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This note summarizes some of the key concepts from the fourth set of

lectures. Economic “applications” of KKT condi-
tions (beyond supply and demand)

1. Designing a wage scheme to incen-
tivize unobservable effort.

2. Designing the optimal redistributive
tax scheme

3. Supervised learning models in
machine learning (e.g. SVMs)

KKT conditions

Now we’d like to solve problems of the form

max f (x)

s.t. g(x) ≤ 0

for f : Rm → R and g : Rm → Rn. We can leverage the inequality

constraints here to get a fancier version of the Lagrange multiplier

conditions A couple things to note about these
conditions

• The multiplier effective “turns
on constraints.” Complementary
slackness means that any gi whose
associated multiplier is non-zero
must hold with equality, i.e. λi >

0⇒ gi(x) = 0.

• The sign of the multiplier is impor-
tant. We can rule out any feasible
points that can only satisfy these
gradient condition but don’t have
the right sign for the multipliers.
Be careful with the directions of the
inequalities!

• Minimizers satisfy the same condi-
tions, but λ ≤ 0.

Definition (Karush-Kuhn-Tucker Conditions). An x ∈ Rm and a vector

λ ∈ Rn satisfies the KKT conditions if:

∇ f (x)T = λT Dg(x) (First Order Conditions)

λg(x)T = 0 (Complementary Slackness)

g(x) ≤ 0 (Feasibility)

λ ≥ 0 (Positivity of the Multiplier).

Like with Lagrange multipliers, these constraints are necessary at

any maximizer that satisfies a rank condition on Dg. Fortunately, we

can find much simpler conditions for concave problems

Theorem 1. The KKT conditions are necessary if f is concave, each gi is

convex and there exists an x s.t. gi(x) < 0 for all i.

The KKT conditions are sufficient if ∇ f (x) 6= 0 for all feasible x, f is

quasiconcave, and gi’s are quasiconvex.

So for nice enough problems, the KKT conditions exactly identify

the set of global maximizers.1 1 Note that, unlike with equality con-
straints, the conditions for maxima and
minima are different, so there was no
hope that these conditions on their own
could identify maximizers. Here the
sign of the multiplier in well-behaved
problems sidesteps the need to worry
about things like second order condi-
tions.

In general these conditions are going to be annoying (or more

likely impossible) to solve without careful thought. When approach-
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ing a maximization problem, before going to this step, think carefully

about the problem. Are there any constraints that clearly bind (hold

with equality) or clearly don’t. This can make looking for solutions to

the KKT conditions much more manageable. On the other hand, even

if you can’t explicitly solve for the maximizer, these conditions can

still tell us a lot about its properties.

Correspondences

A correspondence is a function that maps from each element in the

domain to a set of elements in the range. We consider two different

continuity notions that each capture some aspects of what it meant

for a function to be continuous.

Definition. A compact valued correspondence Γ : A ⇒ B with B compact

is said to be upper hemicontinuous iff it has a closed graph.

Definition. A correspondence Γ : A ⇒ B is said to be lower hemi-

continuous iff for all x ∈ A xn → x and for all y ∈ Γ(x) there exists

a subsequence xnk and a sequence ynk ∈ Γ(xnk ) such that xnk → x and

ynk → y.

Value functions
Unsurprisingly we use value functions,
policy correspondence and the envelope
theorem a lot. Supply, compensated
and uncompensated demand, input
demand, etc. are all policy functions,
while the expenditure, profit, indirect
utility, and cost functions are all value
functions. It will also be a surprisingly
convenient technical tool:

• Dynamic maximization problems
an be written recursively using the
value function.

• In mechanism design, when trying
to design a pricing scheme that
induces specific decisions from
consumers, the envelope theorem
lets us characterize how decision
makers respond to different menus.

Let Θ ⊆ Rm, X ⊆ Rn, and consider a function continuous f : X →
Θ→ R and a correspondence C : Θ⇒ X. We call the object

V(θ) :=max
x∈X

f (x; θ)

s.t. x ∈ C(θ)

the value function. This function describes the maximum for different

values of the exogenous parameters (the elements of θ). The corre-

sponding arg max we call the policy correspondence. The value function

and policy correspondence inherit some nice properties from f and c

Theorem 2 (Berge’s Maximum Theorem). Let Θ, X be non-empty and

compact, f and C are compact valued and continuous. Then the value func-

tion is continuous and the policy correspondence is non-empty, compact-

valued and UHC.
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Similarly the value function and policy correspondence inherit

concavity/convexity properties. We can also describe the derivative

of the value function in terms of the primatives. Consider a problem

of the form

max
x∈X

f (x; θ)

s.t. g(x; θ) = 0

with single valued policy function φ(θ). Then the change in the value

function with respect to the exogenous parameters is entirely deter-

mined by how f and g change with respect to the exogenous parame-

ters.

Theorem 3 (The Envelope Theorem). Suppose f , g, φ are continuously

differentiable and Dg(φ(θ), θ) has full rank. Then the value function V is

differentiable and

DV(θ) = −λT Dθ g(φ(θ); θ) + Dθ f (φ(θ), θ)

Fixed Point Theorems
We’ll use these theorems to estab-
lish existence of Nash and Walrasian
equilibrium.

A problem we’ll run into a lot is establishing that a system of non-

linear equations has a solution. Occasionally the separating hyper-

plane theorem will be enough, but often we’ll have to apply a fixed

point theorem.

Theorem 4 (Brouwer’s Fixed Point Theorem). Every continuous func-

tion that maps from a non-empty convex, compact subset of Rn to itself has

a fixed point.

Theorem 5 (Kakutani’s Fixed Point Theorem). Every non-empty, con-

vex valued, UHC correspondence from a non-empty, convex, compact subset

of Rn to itself has a fixed point.


