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This note summarizes some of the key concepts from the third set of

lectures.

Concave Functions

A set X is convex if any line segment connecting any two points in
the set also belongs to the set. A function f : X — R is concave if
it’s graph on any line connecting x,y € X lies above the line segment

between f(x), f(y) in the range.

Definition. We say a function f : X — R,with domain X C R™ convex is

concave if for any A € [0,1]

fAx+ (1 =A)y) =2 Af(x) + (1= A)f(y)-

Every critical point of a concave function is a global maximum. If
f is strictly concave, then the maximum is unique.”

For smooth enough functions that map from R to R, concavity is
pretty clearly the same as (i) the second derivative is negative (i.e. the
derivative of the function is decreasing), (ii) the tangent line through

any point lies above the function. These properties generalize

Theorem 1. Suppose f : X — R is twice continuously differentiable and
X C R™ is convex. TFAE

1. f is concave.
2. Forany x,y € X, f(y) < f(x) + Vf(x) - (y — x).
3. Forall x € X, D?f(x) is negative semidefinite.

A convex function admits a similar characterization. *
If all we care about is functions where local max =- global max, we

can broaden this class.

Definition. f: X — R, X convex is quasiconcave if for any A € [0,1]

fAx+ (1= A)y) = min{f(x), f(y)}.

Economic “applications” of convexity
(beyond finding maxes)

1. In standard economic models, the
value of information is convex, e.g.
if I think there’s a 50% chance that
I'm sick, I'd prefer finding out for
sure and then making decisions
instead of only acting only on my
prior.

2. Many of our canonical optimization
problems lead to convex or concave
solutions, e.g. expenditure or cost
minimization.

3. Many common non-linear (and of
course all linear problems :)) opti-
mization problems that are solved
in practice are convex/concave
optimization problems. For in-
stance, common machine learning
techniques like LASSO and ridge
regression.

* Concavity/convexity are natural
economic assumptions on many objects,
as they capture decreasing/increasing
marginals.

2 Similar conditions, with the weak in-
equality replaced with a strict inequal-
ity, are sufficient (but not necessary) for
strict concavity.



and quasiconvex if

fAx+ (1= A)y) < max{f(x), f(y)}-

Geometrically, quasiconvex functions are exactly the set of func-

tions with convex upper-contour sets.3

The Separating Hyperplane Theorem

Especially in light of our contour set characterization of quasiconcav-
ity, convex sets are going to be very important for us. More generally,
in many economic models convexity is a natural and relatively rea-
sonable structure to place on the set of possible values for endoge-
nous variables. The geometry of a convex sets has a tight connection

to hyperplanes, which are very simple geometric structures.

Theorem 2 (Separating Hyperplane Theorem). Let A,B C R", A
closed, convex, non-empty, and B compact, convex, non-empty. Finally
suppose AN B = @. Then there exists a vector p € R™ and a scalar d € R
st forallac A,beB, p-a<d<p-b

We can always draw a plane so that A and B lie on opposite sides
of the plane {x : p-x = d}. The vector p is orthogonal to the plane,

determining the orientation, while d pins down the position. 4
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3 Quasiconcavity for differentiable
functions is equivalent to f(y) >

f(x) = Vf(x)- (y —x) > 0. Note that
if a function satisfies f(y) > f(x) =
Vf(x)-(y—x) > 0 then critical points
are global maxes, which is true for
concave but not quasiconcave functions.
Quasiconcavity is almost, but not quite
enough for this conclusion (our old
friend f(x) = x3 is an easy example).

4 The hyperplane has dimension m — 1.
In R? for instance, a hyperplane that
separates

A={(xy) eR:||(x,y)]| <1}
and
B={(x,y) eR*:||(x,y) - (2,2)[| <1}

isgivenby p = (1,1),d = 2 — the
points that solve the equation x +y = 2.
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