

# Lecture 6: DC-DC Conversion

**ELEC-E8405 Electric Drives (5 ECTS)** 

Marko Hinkkanen Autumn 2022

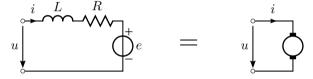
### **Learning Outcomes**

After this lecture and exercises you will be able to:

- ► Explain basic operating principles of switched DC-DC conversion
- Draw the equivalent circuit of a 4-quadrant DC-DC converter
- ► Implement a simple pulse-width modulator in the Simulink software

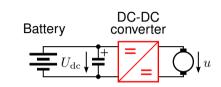
#### **Outline**

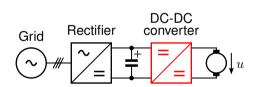
#### Introduction


**Buck Converter** 

**4-Quadrant DC-DC Converter** 

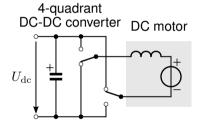
**Unipolar Pulse-Width Modulation** 

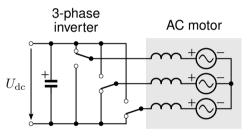

**Synchronous Sampling** 


# **Symbol Used for the DC Motor**



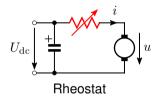
#### Introduction

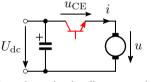

- ▶ DC source voltage  $U_{dc}$  is typically a battery or a diode bridge
- Voltage u has to be adjusted in order to be able to control the speed and torque
- Topologies and control of DC-DC converters are very similar to those of three-phase inverters






Thyristor bridges could be used to feed the DC motors, but they are not considered in this course.


#### **DC-DC Converters Are Similar to 3-Phase Inverters**






### Why Not Linear Voltage Regulation?

- ► In principle, *u* could be adjusted using a rheostat or a transistor in the linear region
- ▶ What would be the efficiency if  $U_{dc} = 100 \text{ V}$  and u = 50 V? What would be the losses in the transistor if i = 10 A?
- ➤ Why linear voltage regulation does not work in practice (except in very low-power drives)?



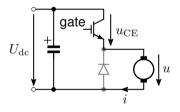


Transistor in the linear region

#### **Outline**

Introduction

#### **Buck Converter**

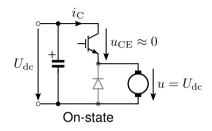

**4-Quadrant DC-DC Converter** 

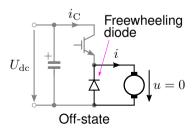
**Unipolar Pulse-Width Modulation** 

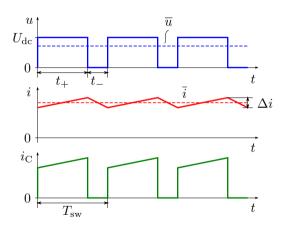
**Synchronous Sampling** 

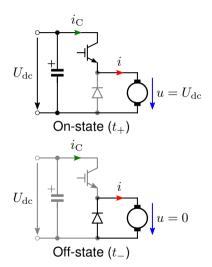
#### **Switched-Mode DC-DC Conversion**

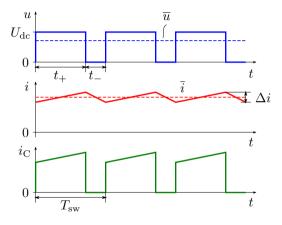
- ➤ To avoid high losses, the transistor is switched periodically on and off
- Typical power semiconductors: IGBT, MOSFET, thyristor, GTO
- ▶ We will assume ideal switches
- ► Typical switching frequencies  $f_{\rm sw} = 1 \dots 50 \text{ kHz}$
- Figure shows a buck converter (step-down converter)





#### **Buck Converter**


▶ Low power loss  $u_{CE}i_{C}$  in the transistor


On-state:  $u_{\rm CE} \approx 0$ Off-state:  $i_{\rm C} = 0$ 


- Motor is an inductive load.
  - Current i must flow even when the transistor is switched off
  - ► Freewheeling diode is needed
- ► Next we will consider short time periods
  - ightharpoonup e = constant and R = 0 can be assumed











#### ▶ Duty cycle

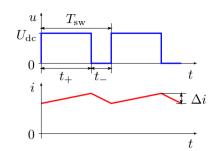
$$d = \frac{t_+}{T_{\text{sw}}} \qquad 0 \le d \le 1$$

- $ightharpoonup t_+$  is the on-time
- $ightharpoonup T_{\mathrm{sw}}$  is the switching period
- Average of the voltage u over the period  $T_{\rm sw}$

$$\overline{u} = \frac{1}{T_{\text{sw}}} \int_0^{T_{\text{sw}}} u \, dt$$
$$= dU_{\text{dc}}$$

# **Current Ripple**

► Voltage equation


$$L\frac{\mathrm{d}i}{\mathrm{d}t} = u - e$$

▶ On-state:  $u = U_{dc}$ 

$$\Delta i = \frac{1}{L} \int_0^{t_+} (U_{dc} - e) dt$$
$$= \frac{(U_{dc} - e)t_+}{L}$$

ightharpoonup Off-state: u=0

$$-\Delta i = \frac{1}{L} \int_0^{t_-} (-e) dt = -\frac{et_-}{L}$$



Duty ratio in steady state

$$d = \frac{t_+}{T_-} = \frac{\overline{u}}{U_+} \quad (\overline{u} = \overline{e} \text{ if } R = 0)$$

► Current ripple in steady state

$$\Delta i = \frac{d(1-d)U_{\rm dc}}{f_{\rm cw}L}$$

### **Maximum Current Ripple**

► Maximum ripple with d = 1/2 (at about half base speed)

$$\Delta i_{\rm max} = \frac{U_{\rm dc}}{4f_{\rm sw}L}$$

► Example parameter values for a 1-kW DC motor

$$L=50~\mathrm{mH}$$
  $U_{\mathrm{dc}}=100~\mathrm{V}$   $f_{\mathrm{sw}}=5~\mathrm{kHz}$   $\Rightarrow$   $\Delta i_{\mathrm{max}}=0.1~\mathrm{A}$ 

- ► If the rated current is 10 A, the current ripple is only 1% (5 kHz is not a high switching frequency at 1-kW power level)
- lacktriangle Current ripple  $\Delta i$  and torque ripple  $\Delta au_{
  m M} = k_{
  m f} \Delta i$  are typically insignificant

#### **Outline**

Introduction

**Buck Converter** 

**4-Quadrant DC-DC Converter** 

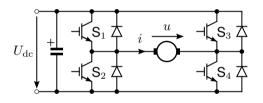
**Unipolar Pulse-Width Modulation** 

**Synchronous Sampling** 

#### **Four Quadrants**

- ▶ Back-emf  $e = k_f \omega_M$
- ▶ Torque  $\tau_{\rm M} = k_{\rm f} i$
- ▶ Mechanical power  $p_{\rm M} = \omega_{\rm M} \tau_{\rm M} = ei$
- ► Converter should allow both its output voltage  $u \approx e$  and current i to reverse in 4-quadrant operation

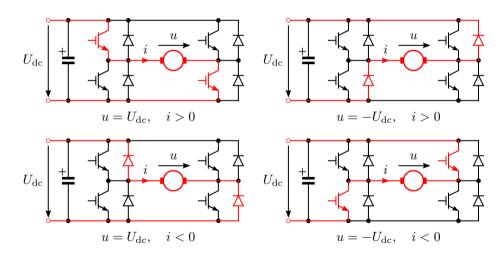
|                                                                           | $^{	au_{	ext{M}}}$                                                 |                 |
|---------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------|
| $\begin{aligned} & \text{Generating} \\ & e < 0 \\ & i > 0 \end{aligned}$ | $\begin{array}{c} \textbf{Motoring} \\ e > 0 \\ i > 0 \end{array}$ |                 |
| $\begin{array}{c} \textbf{Motoring} \\ e < 0 \\ i < 0 \end{array}$        | Generating $e > 0$ $i < 0$                                         | $\omega_{ m M}$ |


#### **4-Quadrant DC-DC-Converter**

 $\mathsf{S}_1$  and  $\mathsf{S}_4$  switched ON:  $u=U_{\mathrm{dc}}$ 

 $S_2$  and  $S_3$  switched ON:  $u=-U_{
m dc}$ 

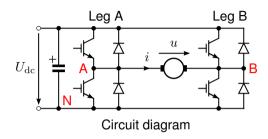
 $S_1$  and  $S_3$  switched ON: u=0

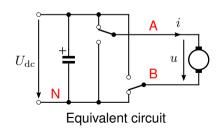

 $S_2$  and  $S_4$  switched ON: u=0



This circuit topology is also known as a 1-phase inverter, full bridge, and H-bridge.

#### **Operation Modes**


#### Only Nonzero Voltage Switching States Are Shown




### **Notation of Potentials and Voltages**

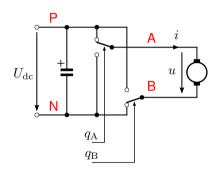
- Legs can be modelled as bi-positional switches
- ► Negative DC-bus potential N
- ► u<sub>AN</sub> is the voltage between potentials A and N
- ▶ u<sub>BN</sub> is the voltage between potentials B and N
- ► Converter output voltage

$$u = u_{\rm AN} - u_{\rm BN}$$





# **Switching States of the Bi-Positional Switches**


- ► Switching state *q* 
  - ightharpoonup q = 0 if the switch is connected to N
  - ightharpoonup q = 1 if the switch is connected to P
- ▶ Pole voltages

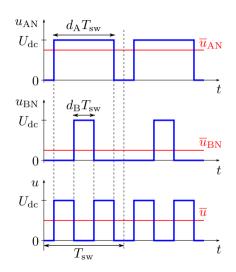
$$u_{\rm AN} = q_{\rm A} U_{\rm dc}$$
  $u_{\rm BN} = q_{\rm B} U_{\rm dc}$ 

► Converter output voltage

$$u = (q_{\rm A} - q_{\rm B})U_{\rm dc}$$

▶ Figure:  $q_A = 1$  and  $q_B = 0$ , giving  $u = U_{dc}$ 




# **Switching-Cycle Averaged Quantities**

 $\blacktriangleright$  Average pole voltage over  $T_{\mathrm{sw}}$ 

$$\overline{u}_{\mathrm{AN}} = \frac{1}{T_{\mathrm{sw}}} \int_{0}^{T_{\mathrm{sw}}} u_{\mathrm{AN}} \mathrm{d}t = d_{\mathrm{A}} U_{\mathrm{dc}}$$

- $\blacktriangleright$  Average voltage  $\overline{u}_{BN}$  is obtained similarly
- ► Average output voltage

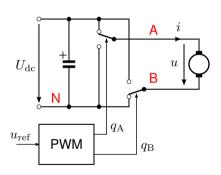
$$\overline{u} = (d_{\rm A} - d_{\rm B})U_{\rm dc}$$



#### **Outline**

Introduction

**Buck Converter** 

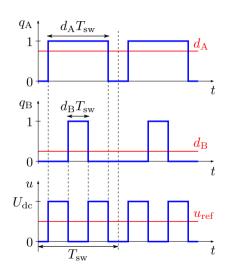

**4-Quadrant DC-DC Converter** 

**Unipolar Pulse-Width Modulation** 

**Synchronous Sampling** 

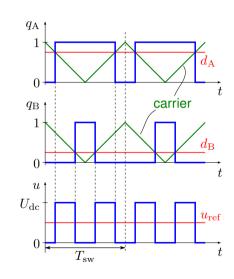
#### **Pulse-Width Modulation**

- ▶ PWM generates the control signals  $q_A$  and  $q_B$  for the power switches
- ► Goal: switching-cycle averaged voltage  $\overline{u}$  equals the reference voltage  $u_{\rm ref}$
- ▶ Various PWM methods exist: they all give  $\overline{u}=u_{\rm ref}$  but produce different pulse patterns
- Unipolar PWM will be considered in the following

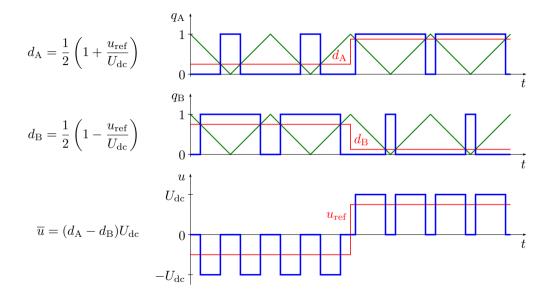



# **Duty Cycles**

► Conditions  $\overline{u} = u_{\rm ref}$  and  $d_{\rm A} + d_{\rm B} = 1$  lead to the duty cycles


$$d_{
m A} = rac{1}{2} \left( 1 + rac{u_{
m ref}}{U_{
m dc}} 
ight)$$
  $d_{
m B} = rac{1}{2} \left( 1 - rac{u_{
m ref}}{U_{
m dc}} 
ight)$ 

- ▶ Example in the figure:  $u_{\rm ref} = 0.5 U_{\rm dc}$
- ▶ What are the duty cycles  $d_A$  and  $d_B$ ?
- ► How to generate the control signals  $q_A$  and  $q_B$ ?




### **Carrier Comparison**

- Carrier comparison is often used for generating the control signals
  - ightharpoonup Triangular carrier with the period  $T_{\rm sw}$
  - ► Magnitude varies between 0 and 1
- ▶ If d is higher than the carrier, then q = 1 (otherwise q = 0)
- $\blacktriangleright$  Same carrier for both  $d_{\mathrm{A}}$  and  $d_{\mathrm{B}}$
- Next slide: step change in the voltage reference ( $-0.5U_{\rm dc} \rightarrow 0.75U_{\rm dc}$ )



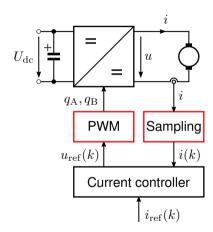
There are various ways to scale the carrier waveform and the reference quantities. Using the carrier varying between 0 and 1 together with the duty cycle references is convenient in digital implementation.



#### **Outline**

Introduction

**Buck Converter** 

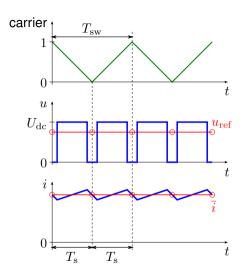

**4-Quadrant DC-DC Converter** 

**Unipolar Pulse-Width Modulation** 

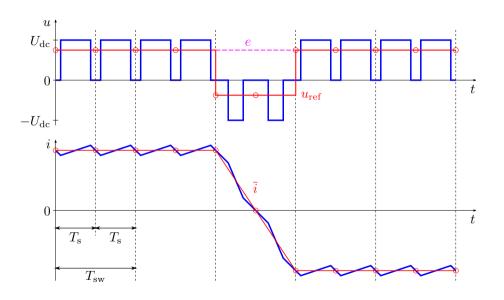
**Synchronous Sampling** 

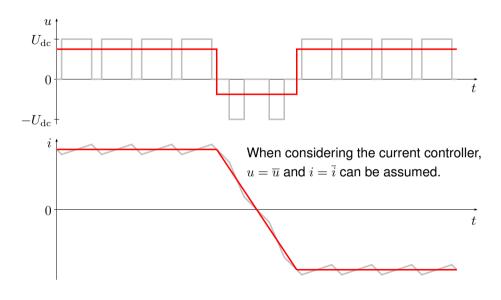
### **Digital Controller**

- Current is measured for the feedback of the current controller
- ► Digital controllers are used nowadays
- Sampling of the current is typically synchronized with the PWM
- Synchronised sampling effectively removes the current ripple from the samples




# **Synchronous Sampling**


- ▶ Voltage reference  $u_{ref}$  can be updated in the beginning and in the middle of the carrier (marked with the circles)
- Current samples (circles) can be taken at these same time instants
- Next slide: Current response is governed by


$$L\frac{\mathrm{d}i}{\mathrm{d}t} = u - e$$

where R=0 is assumed



Different variants of sampling synchronized with the PWM exist, while only one is presented here. Furthermore, it can be noticed that actually four current samples per carrier period could be taken without the current ripple in the case of the unipplar PWM.



