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Learning Outcomes

After this lecture and exercises you will be able to:
▶ Include the number of pole pairs in the machine models
▶ Transform phase variables to a space vector (and vice versa)
▶ Transform space vectors to different coordinates
▶ Express the space-vector model of the synchronous machine in rotor

coordinates
▶ Calculate steady-state operating points of the synchronous machine
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Number of Pole Pairs np

ϑM = ϑm

ϑM = ϑm/2

a

b

c

aa

c

cb

b

2 poles (np = 1) 4 poles (np = 2)

Electrical angular speed ωm = npωM and electrical angle ϑm = npϑM
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Synchronous Rotor Speeds

▶ Stator (supply) frequency f (Hz)
▶ Electrical angular speed (rad/s)

ωm = 2πf

▶ Rotor angular speed (rad/s)

ωM =
ωm

np

▶ Rotor speed (r/min)

n =
f

np

60 s
min

Speeds for f = 50 Hz

No of pole pairs np Speed n (r/min)
1 3000
2 1500
3 1000
4 750
5 600
6 500

Note that in converter-fed motor drives, the rated supply frequency of the motor does not need to be 50 Hz.
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1-Phase Machine

▶ Phase voltage

ua = Ria +
dψa

dt

▶ Phase flux linkage

ψa = Lia + ψfa

where ψfa = ψf cos(ϑm)

▶ Back-emf

ea =
dψfa

dt
= −ωmψf sin(ϑm)

ea

Lia R

ua
dψa

dt

▶ Mechanical power

pM = eaia = τMωm/np

▶ Torque

τM = −np iaψf sin(ϑm)
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Synchronous Machine: Phase-Variable Model

ea = −ωmψf sin(ϑm)

eb = −ωmψf sin(ϑm − 2π/3)

ec = −ωmψf sin(ϑm − 4π/3)

Ls
ea

Ls
eb

Ls
ec

n

a

b

c

Rs

Rs

Rs

ia

ib

ic

ψa = Lsia + ψf cos(ϑm)

ψb = Lsib + ψf cos(ϑm − 2π/3)

ψc = Lsic + ψf cos(ϑm − 4π/3)

ua = Rsia +
dψa

dt

ub = Rsib +
dψb

dt

uc = Rsic +
dψc

dt

τM = −npψf [ia sin(ϑm) + ib sin(ϑm − 2π/3) + ic sin(ϑm − 4π/3)]
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Why Space Vectors?

1. Complex phasor models
▶ Simple to use but limited to steady-state conditions

2. Phase-variable models
▶ Valid both in transient and steady states
▶ Too complicated

3. Space-vector models
▶ Phase-variable models can be directly transformed to space-vector models
▶ Compact representation, insightful physical interpretations
▶ Commonly applied to analysis, modelling, and control of 3-phase systems
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About Complex Numbers

▶ Complex number

z = x+ jy

▶ Complex conjugate of z

z∗ = x− jy

▶ Magnitude of z

z = |z| =
√
x2 + y2

▶ Euler’s formula

ejϑ = cosϑ+ j sinϑ

▶ Rotating the position vector by 90◦

jz = j(x+ jy) = −y + jx

▶ Dot product

Re{z1z∗2} = Re{(x1 + jy1)(x2 − jy2)}
= x1x2 + y1y2

▶ Cross product

Im{z1z∗2} = Im{(x1 + jy1)(x2 − jy2}
= y1x2 − y2x1
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Magnetic Axes in the Complex Plane

ej0 ej0

ej2π/3

ej4π/3

All 3 phasesPhase a

Windings are sinusoidally distributed along the air gap
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Space-Vector Transformation

▶ Space vector is a complex variable (signal)

iss =
2

3

(
ia + ibe

j2π/3 + ice
j4π/3

)
where ia, ib, and ic are arbitrarily varying instantaneous phase variables

▶ Superscript s marks stator coordinates
▶ Same transformation applies for voltages and flux linkages
▶ Space vector does not include the zero-sequence component (not a problem

since the stator winding is delta-connected or the star point is not connected)

Peak-value scaling of space vectors will be used in this course. Furthermore, we will use the subscript s to refer to the stator quantities, e.g., the
stator current vector is and the stator voltage vector us, since this is a very common convention in the literature.
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ej2π/3

iss

ej0

ia

ib

ej4π/3

ej2π/3

α

ej4π/3

β

ibe
j2π/3

ice
j4π/3

iss

ia

3

2
iss

ic

iss =
2

3

(
ia + ibe

j2π/3 + ice
j4π/3

) ia = Re {iss}

ib = Re
{
e−j2π/3iss

}
ic = Re

{
e−j4π/3iss

}
13 / 30



Examples: Space Vectors Rotate in Steady State

▶ Positive sequence

ia =
√
2I+ cos(ωmt+ ϕ+)

ib =
√
2I+ cos(ωmt− 2π/3 + ϕ+)

ic =
√
2I+ cos(ωmt− 4π/3 + ϕ+)

▶ Space vector

iss =
√
2I+ ej(ωmt+ϕ+)

▶ Negative sequence

ia =
√
2I− cos(ωmt+ ϕ−)

ib =
√
2I− cos(ωmt− 4π/3 + ϕ−)

ic =
√
2I− cos(ωmt− 2π/3 + ϕ−)

▶ Space vector

iss =
√
2I− e−j(ωmt+ϕ−)

▶ Non-sinusoidal periodic waveform

iss =
√
2I1 e

j(ωmt+ϕ1) +
√
2I5 e

−j(5ωmt+ϕ5) +
√
2I7 e

j(7ωmt+ϕ7) . . .
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Representation in Component and Polar Forms

▶ Component form

iss = iα + jiβ

▶ Polar form

iss = ise
jθi

= is cos(θi)︸ ︷︷ ︸
iα

+j is sin(θi)︸ ︷︷ ︸
iβ

▶ Generally, both the magnitude is and the
angle θi may vary arbitrarily in time

iα

jiβ

α

β

iss

θi

▶ Positive sequence in steady state: is =
√
2I is constant and θi = ωmt+ ϕ
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Physical Interpretation: Sinusoidal Distribution in Space

▶ 3-phase winding creates the current
and the mmf, which are sinusoidally
distributed along the air gap

▶ Space vector represents the
instantaneous magnitude and angle of
the sinusoidal distribution in space

▶ Magnitude and the angle can vary freely
in time

α

βiss

jiβ

iα

Rotating current distribution produced
by the 3-phase stator winding
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Space-Vector Model of the Synchronous Machine

▶ Stator voltage

us
s = Rsi

s
s +

dψs
s

dt

▶ Stator flux linkage

ψs
s = Lsi

s
s + ψfe

jϑm

▶ Torque can be expressed in various forms
▶ Following form is convenient since it holds for

other AC machines as well

τM =
3np
2

Im {issψs∗
s }

Derive these voltage and flux linkage equations starting from the phase-variable model and the definition of the space vector. Also show that the
space-vector and phase-variable formulations for the torque are equal.
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Space-Vector Equivalent Circuit

▶ Stator voltage can be rewritten as

us
s = Rsi

s
s + Ls

diss
dt

+ ess

▶ Back-emf ess = jωmψfe
jϑm is proportional

to the speed

ess

Lsiss Rs

us
s

dψs
s

dt
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Torque

▶ Vectors in the polar form

iss = ise
jθi ψs

s = ψse
jθψ

▶ Instantaneous torque

τM =
3np
2

Im {issψs∗
s }

=
3np
2
isψs sin(γ)

where γ = θi − θψ
▶ Nonzero γ is needed for torque production

α

β

iss

θψ

ψs
s

θi

γ
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Power

▶ Vectors in the component and polar forms

us
s = uα + juβ = use

jθu iss = iα + jiβ = ise
jθi

▶ Instantaneous power fed to the stator

ps =
3

2
Re {us

si
s∗
s }

=
3

2
(uαiα + uβiβ)

=
3

2
usis cos(φ)

where φ = θu − θi

The power calculated using the space vectors naturally agrees with the power ps = uaia + ubib + ucic calculated from the phase variables.
Furthermore, in steady state, the rms-valued expression Ps = 3UsIs cos(φ) is obtained, since us =

√
2Us and is =

√
2Us hold.
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Example: Stopping the Rotating Vector

▶ Positive-sequence space vector in
stator coordinates

iss =
√
2I ej(ωmt+ϕ)

▶ Rotating vector can be stopped by
the transformation

is = i
s
s e

−jωmt =
√
2I ejϕ

▶ In other words, we observe the
vector now in a coordinate system
rotating at ωm

▶ In rotating coordinates, the vector is
denoted without a superscript and
the components are marked with the
subscripts d and q

is = id + jiq
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Coordinate Transformation

▶ Previous example assumed the rotor speed ωm to be constant
▶ General dq transformation and its inverse are

is = i
s
se

−jϑm dq transformation

iss = ise
jϑm αβ transformation

where the rotor angle is

ϑm =

∫
ωmdt
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is

d

q

Rotor coordinates (dq)
is = i

s
s e

−jϑm

α

β

iss

d

q

ϑm

Stator coordinates (αβ)

ϑm

α

β
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is

d

q

Rotor coordinates (dq)
is = i

s
s e

−jϑm

α

β

iss

d

q

ϑm

Stator coordinates (αβ)

ϑm

α

β
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Synchronous Machine Model in Rotor Coordinates

▶ Substitute ψs
s = ψse

jϑm , us
s = use

jϑm , and iss = isejϑm

use
jϑm = Rsise

jϑm +
d

dt

(
ψse

jϑm
)

⇒ us = Rsis +
dψs

dt
+ jωmψs

ψse
jϑm = Lsise

jϑm + ψfe
jϑm ⇒ ψs = Lsis + ψf

▶ Torque is proportional to iq

τM =
3np
2

Im {isψ∗
s} =

3np
2
ψf iq

while id does not contribute to the torque
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Power Balance

▶ Stator voltage can be rewritten as

us = Rsis + Ls
dis
dt

+ jωmLsis + es

where es = jωmψf is the back-emf
▶ Power balance is obtained from the stator voltage equation

ps =
3

2
Re {usi

∗
s} =

3

2
Rs|is|2︸ ︷︷ ︸
Losses

+
3

2

Ls

2

d|is|2

dt︸ ︷︷ ︸
Rate of

change of
energy in Ls

+ τM
ωm

np︸ ︷︷ ︸
Mechanical

power

▶ Middle term is zero in steady state
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Vector Diagram

▶ In steady state, d/dt = 0 holds in
rotor coordinates

▶ Stator voltage

us = Rsis + jωmψs

= Rsis + jωm(Lsis + ψf)

▶ Steady-state operating points can
be illustrated by means of vector
diagrams

d

q

is

ψs

Lsis

ψf

us

Assumption: Rs ≈ 0
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