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This note summarizes some of the key concepts from the fourth set of

lectures. Obviously probability is important
for econometrics, but more broadly
speaking probability is a essential part
of modern economics. Risk, uncertainty,
information and learning are all key
parts of a plethora of problems being
studied in macro and microeconomics,
both theoretically and empirically.

Probability Basics

We start with a probability space (Ω,F , Pr). Ω is the space of out-

comes, F ⊆ 2Ω is a σ-algebra that tells us which of those events we

can evaluate the probability of and Pr is a function that maps from

F → [0, 1].1 We require Pr satisfy 3 properties: 1 A σ-algebra is a collection of sets
containing Ω, ∅ and is closed under
complements, countable unions and
countable intersections. In some sense,
this captures information, but in these
sets of notes we really just need it to
make sure all the things we do are well
defined. Ignoring it for now is pretty
harmless.

1. Pr(Ω) = 1.

2. Pr(∅) = 0.

3. For any countable collection of pairwise disjoint sets {Ak}i
k=1n f ty

Pr(
⋃

Ak) = ∑ Pr(Ak)

This is a bit abstract, in general we work with random variables. A

random variable is a measurable X : Ω → R. Let F(x) = Pr(X ≤ x)

be the cumulative distribution function. A continuous random variable

is a random variable with a continuous cdf, it is often convenient to

describe in terms of the probability density function, a function f

s.t. for all x ∈ R, F(x) =
∫ x
−∞ f (x) dx. Similarly, a discrete random

variable can be described by its probability mass function f (x) =

Pr(X = x).2 The support of a random variable is, informally, the set 2 I generally write things out in terms
of integrals, most statements hold un-
changed for discrete random variables
if the integral is replaced with the ap-
propriate sum and the pdf is replaced
with the pmf.

of values the random variable takes with positive probability. For a

discrete random variable, it is that. For a continuous random variable

it is the closure of the set where f (x) is non-zero.

Expectations

The key object we care about is the expected value

E(h(X)) =
∫

h(x) f (x) dx.
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The mean of a random variable is E(X), the variance is E((X −
E(X))2). An important inequality is Jensen’s Inequality, for any convex

f : R → R

E( f (X)) ≥ f (E(X)).

The expected value gives us a lot of information about how the

random variable behaves. For instance, two important inequalities are

Markov’s Inequality

Pr(X ≥ a) ≤ E(X)/a

for any non-negative X and Chebyshev’s inequality

Pr(|X − E(X)| ≥ a) ≤ Var(X)/a2,

which give us a quick rule of thumb for how “unlikely” extreme

observations are.

We can similarly describe multiple random variables. Given two

random variables X,Y, let F(x, y) = Pr(X ≤ x, Y ≤ y) be their joint

cdf, and f (x, y) denote the joint pdf. The marginal distribution of x is

fX(x) =
∫ ∞
−∞ f (x, y) dy.

We say two random variables are independent if f (x, y) = fx(x) fy(y)

or equivalently F(x, y) = Fx(x)Fy(y). The covariance E((X−E(X))(Y−
E(Y))) measures the relationship between any pair of random vari-

ables and is 0 for independent random variables.3 3 A quick reminder for evaluationg
integrals. The change of variables
formula is∫

g(U)
f (x) dx =

∫
U

f (g(s))|det Dg(s)| ds.Limits

The main theorem we established in these lectures is the law of large

numbers.

Theorem 1 (Weak Law of Large Numbers). Let X1, X2, . . . be a sequence

of independent and identically distributed random variables with finite

variance σ2 and mean µ. Then

1
n

n

∑
i=1

Xi → µ

in probability.4 4 The strong law of large numbers has
the same assumptions and the stronger
conclusion that the convergence is a.s.Another important theorem, that we did not prove, is the central

limit theorem
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Theorem 2 (Central Limit Theorem). Let X1, X2, . . . be a sequence

of independent and identically distributed random variables with finite

variance σ2 and mean µ. Then

1√
n

n

∑
i=1

(Xi − µ) → Y

where Y ∼ N(0, σ2).

Finally, we’d like to be able to talk about the distribution of ran-

dom variable X conditional on knowing Y. For any two events A, B

this is naturally defined as

Pr(A|B) = Pr(A ∩ B)
Pr(B)

We can define this for random variables similarly. The conditional

distribution of X|Y is

f (x|y) = f (x, y)
fY(y)

,

interpreted as the distribution that x follows given the knowledge

that Y = y. This is often easier to characterize through Bayes’ rule

f (x|y) = f (y|x) f (x)
fY(y)

.

We can define conditional expectation E(X|Y = y). This satisfies

the tower property E(E(X|Y = y)) = E(X) and if X and Y are

independent the E(X|Y) = E(X).5 5 In some sense, this property is what
motivated our definition of conditional
expectation. It’s easy to see that this
distribution satisfies the tower property,
which is clearly a property we’d want
conditional expectation to satisfy.
A formal treatment of conditional
expectation, which is well beyond the
scope of this course, essentially starts
with this property and then works
backwards to argue that the random
variables that satisfy it exist and are
essentially unique. This also resolves
some weird technical issues.


