Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives

Marko Hinkkanen

Autumn 2022

Learning Outcomes

After this lecture and exercises you will be able to:

- Include the number of pole pairs in the machine models
- Transform phase variables to a space vector (and vice versa)
- Transform space vectors to different coordinates
- Express the space-vector model of the synchronous machine in rotor coordinates
- Calculate steady-state operating points of the synchronous machine

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Number of Pole Pairs n_{p}

Electrical angular speed $\omega_{\mathrm{m}}=n_{\mathrm{p}} \omega_{\mathrm{M}}$ and electrical angle $\vartheta_{\mathrm{m}}=n_{\mathrm{p}} \vartheta_{\mathrm{M}}$

Synchronous Rotor Speeds

- Stator (supply) frequency $f(\mathrm{~Hz})$
- Electrical angular speed (rad/s)

$$
\omega_{\mathrm{m}}=2 \pi f
$$

- Rotor angular speed (rad/s)

$$
\text { Speeds for } f=50 \mathrm{~Hz}
$$

No of pole pairs n_{p}	Speed $n(\mathrm{r} / \mathrm{min})$
1	3000
2	1500
3	1000
4	750
5	600
6	500

$$
n=\frac{f}{n_{\mathrm{p}}} \frac{60 \mathrm{~s}}{\min }
$$

1-Phase Machine

- Phase voltage

$$
u_{\mathrm{a}}=R i_{\mathrm{a}}+\frac{\mathrm{d} \psi_{\mathrm{a}}}{\mathrm{~d} t}
$$

- Phase flux linkage

$$
\psi_{\mathrm{a}}=L i_{\mathrm{a}}+\psi_{\mathrm{fa}}
$$

where $\psi_{\mathrm{fa}}=\psi_{\mathrm{f}} \cos \left(\vartheta_{\mathrm{m}}\right)$

- Back-emf

$$
e_{\mathrm{a}}=\frac{\mathrm{d} \psi_{\mathrm{fa}}}{\mathrm{~d} t}=-\omega_{\mathrm{m}} \psi_{\mathrm{f}} \sin \left(\vartheta_{\mathrm{m}}\right)
$$

$$
p_{\mathrm{M}}=e_{\mathrm{a}} i_{\mathrm{a}}=\tau_{\mathrm{M}} \omega_{\mathrm{m}} / n_{\mathrm{p}}
$$

- Mechanical power
- Torque

$$
\tau_{\mathrm{M}}=-n_{\mathrm{p}} i_{\mathrm{a}} \psi_{\mathrm{f}} \sin \left(\vartheta_{\mathrm{m}}\right)
$$

Synchronous Machine: Phase-Variable Model

$$
\begin{aligned}
& u_{\mathrm{a}}=R_{\mathrm{s}} i_{\mathrm{a}}+\frac{\mathrm{d} \psi_{\mathrm{a}}}{\mathrm{~d} t} \\
& u_{\mathrm{b}}=R_{\mathrm{s}} i_{\mathrm{b}}+\frac{\mathrm{d} \psi_{\mathrm{b}}}{\mathrm{~d} t} \\
& u_{\mathrm{c}}=R_{\mathrm{s}} i_{\mathrm{c}}+\frac{\mathrm{d} \psi_{\mathrm{c}}}{\mathrm{~d} t} \\
& \psi_{\mathrm{a}}=L_{\mathrm{s}} i_{\mathrm{a}}+\psi_{\mathrm{f}} \cos \left(\vartheta_{\mathrm{m}}\right) \\
& \psi_{\mathrm{b}}=L_{\mathrm{s}} i_{\mathrm{b}}+\psi_{\mathrm{f}} \cos \left(\vartheta_{\mathrm{m}}-2 \pi / 3\right) \\
& \psi_{\mathrm{c}}=L_{\mathrm{s}} i_{\mathrm{c}}+\psi_{\mathrm{f}} \cos \left(\vartheta_{\mathrm{m}}-4 \pi / 3\right)
\end{aligned}
$$

$$
\tau_{\mathrm{M}}=-n_{\mathrm{p}} \psi_{\mathrm{f}}\left[i_{\mathrm{a}} \sin \left(\vartheta_{\mathrm{m}}\right)+i_{\mathrm{b}} \sin \left(\vartheta_{\mathrm{m}}-2 \pi / 3\right)+i_{\mathrm{c}} \sin \left(\vartheta_{\mathrm{m}}-4 \pi / 3\right)\right]
$$

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Why Space Vectors?

1. Complex phasor models

- Simple to use but limited to steady-state conditions

2. Phase-variable models

- Valid both in transient and steady states
- Too complicated

3. Space-vector models

- Phase-variable models can be directly transformed to space-vector models
- Compact representation, insightful physical interpretations
- Commonly applied to analysis, modelling, and control of 3-phase systems

About Complex Numbers

- Complex number

$$
\boldsymbol{z}=x+\mathrm{j} y
$$

- Complex conjugate of z

$$
z^{*}=x-\mathrm{j} y
$$

- Magnitude of z

$$
z=|\boldsymbol{z}|=\sqrt{x^{2}+y^{2}}
$$

- Euler's formula

$$
\mathrm{e}^{\mathrm{j} \vartheta}=\cos \vartheta+\mathrm{j} \sin \vartheta
$$

- Rotating the position vector by 90°

$$
\mathrm{j} z=\mathrm{j}(x+\mathrm{j} y)=-y+\mathrm{j} x
$$

- Dot product

$$
\begin{aligned}
\operatorname{Re}\left\{\boldsymbol{z}_{1} \boldsymbol{z}_{2}^{*}\right\} & =\operatorname{Re}\left\{\left(x_{1}+\mathrm{j} y_{1}\right)\left(x_{2}-\mathrm{j} y_{2}\right)\right\} \\
& =x_{1} x_{2}+y_{1} y_{2}
\end{aligned}
$$

- Cross product

$$
\begin{aligned}
\operatorname{Im}\left\{\boldsymbol{z}_{1} z_{2}^{*}\right\} & =\operatorname{Im}\left\{\left(x_{1}+\mathrm{j} y_{1}\right)\left(x_{2}-\mathrm{j} y_{2}\right\}\right. \\
& =y_{1} x_{2}-y_{2} x_{1}
\end{aligned}
$$

Magnetic Axes in the Complex Plane

Phase a

All 3 phases

Windings are sinusoidally distributed along the air gap

Space-Vector Transformation

- Space vector is a complex variable (signal)

$$
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\frac{2}{3}\left(i_{\mathrm{a}}+i_{\mathrm{b}} \mathrm{e}^{\mathrm{j} 2 \pi / 3}+i_{\mathrm{c}} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right)
$$

where $i_{\mathrm{a}}, i_{\mathrm{b}}$, and i_{c} are arbitrarily varying instantaneous phase variables

- Superscript s marks stator coordinates
- Same transformation applies for voltages and flux linkages
- Space vector does not include the zero-sequence component (not a problem since the stator winding is delta-connected or the star point is not connected)

Examples: Space Vectors Rotate in Steady State

- Positive sequence

$$
\begin{aligned}
i_{\mathrm{a}} & =\sqrt{2} I_{+} \cos \left(\omega_{\mathrm{m}} t+\phi_{+}\right) \\
i_{\mathrm{b}} & =\sqrt{2} I_{+} \cos \left(\omega_{\mathrm{m}} t-2 \pi / 3+\phi_{+}\right) \\
i_{\mathrm{c}} & =\sqrt{2} I_{+} \cos \left(\omega_{\mathrm{m}} t-4 \pi / 3+\phi_{+}\right)
\end{aligned}
$$

- Space vector

$$
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\sqrt{2} I_{+} \mathrm{e}^{\mathrm{j}\left(\omega_{\mathrm{m}} t+\phi_{+}\right)}
$$

- Negative sequence

$$
\begin{aligned}
i_{\mathrm{a}} & =\sqrt{2} I_{-} \cos \left(\omega_{\mathrm{m}} t+\phi_{-}\right) \\
i_{\mathrm{b}} & =\sqrt{2} I_{-} \cos \left(\omega_{\mathrm{m}} t-4 \pi / 3+\phi_{-}\right) \\
i_{\mathrm{c}} & =\sqrt{2} I_{-} \cos \left(\omega_{\mathrm{m}} t-2 \pi / 3+\phi_{-}\right)
\end{aligned}
$$

- Space vector

$$
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\sqrt{2} I_{-} \mathrm{e}^{-\mathrm{j}\left(\omega_{\mathrm{m}} t+\phi_{-}\right)}
$$

- Non-sinusoidal periodic waveform

$$
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\sqrt{2} I_{1} \mathrm{e}^{\mathrm{j}\left(\omega_{\mathrm{m}} t+\phi_{1}\right)}+\sqrt{2} I_{5} \mathrm{e}^{-\mathrm{j}\left(5 \omega_{\mathrm{m}} t+\phi_{5}\right)}+\sqrt{2} I_{7} \mathrm{e}^{\mathrm{j}\left(7 \omega_{\mathrm{m}} t+\phi_{7}\right)} \ldots
$$

Representation in Component and Polar Forms

- Component form

$$
i_{\mathrm{s}}^{\mathrm{s}}=i_{\alpha}+\mathrm{j} i_{\beta}
$$

- Polar form

$$
\begin{aligned}
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} & =i_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \theta_{i}} \\
& =\underbrace{i_{\mathrm{s}} \cos \left(\theta_{i}\right)}_{i_{\alpha}}+\mathrm{j} \underbrace{i_{\mathrm{s}} \sin \left(\theta_{i}\right)}_{i_{\beta}}
\end{aligned}
$$

- Generally, both the magnitude i_{s} and the
 angle θ_{i} may vary arbitrarily in time
- Positive sequence in steady state: $i_{\mathrm{s}}=\sqrt{2} I$ is constant and $\theta_{i}=\omega_{\mathrm{m}} t+\phi$

Physical Interpretation: Sinusoidal Distribution in Space

- 3-phase winding creates the current and the mmf, which are sinusoidally distributed along the air gap
- Space vector represents the instantaneous magnitude and angle of the sinusoidal distribution in space
- Magnitude and the angle can vary freely in time

Rotating current distribution produced by the 3-phase stator winding

Outline

Number of Pole Pairs

Space Vectors
Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Space-Vector Model of the Synchronous Machine

- Stator voltage

$$
\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}}=R_{\mathrm{s}} \mathbf{i}_{\mathrm{s}}^{\mathrm{s}}+\frac{\mathrm{d} \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{~d} t}
$$

- Torque can be expressed in various forms
- Following form is convenient since it holds for other AC machines as well
- Stator flux linkage

$$
\boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}=L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}+\psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}
$$

$$
\tau_{\mathrm{M}}=\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s} *}\right\}
$$

Space-Vector Equivalent Circuit

- Stator voltage can be rewritten as

$$
\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}+L_{\mathrm{s}} \frac{\mathrm{~d} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{~d} t}+\boldsymbol{e}_{\mathrm{s}}^{\mathrm{s}}
$$

- Back-emf $\boldsymbol{e}_{\mathrm{s}}^{\mathrm{s}}=\mathrm{j} \omega_{\mathrm{m}} \psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$ is proportional to the speed

Torque

- Vectors in the polar form

$$
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=i_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \theta_{i}} \quad \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}=\psi_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \theta_{\psi}}
$$

- Instantaneous torque

$$
\begin{aligned}
\tau_{\mathrm{M}} & =\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s} *}\right\} \\
& =\frac{3 n_{\mathrm{p}}}{2} i_{\mathrm{s}} \psi_{\mathrm{s}} \sin (\gamma)
\end{aligned}
$$

where $\gamma=\theta_{i}-\theta_{\psi}$

- Nonzero γ is needed for torque production

Power

- Vectors in the component and polar forms

$$
\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}}=u_{\alpha}+\mathrm{j} u_{\beta}=u_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \theta_{u}} \quad \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=i_{\alpha}+\mathrm{j} i_{\beta}=i_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \theta_{i}}
$$

- Instantaneous power fed to the stator

$$
\begin{aligned}
p_{\mathrm{s}} & =\frac{3}{2} \operatorname{Re}\left\{\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathbf{s}^{*}}\right\} \\
& =\frac{3}{2}\left(u_{\alpha} i_{\alpha}+u_{\beta} i_{\beta}\right) \\
& =\frac{3}{2} u_{\mathrm{s}} i_{\mathrm{s}} \cos (\varphi)
\end{aligned}
$$

where $\varphi=\theta_{u}-\theta_{i}$

Outline

```
Number of Pole Pairs
Space Vectors
Synchronous Machine Model in Stator Coordinates
```

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Example: Stopping the Rotating Vector

- Positive-sequence space vector in stator coordinates

$$
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\sqrt{2} I \mathrm{e}^{\mathrm{j}\left(\omega_{\mathrm{m}} t+\phi\right)}
$$

- Rotating vector can be stopped by the transformation

$$
\boldsymbol{i}_{\mathrm{s}}=\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} \omega_{\mathrm{m}} t}=\sqrt{2} I \mathrm{e}^{\mathrm{j} \phi}
$$

- In other words, we observe the vector now in a coordinate system rotating at ω_{m}
- In rotating coordinates, the vector is denoted without a superscript and the components are marked with the subscripts d and q

$$
\boldsymbol{i}_{\mathrm{s}}=i_{\mathrm{d}}+\mathrm{j} i_{\mathrm{q}}
$$

Coordinate Transformation

- Previous example assumed the rotor speed ω_{m} to be constant
- General dq transformation and its inverse are

$$
\begin{array}{ll}
\boldsymbol{i}_{\mathrm{s}}=\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} \vartheta_{\mathrm{m}}} & \text { dq transformation } \\
\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}} & \alpha \beta \text { transformation }
\end{array}
$$

where the rotor angle is

$$
\vartheta_{\mathrm{m}}=\int \omega_{\mathrm{m}} \mathrm{~d} t
$$

$$
\boldsymbol{i}_{\mathrm{s}}=\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j} \vartheta_{\mathrm{m}}}
$$

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates
Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Synchronous Machine Model in Rotor Coordinates

- Substitute $\psi_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}, \boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{u}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$, and $\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{i}_{\mathrm{s}} \mathrm{j}^{\mathrm{j} \vartheta_{\mathrm{m}}}$

$$
\begin{array}{rlll}
\boldsymbol{u}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}\right) & \Rightarrow & \boldsymbol{u}_{\mathrm{s}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\frac{\mathrm{d} \boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{~d} t}+\mathrm{j} \omega_{\mathrm{m}} \boldsymbol{\psi}_{\mathrm{s}} \\
\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}=L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}} & \Rightarrow & \boldsymbol{\psi}_{\mathrm{s}}=L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\psi_{\mathrm{f}}
\end{array}
$$

- Torque is proportional to i_{q}

$$
\tau_{\mathrm{M}}=\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\boldsymbol{i}_{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{*}\right\}=\frac{3 n_{\mathrm{p}}}{2} \psi_{\mathrm{f}} i_{\mathrm{q}}
$$

while i_{d} does not contribute to the torque

Power Balance

- Stator voltage can be rewritten as

$$
\boldsymbol{u}_{\mathrm{s}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+L_{\mathrm{s}} \frac{\mathrm{~d} \boldsymbol{i}_{\mathrm{s}}}{\mathrm{~d} t}+\mathrm{j} \omega_{\mathrm{m}} L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\boldsymbol{e}_{\mathrm{s}}
$$

where $\boldsymbol{e}_{\mathrm{s}}=\mathrm{j} \omega_{\mathrm{m}} \psi_{\mathrm{f}}$ is the back-emf

- Power balance is obtained from the stator voltage equation

$$
p_{\mathrm{s}}=\frac{3}{2} \operatorname{Re}\left\{\boldsymbol{u}_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{*}\right\}=\underbrace{\frac{3}{2} R_{\mathrm{s}}\left|\boldsymbol{i}_{\mathrm{s}}\right|^{2}}_{\text {Losses }}+\underbrace{\frac{3}{2} \frac{L_{\mathrm{s}}}{2} \frac{\mathrm{~d}\left|\boldsymbol{i}_{\mathrm{s}}\right|^{2}}{\mathrm{~d} t}}_{\begin{array}{c}
\text { Rate of } \\
\text { change of } \\
\text { energy in } L_{\mathrm{s}}
\end{array}}+\underbrace{\tau_{\mathrm{M}} \frac{\omega_{\mathrm{m}}}{n_{\mathrm{p}}}}_{\begin{array}{c}
\text { Mechanical } \\
\text { power }
\end{array}}
$$

- Middle term is zero in steady state

Vector Diagram

- In steady state, $\mathrm{d} / \mathrm{d} t=0$ holds in rotor coordinates
- Stator voltage

$$
\begin{aligned}
\boldsymbol{u}_{\mathrm{s}} & =R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\mathrm{j} \omega_{\mathrm{m}} \boldsymbol{\psi}_{\mathrm{s}} \\
& =R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\mathrm{j} \omega_{\mathrm{m}}\left(L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\psi_{\mathrm{f}}\right)
\end{aligned}
$$

- Steady-state operating points can be illustrated by means of vector diagrams

Assumption: $R_{\mathrm{s}} \approx 0$

