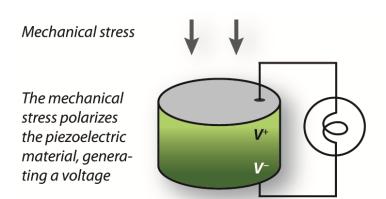


Functional Inorganic Materials Lecture 9: Piezoelectricity

Fall 2022

Antti Karttunen (antti.karttunen@aalto.fi)
Department of Chemistry and Materials Science

Lecture Exercise 9 is a MyCourses Quiz


Contents

- General overview of non-centrosymmetric materials
 - Piezoelectricity is limited to crystals with certain symmetry properties

Piezoelectricity

- Electric polarization from mechanical force
- Mechanical deformation due to electric field
- Applications of piezoelectricity in various fields of technology
 - Energy harvesting as a potential future application

Literature on non-centrosymmetric materials

P. Shiv Halasyamani and Kenneth R. Poeppelmeier, Noncentrosymmetric Oxides, *Chem. Mater.* **1998**, *10*, 2753–2769. DOI: https://doi.org/10.1021/cm980140w

Kang Min Ok, Eun Ok Chi and P. Shiv Halasyamani, Bulk characterization methods for non-centrosymmetric materials: second harmonic generation, piezoelectricity, pyroelectricity, and ferroelectricity, *Chem. Soc. Rev.*, **2006**, *35*, 710–717. DOI:

https://doi.org/10.1039/B511119F

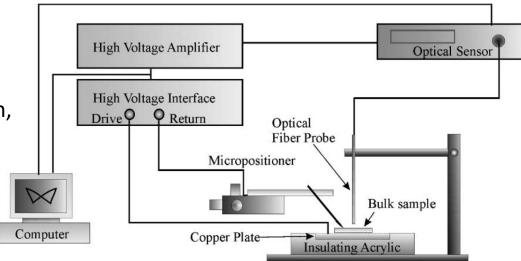


Fig. 3 Experimental system to measure converse piezoelectric effects.

Let's start with a brief review of crystal systems and crystal classes, because crystal symmetry is very important for understanding non-centrosymmetric functional materials

Crystal systems

Figure 1.3 (a) The seven crystal systems and their unit cell shapes; α , β , γ = Lattice parameters

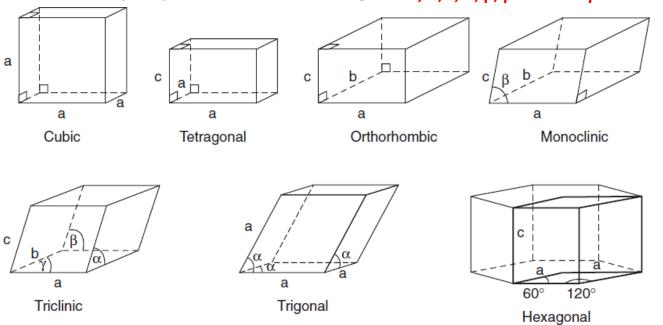
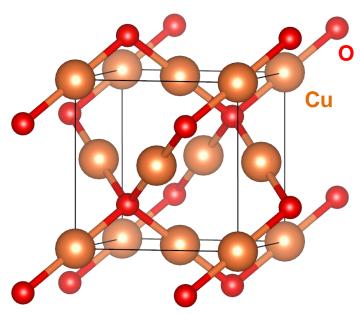


Table 1.1 The seven crystal systems

Crystal system	Unit cell shape ^b	Essential symmetry	Allowed lattices
Cubic Tetragonal Orthorhombic Hexagonal Trigonal (a) Trigonal (b) Monoclinica	$a = b = c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a \neq b \neq c, \alpha = \beta = \gamma = 90^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b \neq c, \alpha = \beta = 90^{\circ}, \gamma = 120^{\circ}$ $a = b = c, \alpha = \beta = \gamma \neq 90^{\circ}$ $a \neq b \neq c, \alpha = \gamma = 90^{\circ}, \beta \neq 90^{\circ}$	Four threefold axes One fourfold axis Three twofold axes or mirror planes One sixfold axis One threefold axis One threefold axis One twofold axis or mirror plane	P, F, I P, I P, F, I, A (B or C) P P R P, C
Triclinic	$a \neq b \neq c, \alpha \neq \beta \neq \gamma \neq 90^{\circ}$	None	P 4

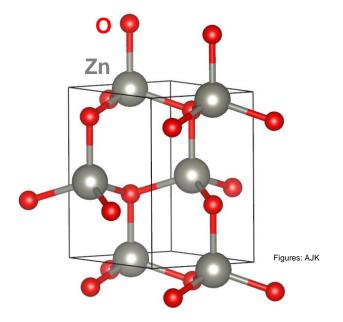
Ref: West p. 3-4

Crystal classes


• The seven crystal systems consist of 32 crystal classes corresponding to the 32 crystallographic point groups

Crystal system	Crystal classes (point groups) in Hermann-Mauguin notation	Crystal classes (point groups) in Schönflies notation
Triclinic	1, 1	C_1, C_i
Monoclinic	2, m, 2/m	C_2 , C_s , C_{2h}
Orthorhombic	222, mm2, mmm	D_2 , C_{2v} , D_{2h}
Tetragonal	$4,\overline{4}, 4/m, 422, 4mm, \overline{4}2m, 4/mmm$	C_4 , S_4 , C_{4h} , D_4 , C_{4v} , D_{2d} , D_{4h}
Trigonal	$3, \overline{3}, 32, 3m, \overline{3}m$	C_3 , S_6 (C_{3i}), D_3 , C_{3v} , D_{3d}
Hexagonal	$6, \overline{6}, 6/m, 622, 6mm, \overline{6}m2, 6/mmm$	C_6 , C_{3h} , C_{6h} , D_6 , C_{6v} , D_{3h} , D_{6h}
Cubic	23, $\overline{4}$ 3 <i>m</i> , $m\overline{3}$, 432, $m\overline{3}$ <i>m</i>	T , T_d , T_h , O , O_h

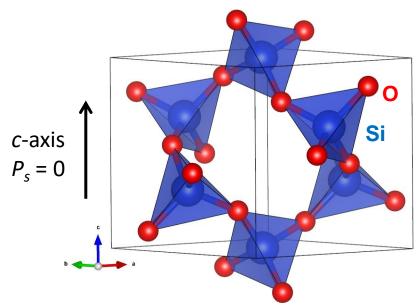
Ref: Inorganic Structural Chemistry (2nd ed.), Ulrich Müller, 2006, Wiley p. 24 and Wikipedia


Centrosymmetric and noncentrosymmetric materials

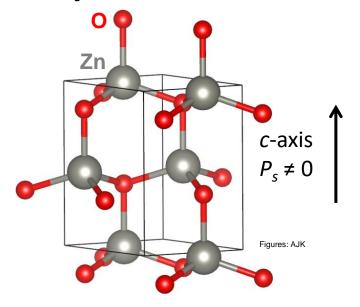
- Centrosymmetric crystal classes possess an *inversion center*: for every point (x, y, z) in the unit cell there is an indistinguishable point (-x, -y, -z)
- Non-centrosymmetric crystal classes *do not possess an inversion center*
- Piezo-, pyro-, and ferroelectricity are possible only for *non-centrosymmetric materials*

Cu₂O (space group *Pn*-3*m*)

Centrosymmetric oxide with inversion center



ZnO (space group $P6_3mc$)


Non-centrosymmetric oxide with no inversion center

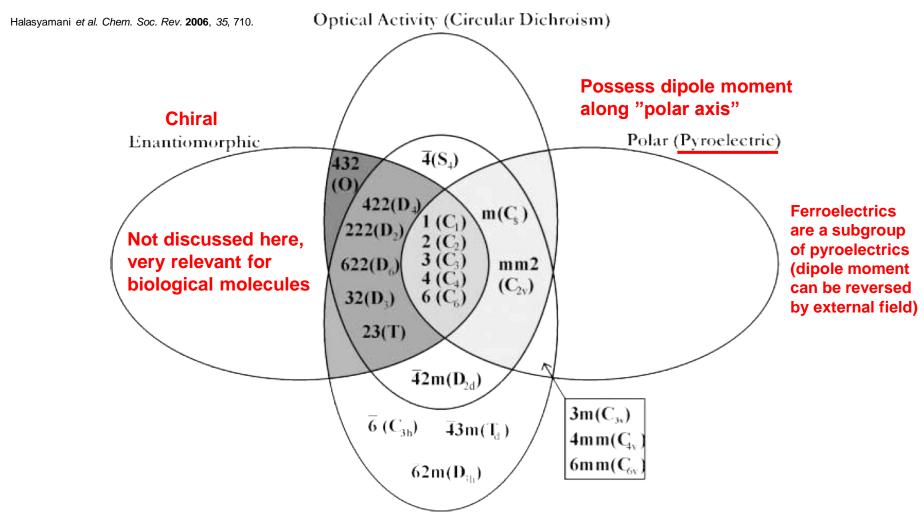
Polar and non-polar materials

- Non-centrosymmetric materials can be *polar* or *non-polar*
 - A polar crystal has more than one point that every symmetry operation leaves unmoved
 - For example, a "polar axis", with no mirror plane or twofold axis perpendicular to it
 - Physical property (e.g. dipole moment) can differ at the two ends of the axis
- Pyro- and ferroelectricity is only possible for *polar materials*
 - Polar materials show spontaneous polarization P_s

 α -SiO₂, α -quartz (space group $P3_221$) Non-centrosymmetric oxide with **no polar axis** (c has perpendicular C_2 axis)

ZnO (space group $P6_3mc$) Non-centrosymmetric oxide with a **polar axis** (c-axis)

Classification of crystal classes


Crystal system	Centrosymmetric crystal classes (11)	Non-centrosymmetric crystal classes (21)		
	Crystal Classes (11)	Polar (10)	Non-polar (11)	
Triclinic	1	1	-	
Monoclinic	2/m	2, m	_	
Orthorhombic	mmm	mm2	222	
Tetragonal	4/m, 4/mmm	4, 4mm	$\overline{4}$, 422, $\overline{4}$ 2 <i>m</i>	
Trigonal	$\overline{3}$, $\overline{3}$ m	3, 3 <i>m</i>	32	
Hexagonal	6/m, 6/mmm	6, 6 <i>mm</i>	6 , 622, 6 <i>m</i> 2	
Cubic	$m\overline{3}$, $m\overline{3}m$	-	23, 4 3 <i>m</i> , 432,	

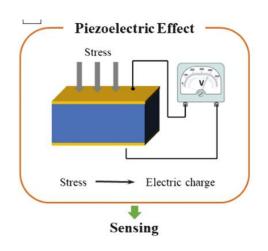
Refs: Chem. Mater. 1998, 10, 2753

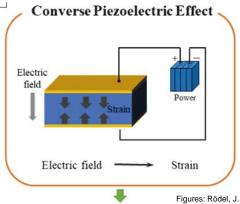
and Wikipedia

Non-centrosymmetric crystal classes and functionality

Piezoelectric coefficients

Direct piezoelectric effect


 $P = d\sigma$, where

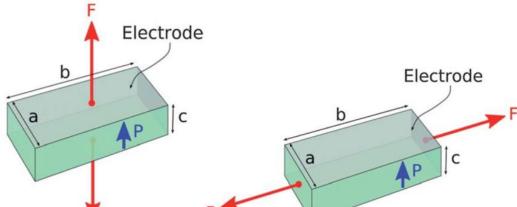

- σ = applied tensile **stress** (N m⁻²)
- $d = \text{piezoelectric modulus (C N}^{-1})$
- $P = \text{resulting polarization (C m}^{-2})$

Converse piezoelectric effect

 $\varepsilon = dE$, where

- $E = \text{applied electric field (N C}^{-1})$
- $d = \text{piezoelectric modulus (C N}^{-1})$
- ε = resulting **strain** in the crystal

Actuating

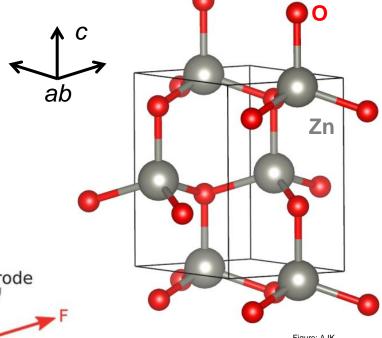

Figures: Rödel, J., & Li, J. (2018). Lead-free piezoceramics: Status and perspectives. MRS Bulletin, 43(8), 576-580. doi:10.1557/mrs.2018.181

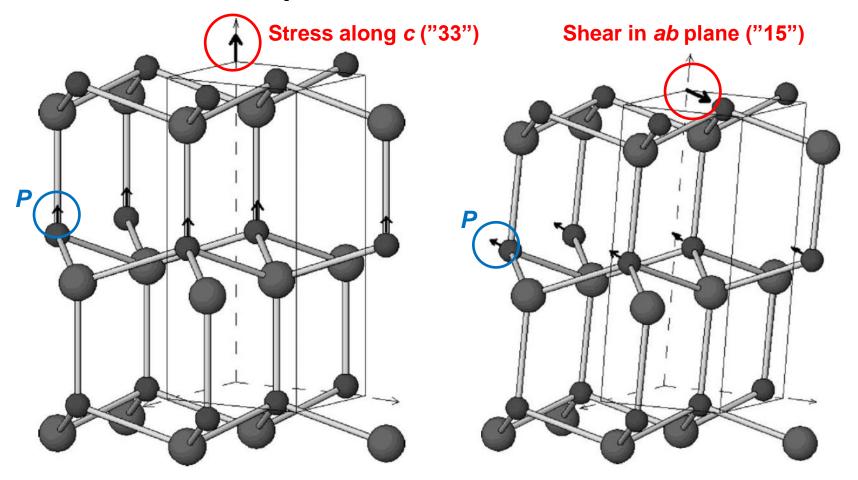
Often piezoelectricity is discussed using just scalar coefficients d. In reality they are *tensors* d_{ijk} and can be specified more accurately with the help of crystal symmetry.

Piezoelectricity in ZnO

Let's use ZnO as an example.

ZnO ($P6_3mc$) has three symmetryallowed distortions that lead to a piezoelectric response

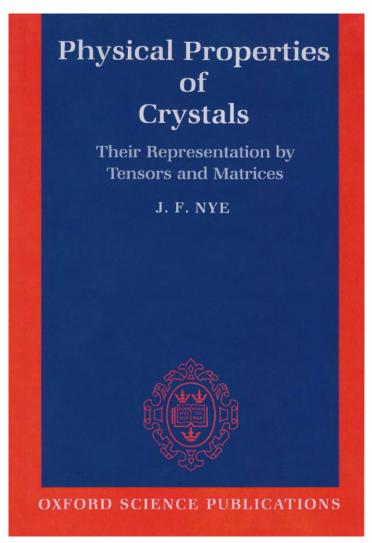


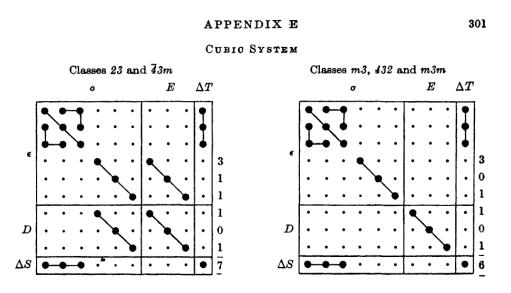

Figure: AJK

1. Stress along *c*, polarization along c

2. Stress in *ab*-plane, Polarization along *c*

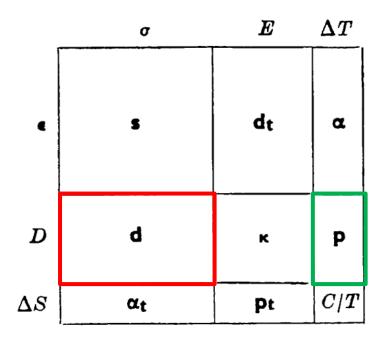
3. Shear in *ab*-plane (next slide)


Piezoresponse to shear in ZnO


M. Catti et al. J. Phys. Chem. Solids 2003, 64 2183.

The number of symmetry-allowed distortions depends on the crystal class. Listings of these are available in textbooks (*next slide*).

Tensors (and matrices) for equilibrium properties


- Physical properties of crystals can be formulated systematically in *tensor notation*
- Piezoelectricity, pyroelectricity, elastic properties, *etc*.
- J. F. Nye: Equilibrium property matrices for all crystal classes (Appendix E)

Quantifying the functionalities with physical property tensors (Nye)

APPENDIX E

MATRICES FOR EQUILIBRIUM PROPERTIES IN THE 32 CRYSTAL CLASSES

s = elastic compliances

d = piezoelectric moduli

 α = thermal expansion coefficients

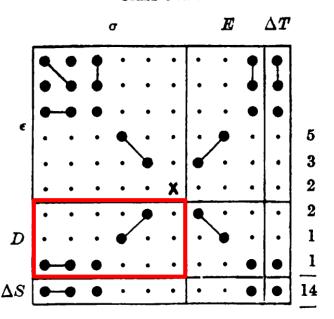
 $\kappa = permittivities$

p = pyroelectric coefficients

C = heat capacity

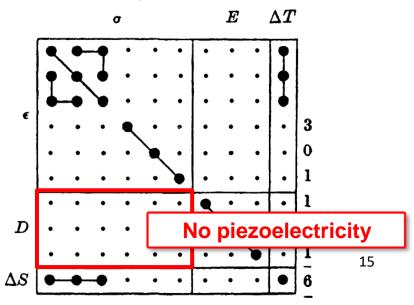
T = absolute temperature

Physical property tensors (Nye)


Matrices for equilibrium properties in the 32 crystal classes

KEY TO NOTATION

- zero component
- non-zero component
- •-- equal components
- •—o components numerically equal, but opposite in sign
 - a component equal to twice the heavy dot component to which it is joined
 - @ a component equal to minus 2 times the heavy dot component to which it is joined
 - $\times 2(s_{11}-s_{12})$


For example, ZnO ($P6_3mc$)

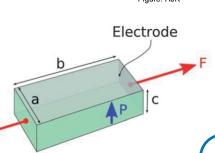
Class 6mm

For example, Cu₂O (*Pn*-3*m*)

Classes m3, 432 and m3m

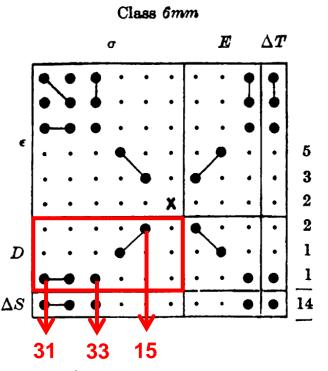
ZnO piezoelectricity tensor

ZnO (space group P6₃mc)


Three independent nonzero components in the piezoelectric tensor

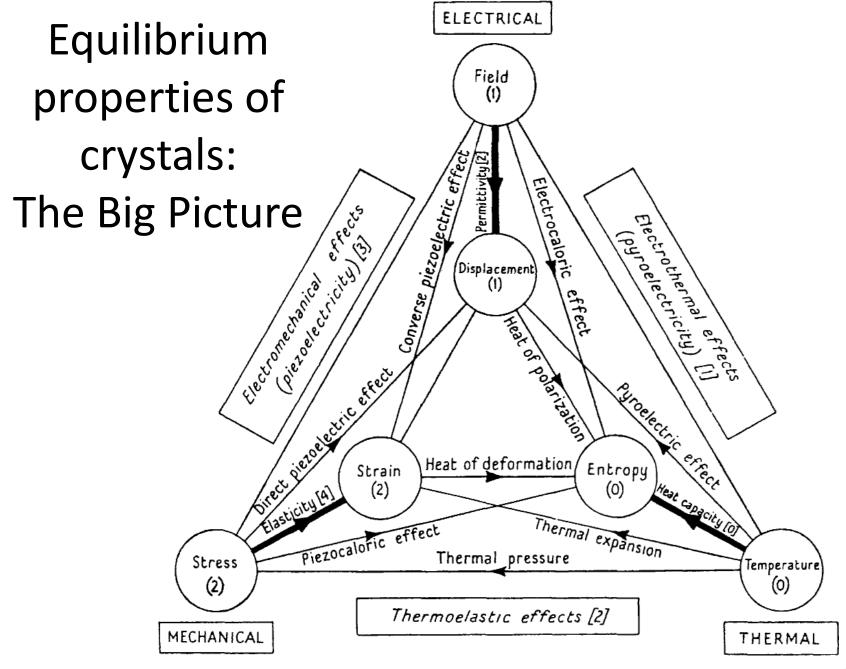
What do they actually

Electrode


mean:

"33" component: Stress along c (3), polarization along c (3)

"31" component: Stress along a (1) polarization along c (3)



15" component: Shear in *ab*-plane (5), polarization along a (1)

Bowen et al. Energy Environ. Sci. 2014, 7, 25.

Piezoelectricity is an equilibrium property

- Equilibrium properties may be described by reference to thermodynamic equilibrium states and thermodynamically reversible changes
 - Example: isothermal expansion of ideal gas confined by external pressure
- The *thermal*, *electrical*, and *mechanical* properties of a crystal are all related
 - They may be measured when the crystal is in equilibrium with its surroundings
- Compare the equilibrium properties with transport properties, which are concerned with transport processes and thermodynamically <u>irreversible</u> phenomena
 - Example of an irreversible phenomenon: release gas into vacuum
 - Example properties: thermal and electrical conductivity and thermoelectricity
 - A temperature difference in different parts of a solid leads to a heat flow as the system tries to reach equilibrium

Piezoelectricity: applications (1)

effect

- Piezoelectricity was discovered in 1880 by Jacques and Pierre Curie (direct effect)
- Converse piezoelectric effect predicted mathematically by Gabriel Lippmann (1881) and immediately confirmed by Curies
- It only took until 1917 when piezoelectrics were already used in warfare
- Ultrasonic submarine detector created by Paul Langevin and coworkers
 - Ultrasound-generating transducer made out of quartz crystals (transducer = converts one form of energy to another)
 - Hydrophone to detect the returned echo
- The success of piezoelectric sonar resulted in huge boom for discovering new materials
- Discovery of ferroelectric piezoelectrics such as BaTiO₃ during WW2 -> radios

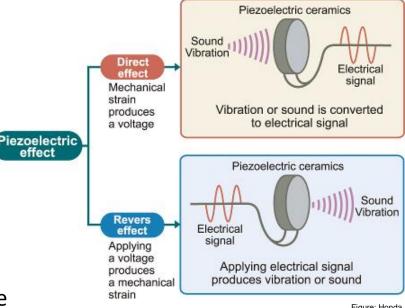


Figure: Honda

Piezoelectric transducer

Piezoelectricity: applications (2)

- Generation of high voltages
- Spark-ignition (gas stoves, cigarette lighters)
 - Piezoelectric voltages can be thousands of volts
- Generation of electronic frequencies (e.g. for radio equipment)
- Microbalances
- Vibration sensors
- Actuators (precise positioning, piezomotors)
 - Scanning probe microscopies like AFM and STM
 - Atomic level accuracy of positioning with piezoelectric crystals

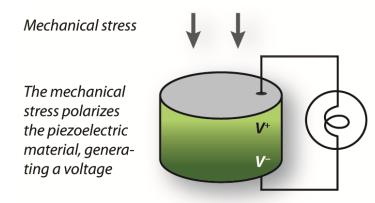
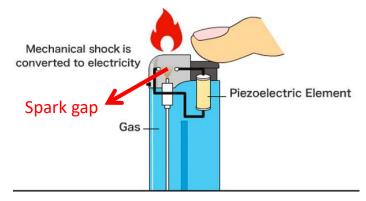



Figure: AJK

Piezoelectric lighter

Figure: www

Property data for piezoelectrics

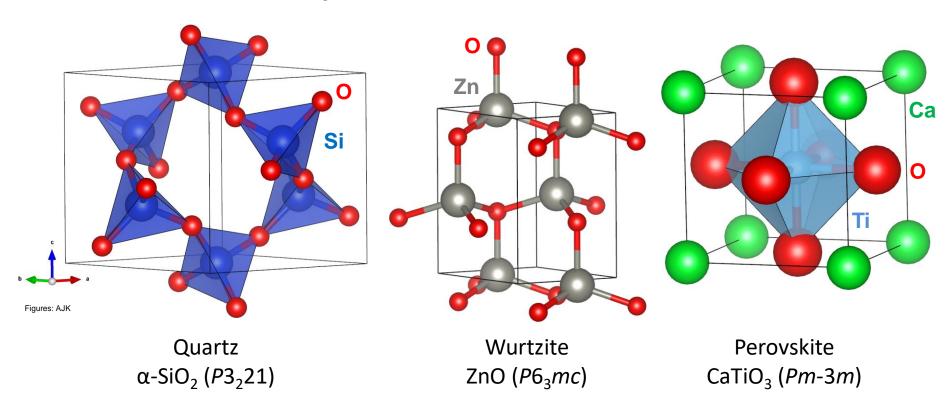
REVIEW

View Article Online
View Journal | View Issue

Piezoelectric and ferroelectric materials and structures for energy harvesting applications

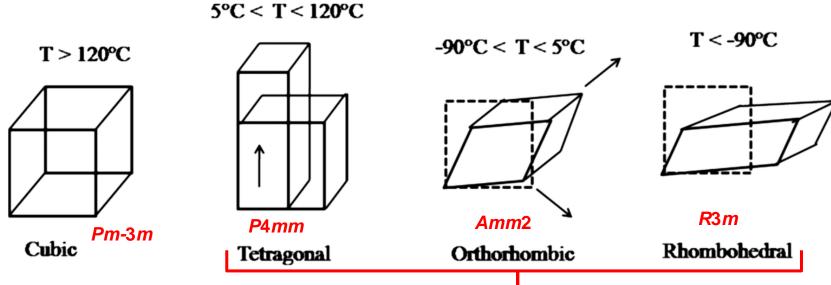
Cite this: Energy Environ. Sci., 2014, 7, 25

C. R. Bowen,*a H. A. Kim,a P. M. Weaverb and S. Dunnc

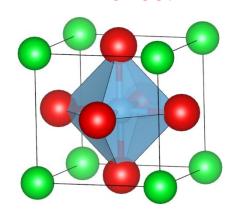

Polyvinylidene fluoride

H F C-C-C-

	GaN	ZnO	SiO ₂	BaTiO ₃	PZT-5H ("soft")	PMN-PT	LiNbO ₃	PVDF
Structure	Wurzite	Wurzite	α-quartz	Perovsk.	Perovsk.	Perovsk.	LiNbO ₃	Polymer
Piezoelectric	X	X	X	X	X	X	X	X
Pyroelectric	X	X	-	X	X	X	X	X
Ferroelectric	-	-	-	X	X	X	X	X
d ₃₃ (pC N ⁻¹)	3.7	12.4	-2.3 (d ₁₁)	149	593	2820	6	-33
d ₃₁ (pC N ⁻¹)	-1.9	-5.0		-58	-274	-1330	-1.0	21
d ₁₅ (pC N ⁻¹)	3.1	-8.3	0.67 (d ₁₄)	242	741	146	69	-27


Pb[Zr_xTi_{1-x}]O₃ $(1-x)Pb[Mg_yNb_{1-y}]O_3 - xPbTiO_3$

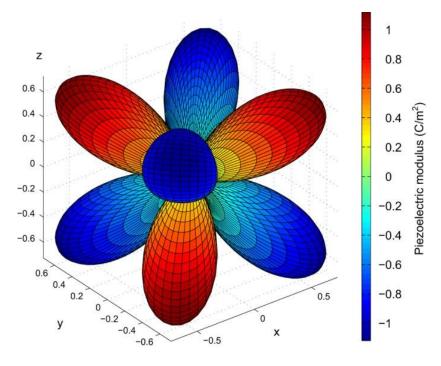
Important crystal structures for piezoelectrics



The ideal cubic structure is centrosymmetric and not piezoelectric, see the next slide

BaTiO₃ phases (perovskite structure)

Centrosymmetric, no piezoelectric effect



Non-centrosymmetric, piezoelectric effect

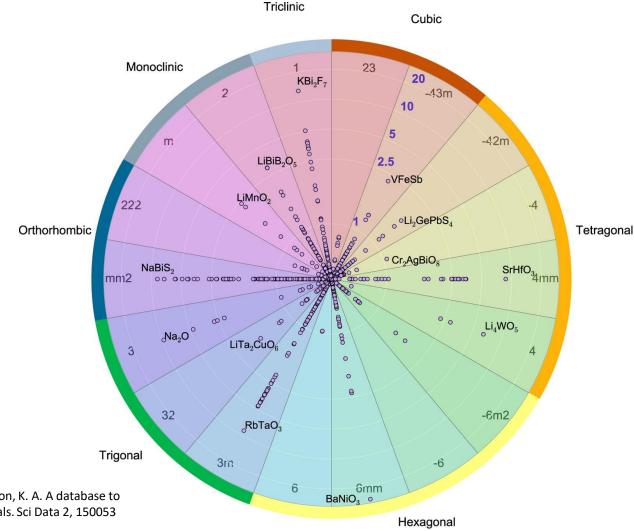
Navak et al. RSC Adv. 2014. 4. 1212.

High-throughput screening for piezoelectric materials (1)

- Piezoelectricity has been determined experimentally or computationally only for a small fraction of all inorganic compounds which display compatible crystallographic symmetry
- Persson and coworkers used Density
 Functional Theory (DFT) to calculate the
 piezoelectric tensors for nearly 1000
 inorganic compounds.¹
 - The amount of available piezoelectricity data was increased by more than an order of magnitude.

Visualization of the piezoelectric tensor: directional dependence of the longitudinal piezoelectric constant in cubic LaOF.

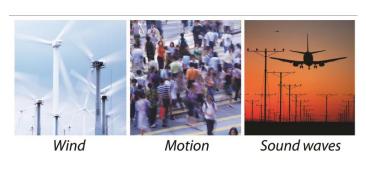
¹ de Jong, M., Chen, W., Geerlings, H., Asta, M., Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci Data 2, 150053 (2015). https://doi.org/10.1038/sdata.2015.53

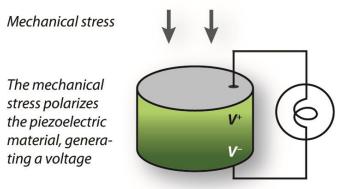

High-throughput screening for piezoelectric materials (2)

A graphical representation of the piezoelectric dataset, currently comprising of 941 materials.

A series of concentric circles indicate constant values of the maximum longitudinal piezoelectric modulus, $\|e_{ij}\|_{\text{max}}$.

Concentric circles corresponding to moduli of 1, 2.5, 5, 10 and 20 C/m² are indicated explicitly in the figure.


The compounds are broken up according to the crystal system and the different point group symmetry-classes

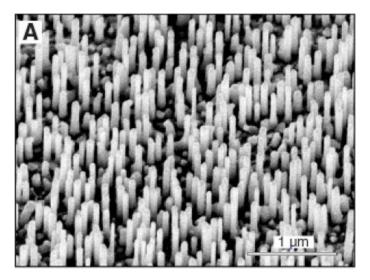


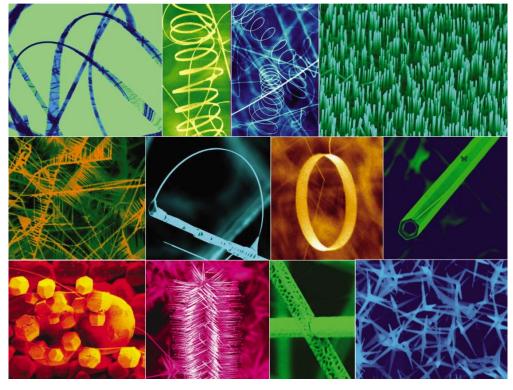
de Jong, M., Chen, W., Geerlings, H., Asta, M., Persson, K. A. A database to enable discovery and design of piezoelectric materials. Sci Data 2, 150053 (2015). https://doi.org/10.1038/sdata.2015.53

Piezoelectricity: prospective applications

- Nanostructured piezoelectrics are being investigated for several applications
 - Piezotronics (piezo-electronics, e.g. piezopotential-based transistors)
 - Energy harvesting (convert mechanical energy to electricity)

Super-Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation Sensor

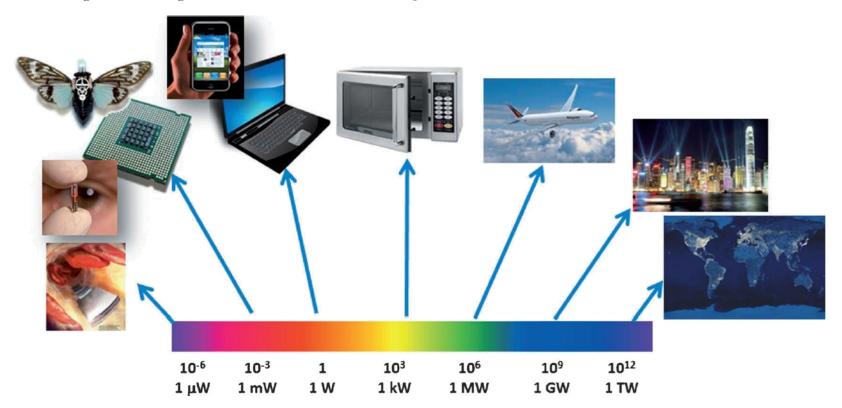

Sangmin Lee, Sung-Hwan Bae, Long Lin, Ya Yang, Chan Park, Sang-Woo Kim, Seung Nam Cha, Hyunjin Kim, Young Jun Park, and Zhong Lin Wang*


Adv. Funct. Mater. **2012**, DOI: 10.1002/adfm.201202867

Nanostructured piezoelectrics

Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays

Zhong Lin Wang^{1,2,3*} and Jinhui Song¹ SCIENCE VOL 312 14 APRIL 2006



ZnO nanostructures synthesized under controlled conditions by thermal evaporation of solid powders (Wang, *Materials Today*, **2004**, *7*, 26).

Energy harvesting

Nanotechnology-Enabled Energy Harvesting for Self-Powered Micro-/Nanosystems

Zhong Lin Wang* and Wenzhuo Wu Angew. Chem. Int. Ed. 2012, 51, 11700-11721

Figure 1. Power requirements for different applications: In the future there will be a great demand for mobile/implantable electronics with extremely low power consumption.