

Decision Analysis– probability calculus revision material

2022

Why probabilities?

Most decisions involve uncertainties

- "How many metro drivers should be recruited = trained, when future traffic is uncertain?"
- Probability theory dominates the modeling of uncertainty in decision analysis
 - Theoretically sound rules for probabilistic inference
 - Understandable, testable, can be calibrated
 - Other models (e.g., evidence theory, fuzzy sets) are not covered here
- Learning objective: refresh memory about probability theory and calculations

The sample space

 \Box Sample space *S* = set of all possible outcomes

□ Examples:

- A coin toss: $S = \{\text{Head}, \text{Tails}\} = \{\text{H}, \text{T}\}$
- Two coin tosses: $S = \{HH, TT, TH, HT\}$
- Number of rainy days in Helsinki in 2018: $S = \{1, ..., 366\}$
- Grades from four courses: $S=G \times G \times G \times G = G^4$, where $G=\{0,...,5\}$
- − Average m^2 -price for apartments in Helsinki area next year $S = [0,\infty)$ euros

Simple events and events

Simple event: an individual outcome from S

- A coin toss: T
- Two coin tosses: TT
- Number of rainy days in Helsinki in 2018: 180
- Grades from four courses: (4, 5, 3, 4)
- − Average m^2 -price for apartments in Helsinki in 2019: 4000 €

□ Event: a collection of one or more outcomes (i.e., a subset of the sample space: $E \subseteq S$)

- Two coin tosses: First toss tails, $E = \{TT, TH\}$
- Number of rainy days in Helsinki in 2018: Less than 100, $E = \{0, ..., 99\}$
- Grades from four courses: Average at least 4.0, $E = \left\{ z \in G^4 \left| \frac{1}{4} \sum_{i=1}^4 z_i \ge 4.0 \right\} \right\}$
- Average m^2 -price for apartments in Helsinki in 2019: Above 4000€, E=(4000, ∞)

Events derived from events: Complement, union, and intersection

- Complement A^c of A = all outcomes in S that are not in A
- □ Union $A \cup B$ of two events A and B = all outcomes that are in A or B (or both)
- □ Intersection $A \cap B$ = all outcomes that are in both events
- A and B with no common outcomes are mutually exclusive
- \Box A and B are **collectively exhaustive** if $A \cup B = S$

Events derived from events: Laws of set algebra

Commutative laws: $A \cup B = B \cup A$,

 $A \cap B = B \cap A$

Associative laws: $(A \cup B) \cup C = A \cup (B \cup C)$,

 $(A \cap B) \cap C = A \cap (B \cap C),$

Distributive laws: $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$,

 $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

DeMorgan's laws: $(A \cup B)^C = A^C \cap B^C$,

 $(A \cap B)^{C} = A^{C} \cup B^{C}$

Probability measure

- □ **Definition:** Probability *P* is a function that maps all events *A* onto real numbers and satisfies the following three axioms:
 - 1. P(S)=1
 - $2. \quad 0 \le P(A) \le 1$
 - 3. If *A* and *B* are mutually exclusive (i.e., $A \cap B = \emptyset$) then $P(A \cup B) = P(A) + P(B)$

Properties of probability (measures)

□ From the three axioms it follows that

- I. $P(\emptyset)=0$
- II. If $A \subseteq B$, then $P(A) \leq P(B)$
- III. $P(A^C) = 1 P(A)$
- IV. $P(A \cup B) = P(A) + P(B) P(A \cap B)$

In a given population, 30% of people are young, 15% are restless, and 7% are both young and restless. A person is randomly selected from this population. What is the chance that this person is

_	Not young?	1. 30%	2.55%	3.70%
_	Young but not restless?	1. 7%	2.15%	3. 23%
_	Young, restless or both?	1. 38%	2.45%	3. 62%

http://presemo.aalto.fi/antti1/

Independence

Definition: Two events A and B are independent if $P(A \cap B) = P(A)P(B)$

- A person is randomly selected from the population on the right.
- Are events "the person is young" and "the person is restless" independent?
 □ No: 0.07 ≠ 0.3 × 0.15

Conditional probability

Definition: Conditional probability P(A|B) of A given that B has occurred is

$$P(A|B) \triangleq \frac{P(A \cap B)}{P(B)}.$$

Note: If A and B are independent, the probability of *A* does not depend on whether *B* has occurred or not:

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A).$$

Joint probability vs. conditional probability

Example:

A farmer is trying to decide on a farming strategy for next year. Experts have made the following forecasts about the demand for the farmer's products.

Questions:

- What is the probability of high wheat demand?
 - 1.40% 2.65% 3.134%
- What is the probability of low rye demand?

1.11% 2.35% 3.45%

- What is the (conditional) probability of high wheat demand, if rye demand is low?
 - 1.40% 2.55% 3.89%
- Are the demands independent?

1. Yes 2. No

Joint probability

	Wheat			
Rye demand	Low	High	Sum	
Low	0.05	0.4	0.45	
High	0.3	0.25	0.55	
Sum	0.35	0.65	1	

Conditional probability

	Wheat		
Rye demand	Low	High	Sum
Low	0.11	0.89	1
High	0.55	0.45	1
Sum	0.66	1.34	

Law of total probability

 \Box If E_1, \ldots, E_n are mutually exclusive and $A = \bigcup_i E_i$, then

$\mathsf{P}(A) = \mathsf{P}(A|E_1)\mathsf{P}(E_1) + \ldots + \mathsf{P}(A|E_n)\mathsf{P}(E_n)$

□ Most frequent use of this law:

- Probabilities P(A|B), $P(A|B^c)$, and P(B) are known
- These can be used to compute $P(A)=P(A|B)P(B)+P(A|B^c)P(B^c)$

Bayes' rule

Bayes' rule:
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

□ Follows from

- 1. The definition of conditional probability: $P(A|B) = \frac{P(A \cap B)}{P(B)}$, $P(B|A) = \frac{P(B \cap A)}{P(A)}$,
- 2. Commutative laws: $P(B \cap A) = P(A \cap B)$.

Bayes' rule

Example:

- □ The probability of a fire in a certain building is 1/10000 any given day.
- An alarm goes off whenever there is an actual fire, but also once in every 200 days for no reason.
- □ Suppose the alarm goes off. What is the probability that there is a fire?

Solution:

- \Box F=Fire, F^c=No fire, A=Alarm, A^c=No alarm
- □ P(F)=0.0001 P(F^c)=0.9999, P(A|F)=1, P(A|F^c)=0.005

Law of total probability: P(A)=P(A|F)P(F)+P(A|F^c) P(F^c)=0.0051

Bayes: $P(F|A) = \frac{P(A|F)P(F)}{P(A)} = \frac{1 \cdot 0.0001}{0.0051} \approx 2\%$

Random variables

□ A random variable is a mapping from sample space S to real numbers (discrete or continuous scale)

The probability measure P on the sample space defines a probability distribution for these real numbers

□ Probability distribution can be represented by

- Probability mass (discrete) / density (continuous) function
- Cumulative distribution function

Probability mass/density function (PMF & PDF)

- □ PMF of a discrete random variable is $f_X(t)$ such that
 - $f_X(t)=P(\{s \in S | X(s)=t\}) =$ probability
 - $\sum_{t \in (a,b]} f_X(t) = P(X \in (a,b]) =$ probability
- □ PDF of a continuous random variable is $f_X(t)$ such that
 - $f_X(t)$ is NOT a probability
 - $\int_{a}^{b} f_{X}(t)dt = P(X \in (a, b])$ is a probability

Cumulative distribution function (CDF)

□ The CDF of random variable X is $F_X(t) = P(\{s \in S | X(s) \le t\})$ (often $F(t) = P(X \le t)$)

□ Properties

- F_X is non-decreasing
- $F_X(t)$ approaches 0 (1) when t decreases (increases)
- $P(X>t)=1-F_X(t)$
- $P(a < X \le b) = F_X(b) F_X(a)$

Expected value

• The expected value of a random variable is the weighted average of all possible values, where the weights represent probability mass / density at these values

Discrete X
$$E[X] = \sum_{t} t f_X(t)$$

Continuous X
$$E[X] = \int_{-\infty}^{\infty} t f_X(t) dt$$

• A function g(X) of random varibale X is itself a random variable, whereby

$$E[g(X)] = \sum_{t} g(t) f_X(t)$$

$$E[g(X)] = \int_{-\infty}^{\infty} g(t) f_X(t) dt$$

Expected value: Properties

□ If $X_1, ..., X_n$ and $Y = \sum_{i=1}^n X_i$ are random variables, then $E[Y] = \sum_{i=1}^n E[X_i]$

□ If random variable Y=aX+b where *a* and *b* are constants, then E[Y] = aE[X] + b

NB! In general, E[g(X)]=g(E[X]) does NOT hold:

- Let $X \in \{0,1\}$ with P(X=1)=0.7. Then, $E[X] = 0.3 \cdot 0 + 0.7 \cdot 1 = 0.7$, $E[X^2] = 0.3 \cdot 0^2 + 0.7 \cdot 1^2 = 0.7 \neq 0.49 = (E[X])^2$.

Random variables vs. sample space

- Models are often built by directly defining distributions (PDF/PMF or CDF) rather than starting with the sample space
 - Cf. alternative models for coin toss:
 - 1. Sample space is $S = \{H, T\}$ and its probability measure P(s) = 0.5 for all $s \in S$
 - 2. PMF is given by $f_X(t)=0.5$, $t \in \{0,1\}$ and $f_X(t)=0$ elsewhere
- Computational rules that apply to event probabilities also apply when these probabilities are represented by distributions
- Detailed descriptions about the properties and common uses of different kinds of discrete and continuous distributions are widely documented
 - Elementary statistics books
 - Wikipedia

Binomial distribution

- □ *n* independent binary (0/1, no/yes) trials, each with success probability p=P(X=1)
- □ The number $X \sim Bin(n,p)$ of successful trials is a random variable that follows the binomial distribution with parameters *n* and *p*

D PMF:
$$P(X = t) = f_X(t) = {n \choose t} p^t (1-p)^{n-t}$$

- $\Box \quad \text{Expected value E}[X] = np$
- □ Variance Var[X] = np(1-p)

Source: Wikipedia

Other common discrete distributions

Bernoulli distribution

- If $X \in \{0,1\}$ is the result of a single binary trial with success probability *p*, then *X*~Bernoulli(*p*).
- $f_X(t) = p^t (1-p)^{1-t}$
- Geometric distribution
 - If $X \in \{1, 2, 3, ...\}$ is the number of Bernoulli trials needed to get the first success, then *X*~Geom(*p*).
 - $f_{x}(t) = p(1-p)^{t-1}$

Poisson distribution

Let $X \in \{1, 2, 3, ...\}$ be the number of times that an event occurs during a fixed time interval such that (i) the average occurrence rate λ is known and (ii) events occur independently of the last event time. Then, $X \sim \text{Poisson}(\lambda)$.

$$- \quad f_X(t) = \frac{\lambda^k e^{-\lambda}}{k!}$$

22

Uniform distribution

Let X ∈[a,b] such that each real value within the interval has equal probability. Then, X~Uni(a,b)

$$\Box f_X(t) = \begin{cases} \frac{1}{b-a}, & \text{for } a \le t \le b \\ 0, & \text{otherwise} \end{cases}$$
$$\Box E[X] = \frac{a+b}{2}$$
$$\Box Var[X] = \frac{1}{12}(b-a)^2$$

Normal distribution N(μ , σ^2)

$$\Box f_X(t) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(t-\mu)^2}{2\sigma^2}}$$

 $\Box \ E[X] = \mu, Var[X] = \sigma^2$

The most common distribution for continuous random variables

□ Central limit theorem: Let $X_1, ..., X_n$ be independent and identically distributed random variables with $E[X_i] = \mu$ and $Var[X_i] = \sigma^2$. Then, $\sum_{i=1}^{n} K_i = (-\tau^2)$

$$\frac{\sum_{i=1}^{n} X_i}{n} \sim_a N\left(\mu, \frac{\sigma^2}{n}\right).$$

Other common continuous distributions

□ Log-normal distribution: if $X \sim N(\mu, \sigma^2)$, then $e^X \sim LogN(\mu, \sigma^2)$

□ Exponential distribution $Exp(\lambda)$: describes the time between events in a Poisson process with event occurrence rate λ

Beta distribution Beta(α,β): distribution for X∈[0,1] that can take various forms

Why Monte Carlo simulation?

- □ When probabilitistic models are used to support decision making, alternative decisions often need to be described by 'performance indices' such as
 - Expected values e.g., expected revenue from launching a new product to the market
 - Probabilities of events e.g., the probability that the revenue is below 100k€
- It may be difficult, time-consuming or impossible to calculate such measures analytically
- □ Monte Carlo simulation:
 - Use of a computer program to generate samples from the probability model
 - Estimation of expected values and event probabilites from these samples

Monte Carlo simulation of a probability model

Probability model

• Random variable $X \sim f_X$

E[X]

Monte Carlo simulation

• Sample
$$(x_1, \dots, x_n)$$
 from f_X

E[g(X)]

 $P(a < X \leq b)$

 $\sum_{i=1}^{n} x_i$

n

 $\frac{|\{i \in \{1, \dots, n\} | x_i \in (a, b)\}|}{n}$

Uni(0,1) distribution in MC – discrete random variables

- □ Some softwares only generate random numbers from Uni(0,1)-distribution
- Samples from Uni(0,1) can, however, be transformed into samples from many other distributions

Uni(0,1) distribution in MC – continuous random variables

□ Assume that the CDF of random variable *X* has an inverse function F_X^{-1} . Then, the random variable $Y = F_X^{-1}(U)$ where *U*~Uni(0,1) follows the same distribution as *X*:

$$F_Y(t) = P(Y \le t) = P(F_X^{-1}(U) \le t) = P(U \le F_X(t)) = F_X(t)$$

Continuous distribution: $U \sim Uni(0,1)$ X~f_x 2500 Let $X \sim F_X$ (CDF) 2000 $f_{\gamma} = N(1000, 500^2)$ $x_1 = 945.4$ $u_1 = 0.4565$ Sample values u_i from Uni(0,1). $u_2 = 0.8910$ $x_2 = 1615.9$ 1500 Transform the sample: $X_i = F_X^{-1}(u_i)$ $x_3 = 773.7$ ٠ $u_3 = 0.3254$ =-1 X(u) 1000 500 -500 **L**____0 0.2 0.4 0.6 0.8

u

Monte Carlo simulation in Excel

	•••••	looks for the									VV(E8;1000;	500)	
		1st column o		KUP <mark>(G7</mark> ;\$B\$7:	\$D\$10;3;	TRUE)			STDEV.S(E8:E207)	D	Е	F	G
		alue in the 3r											
		he <mark>table</mark> is	С	D	E	F	G	Н		True mean	0.5	1000	
eturi	ned to	the current ce	ell.					AVER	RAGE(H7:H206)	Sample mean	0.518524	1020.184	
2										True stdev	0.288675	500	
3						True mean	0.5	1.1		Sampe stdev	0.296019	503.2426	
4						Sample mean	0.498714	1.085	-	Sampestuev	0.230013	305.2420	
5		0 0 (14)	A 1 1 1 1 1	a									
6	1	Sum p0:p(i-1)	Probability pi			Sample	u a aaaama	X		Sample	u	X	
7	1	0	0.3	0		1	0.009979	3;TRUE)		1	0.049976	177.4551	
8	2	0.3	0.4	1		2	0.423969	1		2	0.205365	588.695	
9	3	0.7	0.2	2		3	0.931674	3		3	0.874753	1574.575	
10	4	0.9	0.1	3		4	0.963706	3		4	0.970594	1944.799	
11		1				5	0.500698	1		5	0.968038		
12						6	0.628946	1		6	0.643137		
13				/		7	0.056035	0					
14		R	AND() gene	rates a rai	ndom	8	0.762916	2		7	0.26185	681.174	
15					luom	9	0.401607	1		8	0.404865	879.6124	
16		nu	umber from	Om(0,1)		10	0.937021	3		9	0.642356	1182.382	
11 12 13 14 15 16 17 18						11	0.862141	2		10	0.200953	580.889	
18						12	0.895572	2		11	0.297499	734.1966	
										12	0.858584	1536,989	

Monte Carlo simulation in Matlab

```
S=200; %Number of simulation rounds
p=[0.3 0.4 0.2 0.1]; %PMF for x
P=[0.3 0.7 0.9 1]; %CDF for x
X=[0 1 2 3]; %Possible values of x
Sample=zeros(S,1); %Initialize the sample vector
for k=1:S;
    r=rand; %Random number from Uni(0,1)
    counter=1; %Start looking from the first value of X
    while(r>P(counter)) %While r is greater than the CDF at current value of X...
    counter=counter+1; %We go to the next value of X...
    sample(k)=X(counter); %We have found the value of X corresponding to r
end
TrueMean=p*X'
SampleMean=mean(Sample)
```

Monte Carlo simulation in Matlab

- Statistics and Machine Learning Toolbox makes it easy to generate numbers from various distributions
- □ E.g.,
 - Y=normrnd(mu,sigma,m,n):
 - Y=betarnd(A,B,m,n):
 - Y=lognrnd(mu,sigma,m,n):
 - Y=binornd(N,P,m,n):

m×n-array of X~N(mu,sigma) m×n-array of X~Beta(A,B) m×n-array of X~LogN(mu,sigma) m×n-array of X~Bin(N,P)

□ Probability is the dominant way of capturing uncertainty in decision models

- Well-established computational rules provide means to derive probabilities of events from those of other events
 - Conditional probability, law of total probability, Bayes' rule
- □ To support decision making, probabilistic models are often used to compute performance indices (expected values, probabilities of events, etc.)
- □ Such indices can easily be computed through Monte Carlo simulation

