.e., a subset of the sample space: $E \subseteq S$)
- Two coin tosses: First toss tails, $E=\{T T, T H\}$
- Number of rainy days in Helsinki in 2018: Less than 100, $E=\{0, \ldots, 99\}$
- Grades from four courses: Average at least 4.0, $E=\left\{z \in G^{4} \left\lvert\, \frac{1}{4} \sum_{i=1}^{4} z_{i} \geq 4.0\right.\right\}$
- Average m^{2}-price for apartments in Helsinki in 2019: Above 4000€, $E=(4000, \infty)$

Events derived from events: Complement, union, and intersection

C Complement A^{c} of $A=$ all outcomes in S that are not in A

- Union $A \cup B$ of two events A and $B=$ all outcomes that are in A or B (or both)
I Intersection $A \cap B=$ all outcomes that are in both events
- A and B with no common outcomes are mutually exclusive

. A and B are collectively exhaustive if $A \cup B=S$

Events derived from events: Laws of set algebra

Commutative laws: $A \cup B=B \cup A$, $A \cap B=B \cap A$

Associative laws: $(A \cup B) \cup C=A \cup(B \cup C)$,
$(A \cap B) \cap C=A \cap(B \cap C)$,

Distributive laws: $(A \cup B) \cap C=(A \cap C) \cup(B \cap C)$,
$(A \cap B) \cup C=(A \cup C) \cap(B \cup C)$

DeMorgan's laws: $(A \cup B)^{C}=A^{C} \cap B^{C}$,
$(A \cap B)^{C}=A^{C} \cup B^{C}$

Probability measure

\square Definition: Probability P is a function that maps all events A onto real numbers and satisfies the following three axioms:

1. $\quad P(S)=1$
2. $\mathrm{o} \leq P(A) \leq 1$
3. If A and B are mutually exclusive (i.e., $A \cap B=\emptyset$) then

$$
P(A \cup B)=P(A)+P(B)
$$

Properties of probability (measures)

- From the three axioms it follows that
I. $\quad P(\varnothing)=0$
II. If $A \subseteq B$, then $P(A) \leq P(B)$
III. $\quad P\left(A^{C}\right)=1-P(A)$
IV. $\quad P(A \cup B)=P(A)+P(B)-P(A \cap B)$

- In a given population, 30\% of people are young, 15% are restless, and 7% are both young and restless. A person is randomly selected from this population. What is the chance that this person is
- Not young?

1. 30%
2. 55%
3.70\%

- Young but not restless?
- Young, restless or both?

1. 7\%
2. 15%
3. 23\%
4. 38%
5. 45%
6. 62\%

Independence

Definition: Two events A and B are independent if

$$
P(A \cap B)=P(A) P(B)
$$

- A person is randomly selected from the population on the right.
- Are events "the person is young" and "the person is
 restless" independent?
\square No: $0.07 \neq 0.3 \times 0.15$

Conditional probability

Definition: Conditional probability $\mathrm{P}(A \mid B)$ of A given that B has occurred is

$$
P(A \mid B) \triangleq \frac{P(A \cap B)}{P(B)} .
$$

Note: If A and B are independent, the probability of A does not depend on whether B has occurred or not:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A) P(B)}{P(B)}=P(A) .
$$

Joint probability vs. conditional probability

Example:

- A farmer is trying to decide on a farming strategy for next year. Experts have made the following forecasts about the demand for the farmer's products.
- Questions:
- What is the probability of high wheat demand?

1. 40%
2. 65%
3. 134\%

- What is the probability of low rye demand?

1. 11%
2. 35%
3. 45%

- What is the (conditional) probability of high wheat demand, if rye demand is low?

1. 40\%
2. 55%
3.89%

- Are the demands independent?

1. Yes
2. No

Conditional probability

	Wheat demand		
Rye demand	Low	High	Sum
Low	0.11	0.89	1
High	0.55	0.45	1
Sum	0.66	1.34	

Law of total probability

\square If E_{1}, \ldots, E_{n} are mutually exclusive and $A=U_{i} E_{i}$, then

$$
\mathrm{P}(A)=\mathrm{P}\left(A \mid E_{1}\right) \mathrm{P}\left(E_{1}\right)+\ldots+\mathrm{P}\left(A \mid E_{n}\right) \mathrm{P}\left(E_{\mathrm{n}}\right)
$$

\square Most frequent use of this law:

- Probabilities $\mathrm{P}(A \mid B), \mathrm{P}\left(A \mid B^{c}\right)$, and $\mathrm{P}(B)$ are known
- These can be used to compute $\mathrm{P}(A)=\mathrm{P}(A \mid B) \mathrm{P}(B)+\mathrm{P}\left(A \mid B^{c}\right) \mathrm{P}\left(B^{c}\right)$

Bayes’ rule

\square Bayes' rule: $P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}$

- Follows from

1. The definition of conditional probabilty: $P(A \mid B)=\frac{P(A \cap B)}{P(B)}, P(B \mid A)=\frac{P(B \cap A)}{P(A)}$,
2. Commutative laws: $P(B \cap A)=P(A \cap B)$.

Bayes' rule

Example:

- The probability of a fire in a certain building is $1 / 10000$ any given day.
- An alarm goes off whenever there is an actual fire, but also once in every 200 days for no reason.
- Suppose the alarm goes off. What is the probability that there is a fire?

Solution:

- $\mathrm{F}=$ Fire, $\mathrm{F}^{\mathrm{c}}=$ No fire, $\mathrm{A}=$ Alarm, $\mathrm{A}^{\mathrm{c}}=$ No alarm
- $\mathrm{P}(\mathrm{F})=0.0001 \mathrm{P}\left(\mathrm{F}^{\mathrm{c}}\right)=0.9999, \mathrm{P}(\mathrm{A} \mid \mathrm{F})=1, \mathrm{P}\left(\mathrm{A} \mid \mathrm{F}^{\mathrm{c}}\right)=0.005$

Law of total probability: $\mathbf{P}(\mathbf{A})=P(A \mid F) P(F)+P\left(A \mid F^{c}\right) P\left(F^{c}\right)=\mathbf{0 . 0 0 5 1}$
Bayes: $P(F \mid A)=\frac{P(A \mid F) P(F)}{P(A)}=\frac{1 \cdot 0.0001}{0.0051} \approx 2 \%$

Random variables

A random variable is a mapping from sample space S to real numbers (discrete or continuous scale)

The probability measure P on the sample space defines a probability distribution for these real numbers

Probability distribution can be represented by

- Probability mass (discrete) / density (continuous) function
- Cumulative distribution function

Probability mass/density function (PMF

- PMF of a discrete random variable is $f_{X}(t)$ such that
- $f_{X}(t)=P(\{s \in S \mid X(s)=t\})=$ probability
- $\quad \sum_{t \in(a, b]} f_{X}(t)=P(X \in(a, b])=$ probability

- PDF of a continuous random variable is $f_{X}(t)$ such that
- $f_{X}(t)$ is NOT a probability
- $\int_{a}^{b} f_{X}(t) d t=P(X \in(a, b])$ is a probability

Cumulative distribution function (CDF)

The CDF of random variable X is $F_{X}(t)=P(\{s \in S \mid X(s) \leq t\})$
(often $F(t)=P(X \leq t)$)
\square Properties

$-F_{X}$ is non-decreasing

- $F_{X}(\mathrm{t})$ approaches $\mathrm{o}(1)$ when t decreases (increases)
$-\quad P(X>t)=1-F_{X}(\mathrm{t})$
$-\quad P(a<X \leq b)=F_{X}(\mathrm{~b})-F_{X}(\mathrm{a})$

Expected value

- The expected value of a random variable is the weighted average of all possible values, where the weights represent probability mass / density at these values

$$
\begin{gathered}
\text { Continuous X } \\
E[X]=\int_{-\infty}^{\infty} t f_{X}(t) d t
\end{gathered}
$$

- A function $g(X)$ of random varibale X is itself a random variable, whereby

$$
E[g(X)]=\sum_{t} g(t) f_{X}(t)
$$

$$
E[g(X)]=\int_{-\infty}^{\infty} g(t) f_{X}(t) d t
$$

Expected value: Properties

If If X_{1}, \ldots, X_{n} and $Y=\sum_{i=1}^{n} X_{i}$ are random variables, then

$$
E[Y]=\sum_{i=1}^{n} E\left[X_{i}\right]
$$

- If random variable $Y=a X+b$ where a and b are constants, then $E[Y]=a E[X]+b$

D NB! In general, $\mathrm{E}[g(X)]=g(\mathrm{E}[X])$ does NOT hold:

- Let $X \in\{0,1\}$ with $\mathrm{P}(\mathrm{X}=1)=0.7$. Then,

$$
\begin{aligned}
& E[X]=0.3 \cdot 0+0.7 \cdot 1=0.7, \\
& E\left[X^{2}\right]=0.3 \cdot 0^{2}+0.7 \cdot 1^{2}=0.7 \neq 0.49=(E[X])^{2} .
\end{aligned}
$$

Random variables vs. sample space

- Models are often built by directly defining distributions (PDF/PMF or CDF) rather than starting with the sample space
- Cf. alternative models for coin toss:

1. Sample space is $S=\{\mathrm{H}, \mathrm{T}\}$ and its probability measure $P(s)=0.5$ for all $s \in S$
2. PMF is given by $f_{X}(t)=0.5, t \in\{0,1\}$ and $f_{X}(t)=0$ elsewhere

Computational rules that apply to event probabilities also apply when these probabilities are represented by distributions
D Detailed descriptions about the properties and common uses of different kinds of discrete and continuous distributions are widely documented

- Elementary statistics books
- Wikipedia

Binomial distribution

$\square n$ independent binary (0/1, no/yes) trials, each with success probability $p=P(X=1)$
\square The number $X \sim \operatorname{Bin}(n, p)$ of successful trials is a random variable that follows the binomial distribution with parameters n and p
$\square \mathrm{PMF}: P(X=t)=f_{X}(t)=\binom{n}{t} p^{t}(1-p)^{n-t}$
\square Expected value $\mathrm{E}[X]=n p$

- Variance $\operatorname{Var}[X]=n p(1-p)$

Source: Wikipedia

Other common discrete distributions

- Bernoulli distribution
- If $X \in\{0,1\}$ is the result of a single binary trial with success probability p, then $X \sim \operatorname{Bernoulli}(p)$.
- $\quad f_{X}(t)=p^{t}(1-p)^{1-t}$

Uniform distribution

[Let $X \in[\mathrm{a}, \mathrm{b}]$ such that each real value within the interval has equal probability. Then, $\mathrm{X} \sim \operatorname{Uni}(\mathrm{a}, \mathrm{b})$
$f_{X}(t)=\left\{\begin{aligned} \frac{1}{b-a}, & \text { for } a \leq t \leq b \\ 0, & \text { otherwise }\end{aligned}\right.$

- $E[X]=\frac{a+b}{2}$
$\square \operatorname{Var}[X]=\frac{1}{12}(b-a)^{2}$

Normal distribution $\mathrm{N}\left(\mu, \sigma^{2}\right)$

- $f_{X}(t)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(t-\mu)^{2}}{2 \sigma^{2}}}$
- $E[X]=\mu, \operatorname{Var}[X]=\sigma^{2}$
- The most common distribution for continuous random variables
\square Central limit theorem: Let X_{1}, \ldots, X_{n} be independent and identically distributed random variables with $\mathrm{E}\left[X_{i}\right]=\mu$ and $\operatorname{Var}\left[X_{\mathrm{i}}\right]=\sigma^{2}$. Then,

$$
\frac{\sum_{i=1}^{n} X_{i}}{n} \sim_{a} N\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

Source: Wikipedia

Other common continuous distributions

\square Log-normal distribution: if $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$, then $e^{X \sim \operatorname{LogN}\left(\mu, \sigma^{2}\right)}$

\square Exponential distribution $\operatorname{Exp}(\lambda)$: describes the time between events in a Poisson process with event occurrence rate λ

\square Beta distribution Beta(α, β): distribution for $X \in[0,1]$ that can take various forms

Why Monte Carlo simulation?

\square When probabilitistic models are used to support decision making, alternative decisions often need to be described by 'performance indices'such as

- Expected values - e.g., expected revenue from launching a new product to the market
- Probabilities of events - e.g., the probability that the revenue is below $100 \mathrm{k} €$
\square It may be difficult, time-consuming or impossible to calculate such measures analytically
\square Monte Carlo simulation:
- Use of a computer program to generate samples from the probability model
- Estimation of expected values and event probabilites from these samples

Monte Carlo simulation of a probability model

Probability model

- Random variable $X \sim f_{X}$

$$
\begin{gathered}
E[X] \\
E[g(X)] \\
P(a<X \leq b)
\end{gathered}
$$

Monte Carlo simulation

- Sample $\left(x_{1}, \ldots, x_{n}\right)$ from f_{X}

$$
\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

$$
\frac{\sum_{i=1}^{n} g\left(x_{i}\right)}{n}
$$

$$
\frac{\left|\left\{i \in\{1, \ldots, n\} \mid x_{i} \in(a, b)\right\}\right|}{n}
$$

Uni(0,1) distribution in MC - discrete random variables

- Some softwares only generate random numbers from Uni(0,1)-distribution
- Samples from Uni $(0,1)$ can, however, be transformed into samples from many other distributions

[$\sum_{k=0}^{i-1} p_{k}, \sum_{k=0}^{i} p_{k}$) where $p_{0}=0$, then $X_{j}=x_{i}$.

Uni(0,1) distribution in MC - continuous random variables

\square Assume that the CDF of random variable X has an inverse function F_{X}^{-1}. Then, the random variable $Y=F_{X}^{-1}(U)$ where $U \sim \operatorname{Uni}(0,1)$ follows the same distribution as X :

$$
F_{Y}(t)=P(Y \leq t)=P\left(F_{X}^{-1}(U) \leq t\right)=P\left(U \leq F_{X}(t)\right)=F_{X}(t)
$$

\square Continuous distribution:

- Let $X \sim F_{X}$ (CDF)
- Sample values u_{j} from $\operatorname{Uni}(0,1)$.
- Transform the sample: $X_{j}=F_{X}^{-1}\left(u_{j}\right)$

$$
\begin{array}{lc}
\text { U~Uni }(0,1) & \mathrm{X} \sim f_{\mathrm{X}} \\
u_{1}=0.4565 & x_{1}=945.4 \\
u_{2}=0.8910 & x_{2}=1615.9 \\
u_{3}=0.3254 & x_{3}=773.7
\end{array}
$$

Monte Carlo simulation in Excel

Monte Carlo simulation in Matlab

```
S=200; %Number of simulation rounds
p=[[\begin{array}{llll}{0.3}&{0.4}&{0.2}&{0.1}\end{array}]; %PMF for }\textrm{x
P}=[\begin{array}{llll}{0.3 0.7 0.9 1]; %}&{0.7}&{0.9F for }
X=[[0
Sample=zeros(S,1); sInitialize the sample vector
for k=1:S;
    r=rand; %Random number from Uni (0,1)
    counter=1; %Start looking from the first value of X
    while(r>P(counter)) sWhile r is greater than the CDF at current value of X...
        counter=counter+1; %We go to the next value of X.
    end sWhen r is lower than the CDF at the current value of X...
    Sample(k)=X (counter); %We have found the value of X corresponding to r
end
TrueMean=p*X'
SampleMean=mean (Sample)
```


Monte Carlo simulation in Matlab

\square Statistics and Machine Learning Toolbox makes it easy to generate numbers from various distributions

- E.g.,
- $Y=n o r m r n d(m u$, sigma, $m, n): \quad m \times n-a r r a y$ of $X \sim N(m u, s i g m a)$
- Y=betarnd (A, B,m,n): m×n-array of X~Beta(A,B)
- $Y=\operatorname{lognrnd}(m u$, sigma, $m, n): m \times n-a r r a y$ of $X \sim \operatorname{LogN(mu,sigma)~}$
- Y=binornd (N, P,m,n): m×n-array of X~Bin(N,P)

Summary

- Probability is the dominant way of capturing uncertainty in decision models
- Well-established computational rules provide means to derive probabilities of events from those of other events
- Conditional probability, law of total probability, Bayes' rule

To support decision making, probabilistic models are often used to compute performance indices (expected values, probabilities of events, etc.)

- Such indices can easily be computed through Monte Carlo simulation

