

Syllabus ELEC-E8405 Electric Drives (5 ECTS)

Marko Hinkkanen Autumn 2022

Course Description

Course name: ELEC-E8405 Electric Drives

Credits: 5 ECTS

Periods: |-||

Time: Every Wednesday 7.9. – 7.12.2022 at 8:15–12:00

Physical location: Auditorium T2 (Konemiehentie 2)

Distance teaching platform: Microsoft Teams

Teacher in charge: Prof. Marko Hinkkanen (marko.hinkkanen@aalto.fi)

Prerequisites: Circuit theory, basics of electrical power engineering,

analog control

Instructors

- ▶ Lectures
 - ▶ Marko Hinkkanen
- ► Exercises and assignments
 - ► Firdausa Ahmed
 - ► Rayane Mourouvin
 - ► Hannu Hartikainen
 - ► Lauri Tiitinen
 - ► Reza Hosseinzadeh

Course Format and Preliminary Schedule

- ► 12 lectures (8:15–10:00)
- ► 6 problem-solving exercises (10:15–12:00)
- ► 4 instruction sessions for assignments (10:15–12:00)
- ► If you take both half-course exams, you can skip the full-course exam

Date	Lecture 8:15 – 10:00	Problem- solving exercise 10:15 – 12:00	Classroom instruction for assignments 10:15 – 12:00	
7.9.2022	1, 2			
14.9.2022	3	1		
21.9.2022	4	2		
28.9.2022	5		1a	
5.10.2022	6	3		
12.10.2022	7		1b	
19.10.2022	Half-course exam 1 at 9:00 – 12:00			
26.10.2022	8	4		
2.11.2022	9		2a	
9.11.2022	10	5		
16.11.2022	11		2b	
23.11.2022	12	6		
30.11.2022	Half-course exam 2 at 9:00 – 12:00			
7.12.2022	Full-course exam at 9:00 – 12:00			

Preliminary Lecture Plan

- 1. Syllabus, introduction
- 2. DC motor model
- 3. Mechanics
- 4. Losses and heat transfer
- 5. DC motor dynamics
- 6. DC-DC conversion, PWM
- 7. Cascade control of a DC motor drive
- 8. Elementary AC machines, 3-phase systems
- 9. Space-vector models
- 10. Field-oriented control of a PMSM drive
- 11. Other AC motor and converter types, future trends
- 12. Guest lecture

Course Materials

Materials available at MyCourses

- ► Lecture slides (also some lecture notes)
- Exercise materials
- Assignments

Readings (selected pages)

- ► Electric Motors and Drives: Fundamentals, Types, and Applications by A. Hughes and B. Drury (2013) (online: http://app.knovel.com.libproxy.aalto.fi/hotlink/toc/id: kpEMDFTA01/electric-motors-drives/electric-motors-drives)
- ► Control of Voltage-Source Converters and Variable-Speed Drives by L. Harnefors, M. Hinkkanen, O. Wallmark, and A. G. Yepes (2015) (MyCourses)

Grading: Assignments and Exams (100 Points in Total)

- ► Assignment 1: Selecting an All-Electric Vehicle Powertrain (10 points)
 - ► Instruction sessions: 28.9. and 12.10.2022 at 10:15–12:00
 - ► Deadline: 19.10.2022
- ► Assignment 2: Modelling and Simulation of a DC Motor Drive (20 points)
 - ► Instruction sessions: 2.11, and 16.11.2022 at 10:15–12:00
 - ► Deadline: 23.11.2022
- ► Two half-course exams...
 - ► Exam 1: 19.10.2022 at 9:00-12:00 (35 points)
 - ► Exam 2: 30.11.2022 at 9:00-12:00 (35 points)
- ► ... or one full-course exam: 7.12.2022 at 9:00-12:00 (70 points)
- ► Assignments are to be completed in groups of two (or alone)
- ► You are encouraged to discuss the assignments in general terms with others
- ► Copying solutions from other groups is not allowed!
- ► Matlab and Simulink software is needed to complete the assignments

Grading: Available Points

Available points
10
20
70
100

- If you take half-course and full-course exams, the better result is considered
- ► At least one question in each exam will be very similar to an exercise problem
- ► Assignments will also prepare you for the exam

Grading: Course Grade

Grade Total points		
1	50–59	
2	60–69	
3	70–79	
4	80–89	
5	90-100	

Estimated Student Workload

	Contact (h)	Individual (h)	Total (h)
Lectures (à 2 h)	24	24	48
Exercises (à 2 h)	12	12	24
Assignments (2)	8	24	32
Preparing for the exams		24	24
Taking the exams		6	6
Total	44	90	134

- ► Weekly individual working is necessary for learning!
- ► Reading assignments
- ► Reviewing lecture slides and exercises
- ► Completing assignments

After the Course You Will Be Able to...

- 1. Select a motor and converter for periodic duty
- 2. Build the simulation model for a cascade-controlled DC motor drive
- 3. Tune the control system of the DC motor drive
- 4. Apply space vectors for modelling and analysis of three-phase systems
- 5. Draw and explain the block diagram of a vector-controlled PMSM drive system