School of Science

Decision Analysis—
probability calculus
revision material



1 Most decisions involve uncertainties

O “How many metro drivers should be recruited = trained, when future traffic is
uncertain?”

L Probability theory dominates the modeling of uncertainty in decision
analysis
— Theoretically sound rules for probabilistic inference
— Understandable, testable, can be calibrated
— Other models (e.g., evidence theory, fuzzy sets) are not covered here

O Learning objective: refresh memory about probability theory and
calculations
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The sample space

O Sample space S = set of all possible outcomes
O Examples:
— Acoin toss: S = {Head, Tails}={H,T}
— Two coin tosses: S = {HH, TT, TH, HT}
— Number of rainy days in Helsinki in 2018: S={1,...,366}
— Grades from four courses: S=G X G X G X G=G4, where G={o0,...,5}
— Average m?2-price for apartments in Helsinki area next year S = [0,) euros

7.9.2022
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Simple events and events

O Simple event: an individual outcome from S

— Acointoss: T

— Two coin tosses: TT

— Number of rainy days in Helsinki in 2018: 180

— Grades from four courses: (4, 5, 3, 4)

— Average m?-price for apartments in Helsinki in 2019: 4000 €

O Event: a collection of one or more outcomes (i.e., a subset of the
sample space: EES)
— Two coin tosses: First toss tails, E={TT, TH}
—  Number of rainy days in Helsinki in 2018: Less than 100, E={o,...,09}

— Grades from four courses: Average at least 4.0, E = {z € G4| iZ?‘zl z; = 4.0}

— Average m?2-price for apartments in Helsinki in 2019: Above 4000€, E=(4000, )
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Events derived from events:
Complement, union, and intersection

0 Complement Ac of A = all outcomes in S that are
not in A

O Union A U B of two events A and B = all
outcomes that are in A or B (or both)

S
L Intersection A N B = all outcomes that are in both .
events

0 Aand B with no common outcomes are mutually
exclusive

O Aand B are collectively exhaustiveif AUB =S

, , Aalto University
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Events derived from events: Laws of

set algebra
Commutative laws: AUB = B U A, ANB=BnNA
Associative laws: (AUB)UC =AU (BU~C(C), (ANnB)NC=An(BnNC),
Distributive laws: (AUB)NC=(ANnC)U(BnC), (AnB)uC=(AuC)n(BUC)
DeMorgan’s laws: (AU B)¢ = A® n BC, (AN B)¢ = A° U B¢

@&
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Probability measure

O Definition: Probability P is a function that maps all events A onto
real numbers and satisfies the following three axioms:

1. P(S)=1
2. 0<PA)<1

3. If A and B are mutually exclusive (i.e., A N B = @) then
P(AUB) = P(A) + P(B)
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Properties of probability (measures)

O From the three axioms it follows that
I. P(@)=0
I1. If A < B,then P(A) < P(B)
III. P(A%) =1-P(4)
IV. P(AUB)=P(4)+P(B)—-PANB)

O In a given population, 30% of people are young, 15% are restless, and 7%
are both young and restless. A person is randomly selected from this
population. What is the chance that this person is

—  Not young? 1. 30% 2.55% 3.70%
—  Young but not restless? 1. 7% 2.15% 3.23%
—  Young, restless or both? 1. 38% 2. 45% 3.62%

A!! Aalto University http://presemo.aalto.fi/anttil/ -
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Definition: Two events A and B are independent if
P(AnB) =P(A)P(B)

O A person is randomly selected
from the population on the right. S

Y

and | Restless
Restless) (]_5%)
7%

d Are events "the person is
young” and "the person is s

restless” independent?
0 No: 0.07 #0.3 x 0.15
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Conditional probability

Definition: Conditional probability P(A|B) of A
given that B has occurred is

P(A N B)
P(AlB) = W

Note: If A and B are independent, the probability
of A does not depend on whether B has

occurred or not: Source: Wikipedia

_P(AnB) P(AP(B)

P(A|B) = P~ PB) P(A).
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Joint probability vs. conditional

prObabIIIty Joint probability

Example: Wheat demand
. . . . Rye demand Low High Sum
O Afarmer is trying to decide on a farming strategy for
next year. Experts have made the following forecasts Low 005 | 04 |04
about the demand for the farmer’s products. High 03 | 025 | 055
a Questions: Sum 0.35 0.65 1
—  What is the probability of high wheat demand?
1. 40% 2. 65% 3-134% Conditional probability
—  What is the probability of low rye demand? Wheat d J
1. 11% 2.35% 3. 45% eat deman
—  What is the (conditional) probability of high wheat demand, if rye Rye demand | Low | High | Sum
demand is low? Low 0.11 0.89 1
1. 40% 2.55% 3. 89% :
High 0.55 0.45 1
—  Are the demands independent? £
1. Yes 2. No Sum 0.66 1.34
Aalto University .
f 1 NG =Xt e http://presemo.aalto.fi/213410102 2002
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Law of total probability

4 If E,,...,E, are mutually exclusive and A = U; E;, then
P(A)=P(A|E)P(E,)*...+P(A[E,)P(E,)

O Most frequent use of this law:
— Probabilities P(A|B), P(A|B¢), and P(B) are known
— These can be used to compute P(A)=P(A|B)P(B)+P(A|B¢)P(B°)

’, Aalto University
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Bayes’ rule

P(B|A)P(4)
P(B)

4 Bayes’rule: P(A|B) =

J Follows from

1. The definition of conditional probabilty: P(4|B) = 2422

P(B) ’

P(BNA)

P(BIA) = %

)

2.  Commutative laws: P(B N A) = P(A n B).
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Example:
O The probability of a fire in a certain building is 1/10000 any given day.

O An alarm goes off whenever there is an actual fire, but also once in every 200 days for
no reason.

O Suppose the alarm goes off. What is the probability that there is a fire?

Solution:
U F=Fire, Fc=No fire, A=Alarm, A°=No alarm
0 P(F)=0.0001 P(F°)=0.9999, P(A|F)=1, P(A|F°)=0.005

Law of total probability: P(A)=P(A|F)P(F)+P(A|F°) P(F¢)=0.0051
P(A|F)P(F) _ 1-0.0001 ~ 204

Bayes: P(F|A) = P(A)  0.0051
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O Arandom variable is a mapping from sample space S to real
numbers (discrete or continuous scale)

O The probability measure P on the sample space defines a
probability distribution for these real numbers

O Probability distribution can be represented by
— Probability mass (discrete) / density (continuous) function
— Cumulative distribution function
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Probability mass/density functlon (PI\/IF
& PDF) :

035

d PMF of a discrete random variable is fy(t) o X-Bin(5.0.3)
such that S o
—  fx()=P({s € S|X(s)=t}) = probability
Zte(a,b] fx(t) = P(X € (a, b]) = probability oos| ‘ ‘ |

0

O PDF of a continuous random variable is f,(t) *

16

such that
- f X( t) 1s NOT a probabﬂity 12 X~N(0.0.59)

- f; fx(©)dt = P(X € (a, b)) is a probability

1k

f.®

081

0.6

041
02} J
o .

-1 -05a b 0 05 1
t
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Cumulative distribution function (CDF)

1 The CDF of random variable X is
Fx(t) = P({s € S|X(s) < t})

(often F(t) = P(X <t))
O Properties

— Fyis non-decreasing

Fy)

— F(t) approaches 0 (1) when t decreases
(increases)

—  P(X>1)=1-F(1)
—  P(a<X<b)= Fy(b)- Fi(a)

N0)

, , Aalto University
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« The expected value of a random variable is the weighted average of all possible
values, where the weights represent probability mass / density at these values

Discrete X Continuous X

EIXI= ) tfx(® E[X] = j (D) dt

« Afunction g(X) of random varibale X is itself a random variable, whereby

Elgt0] = ). 9(Of(© Fla] = [ g@f(de
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Expected value: Properties

Q IfX,..,.X,and Y = }I*, X; are random variables, then
n

ElY]= ) 1E[Xi]
1=
O If random variable Y=aX+b where a and b are constants, then
E[Y] =aE[X] + D

O NB! In general, E[g(X)]=g(E[X]) does NOT hold:
— Let X € {0,1} with P(X=1)=0.7. Then,
E[X]=03-0+0.7-1=0.7,
E[X?]1=03-02+0.7-1%2 = 0.7 # 0.49 = (E[X])?.

’, Aalto University
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Random variables vs. sample space

U Models are often built by directly defining distributions (PDF/PMF or CDF)
rather than starting with the sample space
— Cf. alternative models for coin toss:
1. Sample space is S={H,T} and its probability measure P(s)=0.5for all s € S
2. PMF is given by f(t)=0.5, t €{0,1} and fy(t)=0 elsewhere
O Computational rules that apply to event probabilities also apply when these
probabilities are represented by distributions
O Detailed descriptions about the properties and common uses of different
kinds of discrete and continuous distributions are widely documented
— Elementary statistics books
— Wikipedia

’, Aalto University
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Binomial distribution

U nindependent binary (0/1, no/yes) trials,
each with success probability p=P(X=1)

0 The number X ~ Bin(n,p) of successful
trials is a random variable that follows the
binomial distribution with parameters n
and p

PMF: P(X = t) = fy(t) = (7, ) p‘(1 — p)"~*
O Expected value E[X]=np
O Variance Var[X]=np(1-p)

(

0.00 0.05 0.10 0.15 0.20 0.25
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222

Source: Wikipedia
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Other common discrete distributions

O Bernoulli distribution
— If X €{0,1} is the result of a single binary trial with
success probability p, then X~Bernoulli(p).

- fO=p'A-p"

O Geometric distribution

- If X €{1,2,3,...} is the number of Bernoulli trials needed to
get the first success, then X~Geom(p).

- K@ =p-p)

L Poisson distribution

— Let X €{1,2,3,...} be the number of times that an event
occurs during a fixed time interval such that (i) the
average occurence rate 1 is known and (ii) events occur
independently of the last event time. Then, X~Poisson(4).

Ake—2

- fx@® = o

f(k;p) = (P~K) [(1-p)*(1-K)]

- -k=0

5 10 15 20
k

Source: Wikipedia
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Uniform distribution

S R -,
O Let X €[a,b] such that each real value 1
within the interval has equal probability. |
Then, X~Uni(a,b) 1
1 0 a b X
— fora<t<b
O fx(t) ={b-a _ 1
0, otherwise Fx
QO E[X] = “T*”
Q Var[X] = %(b —a)?
0 a b X

Source: Wikipedia
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Normal distribution N(u, o2)

_(t—w)?
202

U

fx(®) = —=e
Q E[X]=u Var[X] = ¢?

L The most common distribution for
continuous random variables

d Central limit theorem: Let X,,..., X, be
independent and identically distributed
random variables with E[X]]= ¢ and
Var[X]=a2. Then,

n_X. g2
1=1“*1

~ N|u—]».
n a <,u n)

! I
1=0, 02=0.2, == ]
H=0, 02=10,—|
H=0, 50, —]
\ p=-2, 02=0.5,=—|
— 0.6 1
3 N\
S o4
N
5‘74 I72‘71‘0I1‘2‘3‘4I5
T ‘ T ‘ T T T T T T T T
[ |p=0, 0%=02,— ///
H=0, 02210, = /
08— =0, 0?=50, = /
F|H=-2, 02:0‘5‘—/ //
_ /
= 08 /
. /
cﬁ
g o.
02 V’/’
! wT - - ! !
-3 -2 -1 0 5

Source: Wikipedia
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Other common continuous | |-

distributions

O Log-normal distribution: if X~N(u, ¢2), then AN
eX~LogN(u, o2)

O Exponential distribution Exp(2): describes Ryl s
the time between events in a Poisson ég;z\ |
process with event occurrence rate 1 o \

0.0

0 Beta distribution Beta(a,[3): distribution for
Xg[0,1] that can take various forms




Why Monte Carlo simulation?

0 When probabilitistic models are used to support decision making, alternative
decisions often need to be described by performance indices’ such as

— Expected values — e.g., expected revenue from launching a new product to the
market

— Probabilities of events — e.g., the probability that the revenue is below 100k€

O It may be difficult, time-consuming or impossible to calculate such measures
analytically

d Monte Carlo simulation:

— Use of a computer program to generate samples from the probability model
— Estimation of expected values and event probabilites from these samples

’, Aalto University
School of Science
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Monte Carlo simulation of a probability

model
Probability model

Random variable X~fy

E[X]

Elg(0)]

P(a< X <b)

Monte Carlo simulation
Sample (Xy,...,X,) from fy

I{i € {1, ...

Z?=1xi

n

Yiz19(x;)

n

,n}|x; € (a, b))}

n

Aalto Un
A” Scho IfS

7.9.2022
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Uni(0,1) distribution in MC —discrete
random variables

L Some softwares only generate random numbers from Uni(0,1)-distribution

0 Samples from Uni(0,1) can, however, be transformed into samples from many
other distributions

U~Uni(0,1) X~fx
Q Discrete distribution: 1 hxss
u; = 04565 g X1 = Demand x  Prob. fy of
° Let X e {xl, ey xn} SUCh that fX = uz — 0.8910 F—X:Z xz = /Week demand
P(X = x;) = p;. uz = 0.3254 (.7 |- x3 =1 0 03
« Divide interval [0,1] into n segments = :
of lengths py, ..., Pn. —X=1 ! 04
- Sample values u; from Uni(0,1). 2 0.2
Transform the sample: If u; € 0.3 ‘T 3 01
[Xie=0 Pi> Lie=o Px) Where po = 0, —X=0
then X] = Xi.

,, Aalto University
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Uni(0,1) distribution in MC — continuous
random variables

O Assume that the CDF of random variable X has an inverse function Fy*. Then,
the random variable Y = F; 1 (U) where U~Uni(0,1) follows the same distribution
as X:

Fy(£) =P(Y <t) =P(Fy'(U) <t) = P(U < Fx(t)) = Fx(¢t)

O Continuous distribution: U~Uni(0,1) X~fy
Let X~Fy (CDF) w = 04565 x, = 945.4 2000F  f =N(1000,5007)
Sample values u; from Uni(0,1). u; 08910 X, =16159 10l
Transform the sample: X; = Fx‘l(uj) us = 03254 x3=7737 3

5 1000f

E

500

Ok

500 : : ; :
0 0.2 04 0.6 0.8 1
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Monte Carlo simulation in Excel

VLOOKUP looks for the cell

value in the 1st column of
table. The value in the 3rd
column of the table is

J= | =NORM.INV{ES;1000;500)

the. | =viooKkuP(67;$8$7:50$10;3;TRUE)

C D E F

returned to the current cell.

2

True mean
Sample mean

3
4
&
]
7]

i Sum pO:p(i-1)  Probability pi Demand xi Sample

7 1 0 0.2 0 1
3 2 0.3 0.4 1 2
9 3 0.7 0.2 2

10 4 0.9 0.1 3 4
11 1 5
12 6
13 7
14 8
15 RAND() generates a random g
16 number from Uni(0,1) 10
17 11
12 12

G H
0.5 11
0.498714 1.085
u X
0.003979|3; TRUE) .I
0.423969 1
0.931674 3
0.963706 3
0.5006598 1
0.628946 1
0.056035 a
0.762916 2
0.401607 1
0.937021 3
0.862141 2
0.895572 2

IAVERAGE(H7:H206) |

Sampe stdev

Sample

1

LY== B R = R B L ]

=
= O

0.5 1000
0.518524 1020.184
0.288675 500

0.296019 503.2426

u X
0.049976 I 177.4551 !
0.205365 588.695
0.874753 1574.575
0.970594 1544.799
0.968038 1926.357
0.643137 1133.423

0.26185 681174
0.404865 879.6124
0.642356 1182.382
0.200953 530.389
0.297499 734.1966
0.858584 1536.989
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Monte Carlo simulation in Matlab

5=200; EFHumber of simmlation rounds
r=[0.3 0.4 0.2 0.1]: %PMF for x
P=[0.3% 0.7 0.9 1]; %CDF for x
X=[0 1 2 3]:; %Possibkle walues of x
Sample=zeros (5,1); %Initialize the =zample vector
~|for k=1:5:
r=rand; %Random number from Uni (0, 1)
counter=1l; 35tart looking from the first wvalue of X
=1 while (r>P(counter)) %*While r iz greater than the CDF at current value of X...
counter=counter+l; %IWe go to the next wvalue of X.
= end %When r is lower than the CDF at the current wvalue of X...
Sample (k)=X (counter); %We have found the wvalue of X corresponding to ¢

-end
TrueMean=p+~X"'
SampleMean=mean (Sample)

,, Aalto University
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Monte Carlo simulation in Matlab

O Statistics and Machine Learning Toolbox makes it easy to
generate numbers from various distributions

d E.g.,
— Y=normrnd (mu, sigma,m,n): mXxn-array of X~N(mu,sigma)
— Y=betarnd(A,B,m,n) : mxn-array of X~Beta(A,B)
- Y=lognrnd(mu, sigma,m,n) : mXxn-array of X~LogN(mu,sigma)
— Y=binornd(N,P,m,n) : mXxn-array of X~Bin(N,P)
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O Probability is the dominant way of capturing uncertainty in decision models

0 Well-established computational rules provide means to derive probabilities of
events from those of other events

— Conditional probability, law of total probability, Bayes’ rule

0 To support decision making, probabilistic models are often used to compute
performance indices (expected values, probabilities of events, etc.)

O Such indices can easily be computed through Monte Carlo simulation
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