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Why probabilities?

❑ Most decisions involve uncertainties
❑ “How many metro drivers should be recruited = trained, when future traffic is 

uncertain?”

❑ Probability theory dominates the modeling of uncertainty in decision

analysis

– Theoretically sound rules for probabilistic inference

– Understandable, testable, can be calibrated  

– Other models (e.g., evidence theory, fuzzy sets) are not covered here

❑ Learning objective: refresh memory about probability theory and 

calculations
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The sample space

❑ Sample space S = set of all possible outcomes

❑ Examples:

– A coin toss: S = {Head, Tails}={H,T}

– Two coin tosses: S = {HH, TT, TH, HT}

– Number of rainy days in Helsinki in 2018: S={1,…,366}

– Grades from four courses: S=G × G× G× G=G4, where G={0,…,5}

– Average m2-price for apartments in Helsinki area next year S = [0,∞) euros
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Simple events and events

❑ Simple event: an individual outcome from S
– A coin toss: T

– Two coin tosses: TT

– Number of rainy days in Helsinki in 2018: 180

– Grades from four courses: (4, 5, 3, 4)

– Average m2-price for apartments in Helsinki in 2019: 4000 €

❑ Event: a collection of one or more outcomes (i.e., a subset of the

sample space: E⊆S)
– Two coin tosses: First toss tails, E={TT, TH}

– Number of rainy days in Helsinki in 2018: Less than 100, E={0,…,99}

– Grades from four courses: Average at least 4.0, 𝐸 = 𝑧 ∈ 𝐺4 1

4
σ𝑖=1
4 𝑧𝑖 ≥ 4.0

– Average m2-price for apartments in Helsinki in 2019: Above 4000€, E=(4000, ∞)
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Events derived from events: 
Complement, union, and intersection
❑ Complement Ac of A = all outcomes in S that are

not in A

❑ Union 𝐴 ∪ 𝐵 of two events A and B = all

outcomes that are in A or B (or both)

❑ Intersection 𝐴 ∩ 𝐵 = all outcomes that are in both

events

❑ A and B with no common outcomes are mutually

exclusive

❑ A and B are collectively exhaustive if 𝐴 ∪ 𝐵 = 𝑆
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Events derived from events: Laws of 
set algebra

Commutative laws: 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴, 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

Associative laws: 𝐴 ∪ 𝐵 ∪ 𝐶 = 𝐴 ∪ 𝐵 ∪ 𝐶 , 𝐴 ∩ 𝐵 ∩ 𝐶 = 𝐴 ∩ 𝐵 ∩ 𝐶 , 

Distributive laws: 𝐴 ∪ 𝐵 ∩ 𝐶 = 𝐴 ∩ 𝐶 ∪ 𝐵 ∩ 𝐶 , 𝐴 ∩ 𝐵 ∪ 𝐶 = 𝐴 ∪ 𝐶 ∩ 𝐵 ∪ 𝐶

DeMorgan’s laws: 𝐴 ∪ 𝐵 𝐶 = 𝐴𝐶 ∩ 𝐵𝐶, 𝐴 ∩ 𝐵 𝐶 = 𝐴𝐶 ∪ 𝐵𝐶
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Probability measure

❑ Definition: Probability P is a function that maps all events A onto

real numbers and satisfies the following three axioms:

1. P(S)=1

2. 0 ≤ P(A) ≤ 1

3. If A and B are mutually exclusive (i.e., 𝐴 ∩ 𝐵 = ∅) then
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃(𝐵)
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Properties of probability (measures)

❑ From the three axioms it follows that
I. 𝑃(∅)=0

II. If 𝐴 ⊆ 𝐵, then 𝑃 𝐴 ≤ 𝑃(𝐵)

III. 𝑃(𝐴𝐶) = 1 − 𝑃(𝐴)

IV. 𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 − 𝑃(𝐴 ∩ 𝐵)

❑ In a given population, 30% of people are young, 15% are restless, and 7% 

are both young and restless. A person is randomly selected from this

population. What is the chance that this person is
– Not young? 1. 30% 2. 55% 3. 70%

– Young but not restless? 1. 7% 2. 15% 3. 23%

– Young, restless or both? 1. 38% 2. 45% 3. 62% 
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Independence

Definition: Two events A and B are independent if

𝑃 𝐴 ∩ 𝐵 = 𝑃 𝐴 𝑃(𝐵)
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❑ A person is randomly selected

from the population on the right.

❑ Are events ”the person is 

young” and ”the person is 

restless” independent?

❑ No: 0.07 ≠ 0.3 × 0.15



Conditional probability

Definition: Conditional probability P(A|B) of A 

given that B has occurred is

𝑃 𝐴 𝐵 ≜
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
.

Note: If A and B are independent, the probability

of A does not depend on whether B has

occurred or not:

𝑃 𝐴 𝐵 =
𝑃(𝐴 ∩ 𝐵)

𝑃(𝐵)
=
𝑃 𝐴 𝑃(𝐵)

𝑃(𝐵)
= 𝑃 𝐴 .
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Joint probability vs. conditional 
probability
Example:
❑ A farmer is trying to decide on a farming strategy for 

next year. Experts have made the following forecasts

about the demand for the farmer’s products.

❑ Questions:
– What is the probability of high wheat demand?

1. 40% 2. 65% 3. 134%

– What is the probability of low rye demand?

1. 11% 2. 35% 3. 45%

– What is the (conditional) probability of high wheat demand, if rye
demand is low?

1. 40% 2. 55% 3. 89%

– Are the demands independent?

1. Yes 2. No
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Wheat demand

Rye demand Low High Sum

Low 0.05 0.4 0.45

High 0.3 0.25 0.55

Sum 0.35 0.65 1

Wheat demand

Rye demand Low High Sum

Low 0.11 0.89 1

High 0.55 0.45 1

Sum 0.66 1.34

Joint probability

Conditional probability

http://presemo.aalto.fi/2134l0102

http://presemo.aalto.fi/2134l0102


Law of total probability
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❑ If E1,…,En are mutually exclusive and 𝐴 = 𝑖ڂ 𝐸𝑖, then

P(A)=P(A|E1)P(E1)+…+P(A|En)P(En)

❑ Most frequent use of this law:

– Probabilities P(A|B), P(A|Bc), and P(B) are known

– These can be used to compute P(A)=P(A|B)P(B)+P(A|Bc)P(Bc)



Bayes’ rule

❑ Bayes’ rule: 𝑃 𝐴 𝐵 =
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)

❑ Follows from

1. The definition of conditional probabilty: 𝑃 𝐴 𝐵 =
𝑃(𝐴∩𝐵)

𝑃(𝐵)
, 𝑃 𝐵 𝐴 =

𝑃(𝐵∩𝐴)

𝑃(𝐴)
,

2. Commutative laws: 𝑃 𝐵 ∩ 𝐴 = 𝑃 𝐴 ∩ 𝐵 .
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Bayes’ rule

Example:

❑ The probability of a fire in a certain building is 1/10000 any given day.

❑ An alarm goes off whenever there is an actual fire, but also once in every 200 days for 

no reason.

❑ Suppose the alarm goes off. What is the probability that there is a fire?

Solution:

❑ F=Fire, Fc=No fire, A=Alarm, Ac=No alarm

❑ P(F)=0.0001 P(Fc)=0.9999, P(A|F)=1, P(A|Fc)=0.005

Law of total probability: P(A)=P(A|F)P(F)+P(A|Fc) P(Fc)=0.0051

Bayes: 𝑃 𝐹 𝐴 =
𝑃(𝐴|𝐹)𝑃(𝐹)

𝑃(𝐴)
=

1∙0.0001

0.0051
≈ 2%
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Random variables

❑ A random variable is a mapping from sample space S to real

numbers (discrete or continuous scale)

❑ The probability measure P on the sample space defines a 

probability distribution for these real numbers

❑ Probability distribution can be represented by

– Probability mass (discrete) / density (continuous) function

– Cumulative distribution function
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Probability mass/density function (PMF 
& PDF)
❑ PMF of a discrete random variable is fX(t)

such that

– fX(t)=P({s ∈ S|X(s)=t}) = probability

– σ𝑡∈(𝑎,𝑏] 𝑓𝑋 𝑡 = 𝑃(𝑋 ∈ (𝑎, 𝑏]) = probability

❑ PDF of a continuous random variable is fX(t) 

such that

– fX(t) is NOT a probability

– 𝑎׬
𝑏
𝑓𝑋 𝑡 𝑑𝑡 = 𝑃 𝑋 ∈ 𝑎, 𝑏 is a probability
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Cumulative distribution function (CDF)

❑ The CDF of random variable X is 

𝐹𝑋 𝑡 = 𝑃 𝑠 ∈ 𝑆|𝑋(𝑠) ≤ 𝑡

(often 𝐹 𝑡 = 𝑃(𝑋 ≤ 𝑡))

❑ Properties
– FX is non-decreasing

– FX(t) approaches 0 (1) when t decreases 
(increases)

– P(X>t)=1-FX(t)

– P(a<X≤b)= FX(b)- FX(a)
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Expected value

• The expected value of a random variable is the weighted average of all possible 

values, where the weights represent probability mass / density at these values

• A function g(X) of random varibale X is itself a random variable, whereby

7.9.2022
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Discrete X

𝐸 𝑋 =෍
𝑡
𝑡𝑓𝑋(𝑡)

Continuous X

𝐸 𝑋 = න
−∞

∞

𝑡𝑓𝑋 𝑡 𝑑𝑡

𝐸 𝑔(𝑋) =෍
𝑡
𝑔(𝑡)𝑓𝑋(𝑡) 𝐸 𝑔(𝑋) = න

−∞

∞

𝑔(𝑡)𝑓𝑋 𝑡 𝑑𝑡



Expected value: Properties

❑ If 𝑋1, … , 𝑋𝑛 and 𝑌 = σ𝑖=1
𝑛 𝑋𝑖 are random variables, then 

𝐸 𝑌 =෍
𝑖=1

𝑛

𝐸[𝑋𝑖]

❑ If random variable Y=aX+b where a and b are constants, then

𝐸 𝑌 = 𝑎𝐸 𝑋 + 𝑏

❑ NB! In general, E[g(X)]=g(E[X]) does NOT hold:

– Let 𝑋 ∈ {0,1} with P(X=1)=0.7. Then, 

𝐸 𝑋 = 0.3 ∙ 0 + 0.7 ∙ 1 = 0.7,

𝐸 𝑋2 = 0.3 ∙ 02 + 0.7 ∙ 12 = 0.7 ≠ 0.49 = (𝐸 𝑋 )2.
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Random variables vs. sample space 

❑ Models are often built by directly defining distributions (PDF/PMF or CDF) 

rather than starting with the sample space

– Cf. alternative models for coin toss:

1. Sample space is S={H,T} and its probability measure P(s)=0.5 for all 𝑠 ∈ 𝑆

2. PMF is given by fX(t)=0.5, t ∈{0,1} and fX(t)=0 elsewhere

❑ Computational rules that apply to event probabilities also apply when these

probabilities are represented by distributions

❑ Detailed descriptions about the properties and common uses of different

kinds of discrete and continuous distributions are widely documented

– Elementary statistics books

– Wikipedia
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Binomial distribution

❑ n independent  binary (0/1, no/yes) trials, 

each with success probability p=P(X=1)

❑ The number X ~ Bin(n,p) of successful 

trials is a random variable that follows the 

binomial distribution with parameters n

and p

❑ PMF: 𝑃 𝑋 = 𝑡 = 𝑓𝑋 𝑡 =
𝑛
𝑡
𝑝𝑡(1 − 𝑝)𝑛−𝑡

❑ Expected value E[X]=np

❑ Variance Var[X]=np(1-p)
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Other common discrete distributions

❑ Bernoulli distribution

– If X ∈{0,1} is the result of a single binary trial with
success probability p, then X~Bernoulli(p).

– 𝑓𝑋 𝑡 = 𝑝𝑡(1 − 𝑝)1−𝑡

❑ Geometric distribution

– If X ∈{1,2,3,…} is the number of Bernoulli trials needed to 
get the first success, then X~Geom(p).

– 𝑓𝑋 𝑡 = 𝑝(1 − 𝑝)𝑡−1

❑ Poisson distribution

– Let X ∈{1,2,3,…} be the number of times that an event
occurs during a fixed time interval such that (i) the
average occurence rate 𝜆 is known and (ii) events occur
independently of the last event time. Then, X~Poisson(𝜆).

– 𝑓𝑋 𝑡 =
𝜆𝑘𝑒−𝜆

𝑘!
7.9.2022
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Uniform distribution

❑ Let X ∈[a,b] such that each real value

within the interval has equal probability. 

Then, X~Uni(a,b)

❑ 𝑓𝑋 𝑡 = ൝
1

𝑏−𝑎
, for 𝑎 ≤ 𝑡 ≤ 𝑏

0, otherwise

❑ 𝐸 𝑋 =
𝑎+𝑏

2

❑ 𝑉𝑎𝑟 𝑋 =
1

12
(𝑏 − 𝑎)2
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Normal distribution N(𝜇, 𝜎2)

❑ 𝑓𝑋 𝑡 =
1

𝜎 2𝜋
𝑒
−
(𝑡−𝜇)2

2𝜎2

❑ 𝐸 𝑋 = 𝜇, 𝑉𝑎𝑟 𝑋 = 𝜎2

❑ The most common distribution for 

continuous random variables

❑ Central limit theorem: Let X1,…,Xn be 

independent and identically distributed 

random variables with E[Xi]= 𝜇 and 

Var[Xi]=𝜎
2

. Then, 
σ𝑖=1
𝑛 𝑋𝑖
𝑛

~𝑎𝑁 𝜇,
𝜎2

𝑛
.
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Other common continuous 
distributions
❑ Log-normal distribution: if X~N(𝜇, 𝜎2), then

eX~LogN(𝜇, 𝜎2)

❑ Exponential distribution Exp(𝜆): describes 

the time between events in a Poisson 

process with event occurrence rate 𝜆

❑ Beta distribution Beta(α,β): distribution for 

X∈[0,1] that can take various forms
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Why Monte Carlo simulation?

❑ When probabilitistic models are used to support decision making, alternative

decisions often need to be described by   performance indices̕ such as

– Expected values – e.g., expected revenue from launching a new product to the
market

– Probabilities of events – e.g., the probability that the revenue is below 100k€

❑ It may be difficult, time-consuming or impossible to calculate such measures

analytically

❑ Monte Carlo simulation:

– Use of a computer program to generate samples from the probability model

– Estimation of expected values and event probabilites from these samples
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Monte Carlo simulation of a probability 
model

• Random variable X~fX

𝐸 𝑋

𝐸 𝑔 𝑋

𝑃(𝑎 < 𝑋 ≤ 𝑏)
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• Sample (x1,…,xn) from fX

σ𝑖=1
𝑛 𝑥𝑖
𝑛

σ𝑖=1
𝑛 𝑔(𝑥𝑖)

𝑛

𝑖 ∈ {1, … , 𝑛}|𝑥𝑖 ∈ (𝑎, 𝑏)

𝑛

Probability model Monte Carlo simulation



Uni(0,1) distribution in MC – discrete 
random variables
❑ Some softwares only generate random numbers from Uni(0,1)-distribution

❑ Samples from Uni(0,1) can, however, be transformed into samples from many 

other distributions
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❑ Discrete distribution:
• Let 𝑋 ∈ 𝑥1, … , 𝑥𝑛 such that 𝑓𝑋 =

𝑃 𝑋 = 𝑥𝑖 = 𝑝𝑖. 
• Divide interval [0,1] into n segments 

of lengths 𝑝1, … , 𝑝𝑛.

• Sample values 𝑢𝑗 from Uni(0,1).

• Transform the sample: If 𝑢𝑗 ∈

[σ𝑘=0
𝑖−1 𝑝𝑘, σ𝑘=0

𝑖 𝑝𝑘) where 𝑝0 = 0,
then 𝑋𝑗 = 𝑥𝑖.

Demand x 

/ week

Prob. fX of 

demand

0 0.3

1 0.4

2 0.2

3 0.1

1

0.9

0.3

0.7

U~Uni(0,1) X~fX

𝑢1 = 0.4565
𝑢2 = 0.8910
𝑢3 = 0.3254

⋮

𝑥1 = 1
𝑥2 = 2
𝑥3 = 1

⋮

X=3

X=2

X=1

X=0



Uni(0,1) distribution in MC – continuous
random variables
❑ Assume that the CDF of random variable X has an inverse function 𝐹𝑋

−1. Then, 

the random variable 𝑌 = 𝐹𝑋
−1(𝑈) where U~Uni(0,1) follows the same distribution 

as X:

𝐹𝑌 𝑡 = 𝑃 𝑌 ≤ 𝑡 = 𝑃 𝐹𝑋
−1(𝑈) ≤ 𝑡 = 𝑃 𝑈 ≤ 𝐹𝑋 𝑡 = 𝐹𝑋 𝑡
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❑ Continuous distribution:
• Let 𝑋~𝐹𝑋 (CDF)

• Sample values 𝑢𝑗 from Uni(0,1).

• Transform the sample: 𝑋𝑗 = 𝐹𝑋
−1(𝑢𝑗)
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F
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X
=N(1000,500

2
)𝑢1 = 0.4565

𝑢2 = 0.8910
𝑢3 = 0.3254

⋮

U~Uni(0,1) X~fX

𝑥1 = 945.4
𝑥2 = 1615.9
𝑥3 = 773.7

⋮



Monte Carlo simulation in Excel
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RAND() generates a random 

number from Uni(0,1)

VLOOKUP looks for the cell

value in the 1st column of the

table. The value in the 3rd 

column of the table is 

returned to the current cell.
AVERAGE(H7:H206)

STDEV.S(E8:E207)



Monte Carlo simulation in Matlab
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Monte Carlo simulation in Matlab

❑ Statistics and Machine Learning Toolbox makes it easy to 

generate numbers from various distributions

❑ E.g., 

– Y=normrnd(mu,sigma,m,n): m×n-array of X~N(mu,sigma)

– Y=betarnd(A,B,m,n) :  m×n-array of X~Beta(A,B)

– Y=lognrnd(mu,sigma,m,n) : m×n-array of X~LogN(mu,sigma)

– Y=binornd(N,P,m,n) : m×n-array of X~Bin(N,P)

– …
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Summary

❑ Probability is the dominant way of capturing uncertainty in decision models

❑ Well-established computational rules provide means to derive probabilities of 

events from those of other events

– Conditional probability, law of total probability, Bayes’ rule

❑ To support decision making, probabilistic models are often used to compute

performance indices (expected values, probabilities of events, etc.)

❑ Such indices can easily be computed through Monte Carlo simulation
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