A!

Aalto University School of Electrical Engineering

Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives

Marko Hinkkanen

Autumn 2022

Learning Outcomes

After this lecture and exercises you will be able to:

- Include the number of pole pairs in the machine models
- Transform phase variables to a space vector (and vice versa)
- Transform space vectors to different coordinates
- Express the space-vector model of the synchronous machine in rotor coordinates
- Calculate steady-state operating points of the synchronous machine

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Number of Pole Pairs $n_{\rm p}$

Electrical angular speed $\omega_{
m m}=n_{
m p}\omega_{
m M}$ and electrical angle $artheta_{
m m}=n_{
m p}artheta_{
m M}$

Synchronous Rotor Speeds

- ► Stator (supply) frequency *f* (Hz)
- Electrical angular speed (rad/s)

$$\omega_{\rm m} = 2\pi f$$

Rotor angular speed (rad/s)

$$\omega_{\rm M} = \frac{\omega_{\rm m}}{n_{\rm p}}$$

► Rotor speed (r/min)

$$n = \frac{f}{n_{\rm p}} \frac{60 \; {\rm s}}{{\rm min}}$$

Speeds for f = 50 Hz

No of pole pairs $n_{ m p}$	Speed n (r/min)
1	3000
2	1500
3	1000
4	750
5	600
6	500

Note that in converter-fed motor drives, the rated supply frequency of the motor does not need to be 50 Hz.

1-Phase Machine

► Phase voltage

$$u_{\rm a} = Ri_{\rm a} + \frac{\mathrm{d}\psi_{\rm a}}{\mathrm{d}t}$$

Phase flux linkage

$$\psi_{\rm a} = L i_{\rm a} + \psi_{\rm fa}$$

where $\psi_{fa} = \psi_f \cos(\vartheta_m)$

Back-emf

$$e_{\rm a} = \frac{{\rm d}\psi_{\rm fa}}{{\rm d}t} = -\omega_{\rm m}\psi_{\rm f}\sin(\vartheta_{\rm m})$$

Mechanical power

$$p_{\mathrm{M}}=e_{\mathrm{a}}i_{\mathrm{a}}= au_{\mathrm{M}}\omega_{\mathrm{m}}/n_{\mathrm{p}}$$

Torque

$$\tau_{\rm M} = -\frac{n_{\rm p}}{n_{\rm p}} i_{\rm a} \psi_{\rm f} \sin(\frac{\vartheta_{\rm m}}{)}$$

Synchronous Machine: Phase-Variable Model

$$u_{a} = R_{s}i_{a} + \frac{\mathrm{d}\psi_{a}}{\mathrm{d}t}$$
$$u_{b} = R_{s}i_{b} + \frac{\mathrm{d}\psi_{b}}{\mathrm{d}t}$$
$$u_{c} = R_{s}i_{c} + \frac{\mathrm{d}\psi_{c}}{\mathrm{d}t}$$

$$\psi_{\rm a} = L_{\rm s} i_{\rm a} + \psi_{\rm f} \cos(\vartheta_{\rm m})$$

$$\psi_{\rm b} = L_{\rm s} i_{\rm b} + \psi_{\rm f} \cos(\vartheta_{\rm m} - 2\pi/3)$$

$$\psi_{\rm c} = L_{\rm s} i_{\rm c} + \psi_{\rm f} \cos(\vartheta_{\rm m} - 4\pi/3)$$

a
$$i_{a}$$
 R_{s} L_{s} e_{a}
b i_{b} R_{s} L_{s} e_{b}
c i_{c} R_{s} L_{s} e_{c}
c i_{c} R_{s} L_{s} e_{c}

$$e_{\rm a} = -\omega_{\rm m}\psi_{\rm f}\sin(\vartheta_{\rm m})$$
$$e_{\rm b} = -\omega_{\rm m}\psi_{\rm f}\sin(\vartheta_{\rm m} - 2\pi/3)$$
$$e_{\rm c} = -\omega_{\rm m}\psi_{\rm f}\sin(\vartheta_{\rm m} - 4\pi/3)$$

 $\tau_{\rm M} = -n_{\rm p}\psi_{\rm f} \left[i_{\rm a} \sin(\vartheta_{\rm m}) + i_{\rm b} \sin(\vartheta_{\rm m} - 2\pi/3) + i_{\rm c} \sin(\vartheta_{\rm m} - 4\pi/3) \right]$

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Why Space Vectors?

- 1. Complex phasor models
 - Simple to use but limited to steady-state conditions
- 2. Phase-variable models
 - Valid both in transient and steady states
 - Too complicated
- 3. Space-vector models
 - ► Phase-variable models can be directly transformed to space-vector models
 - Compact representation, insightful physical interpretations
 - Commonly applied to analysis, modelling, and control of 3-phase systems

About Complex Numbers

► Complex number

 $\boldsymbol{z} = x + \mathrm{j}y$

Complex conjugate of z

 $\boldsymbol{z}^* = x - \mathrm{j}y$

► Magnitude of *z*

$$z=|\boldsymbol{z}|=\sqrt{x^2+y^2}$$

Euler's formula

$$e^{j\vartheta} = \cos\vartheta + j\sin\vartheta$$

Rotating the position vector by 90°

$$\mathbf{j}\boldsymbol{z} = \mathbf{j}(x + \mathbf{j}y) = -y + \mathbf{j}x$$

Dot product

$$Re\{z_1 z_2^*\} = Re\{(x_1 + jy_1)(x_2 - jy_2)\}$$
$$= x_1 x_2 + y_1 y_2$$

$$\operatorname{Im}\{\boldsymbol{z}_{1}\boldsymbol{z}_{2}^{*}\} = \operatorname{Im}\{(x_{1} + \mathrm{j}y_{1})(x_{2} - \mathrm{j}y_{2}\}\$$
$$= y_{1}x_{2} - y_{2}x_{1}$$

Magnetic Axes in the Complex Plane

Windings are sinusoidally distributed along the air gap

Space-Vector Transformation

Space vector is a complex variable (signal)

$$m{i}_{
m s}^{
m s} = rac{2}{3} \left(i_{
m a} + i_{
m b} {
m e}^{{
m j} 2 \pi / 3} + i_{
m c} {
m e}^{{
m j} 4 \pi / 3}
ight)$$

where $i_{\rm a}$, $i_{\rm b}$, and $i_{\rm c}$ are arbitrarily varying instantaneous phase variables

- Superscript s marks stator coordinates
- Same transformation applies for voltages and flux linkages
- Space vector does not include the zero-sequence component (not a problem since the stator winding is delta-connected or the star point is not connected)

Peak-value scaling of space vectors will be used in this course. Furthermore, we will use the subscript s to refer to the stator quantities, e.g., the stator current vector i_s and the stator voltage vector u_s , since this is a very common convention in the literature.

Examples: Space Vectors Rotate in Steady State

Positive sequence

$$i_{a} = \sqrt{2}I_{+}\cos(\omega_{m}t + \phi_{+})$$

$$i_{b} = \sqrt{2}I_{+}\cos(\omega_{m}t - 2\pi/3 + \phi_{+})$$

$$i_{c} = \sqrt{2}I_{+}\cos(\omega_{m}t - 4\pi/3 + \phi_{+})$$

Space vector

$$\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} = \sqrt{2}I_{+} \,\mathrm{e}^{\mathrm{j}(\omega_{\mathrm{m}}t + \phi_{+})}$$

- Non-sinusoidal periodic waveform
 - $\mathbf{i}_{s}^{s} = \sqrt{2}I_{1} e^{j(\omega_{m}t+\phi_{1})} + \sqrt{2}I_{5} e^{-j(5\omega_{m}t+\phi_{5})} + \sqrt{2}I_{7} e^{j(7\omega_{m}t+\phi_{7})} \dots$

Negative sequence

$$i_{\rm a} = \sqrt{2}I_{-}\cos(\omega_{\rm m}t + \phi_{-})$$

$$i_{\rm b} = \sqrt{2}I_{-}\cos(\omega_{\rm m}t - 4\pi/3 + \phi_{-})$$

$$i_{\rm c} = \sqrt{2}I_{-}\cos(\omega_{\rm m}t - 2\pi/3 + \phi_{-})$$

Space vector

$$\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} = \sqrt{2}I_{-} \,\mathrm{e}^{-\mathrm{j}(\omega_{\mathrm{m}}t + \phi_{-})}$$

Representation in Component and Polar Forms

Component form

$$oldsymbol{i}_{
m s}^{
m s}=i_lpha+{
m j}i_eta$$

Polar form

$$\mathbf{i}_{s}^{s} = i_{s} e^{j\theta_{i}} \\ = \underbrace{i_{s} \cos(\theta_{i})}_{i_{\alpha}} + j \underbrace{i_{s} \sin(\theta_{i})}_{i_{\beta}}$$

- Generally, both the magnitude *i*_s and the angle θ_i may vary arbitrarily in time
- Positive sequence in steady state: $i_s = \sqrt{2}I$ is constant and $\theta_i = \omega_m t + \phi$

Physical Interpretation: Sinusoidal Distribution in Space

- 3-phase winding creates the current and the mmf, which are sinusoidally distributed along the air gap
- Space vector represents the instantaneous magnitude and angle of the sinusoidal distribution in space
- Magnitude and the angle can vary freely in time

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Space-Vector Model of the Synchronous Machine

Stator voltage

$$\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}} = R_{\mathrm{s}}\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} + \frac{\mathrm{d}\boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{d}t}$$

Stator flux linkage

$$\boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}} = L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} + \psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j}\vartheta_{\mathrm{m}}}$$

- ► Torque can be expressed in various forms
- Following form is convenient since it holds for other AC machines as well

$$au_{\mathrm{M}} = rac{3n_{\mathrm{p}}}{2} \operatorname{Im} \left\{ \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}*}
ight\}$$

Derive these voltage and flux linkage equations starting from the phase-variable model and the definition of the space vector. Also show that the space-vector and phase-variable formulations for the torque are equal.

Space-Vector Equivalent Circuit

Stator voltage can be rewritten as

$$\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}} = R_{\mathrm{s}}\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} + L_{\mathrm{s}}\frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{d}t} + \boldsymbol{e}_{\mathrm{s}}^{\mathrm{s}}$$

► Back-emf e^s_s = jω_mψ_fe^{jϑm} is proportional to the speed

Torque

► Vectors in the polar form

$$m{i}_{
m s}^{
m s}=i_{
m s}{
m e}^{{
m j} heta_i}\qquadm{\psi}_{
m s}^{
m s}=\psi_{
m s}{
m e}^{{
m j} heta_\psi}$$

$$\tau_{\mathrm{M}} = \frac{3n_{\mathrm{p}}}{2} \operatorname{Im} \left\{ i_{\mathrm{s}}^{\mathrm{s}} \psi_{\mathrm{s}}^{\mathrm{s}*} \right\}$$
$$= \frac{3n_{\mathrm{p}}}{2} i_{\mathrm{s}} \psi_{\mathrm{s}} \sin(\gamma)$$

where $\gamma = \theta_i - \theta_\psi$

• Nonzero γ is needed for torque production

Power

Vectors in the component and polar forms

$$oldsymbol{u}_{\mathrm{s}}^{\mathrm{s}} = u_{lpha} + \mathrm{j} u_{eta} = u_{\mathrm{s}} \mathrm{e}^{\mathrm{j} oldsymbol{ heta}_u} \qquad oldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} = i_{lpha} + \mathrm{j} i_{eta} = i_{\mathrm{s}} \mathrm{e}^{\mathrm{j} oldsymbol{ heta}_i}$$

Instantaneous power fed to the stator ►

$$p_{s} = \frac{3}{2} \operatorname{Re} \left\{ \boldsymbol{u}_{s}^{s} \boldsymbol{i}_{s}^{s*} \right\}$$
$$= \frac{3}{2} \left(u_{\alpha} i_{\alpha} + u_{\beta} i_{\beta} \right)$$
$$= \frac{3}{2} u_{s} i_{s} \cos(\varphi)$$

where $\varphi = \theta_u - \theta_i$

The power calculated using the space vectors naturally agrees with the power $p_s = u_a i_a + u_b i_b + u_c i_c$ calculated from the phase variables. Furthermore, in steady state, the rms-valued expression $P_s = 3U_s I_s \cos(\varphi)$ is obtained, since $u_s = \sqrt{2}U_s$ and $i_s = \sqrt{2}U_s$ hold.

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Example: Stopping the Rotating Vector

 Positive-sequence space vector in stator coordinates

 $\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} = \sqrt{2}I \,\mathrm{e}^{\mathrm{j}(\omega_{\mathrm{m}}t+\phi)}$

 Rotating vector can be stopped by the transformation

$$\boldsymbol{i}_{\mathrm{s}} = \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} \mathrm{e}^{-\mathrm{j}\omega_{\mathrm{m}}t} = \sqrt{2}I \, \mathrm{e}^{\mathrm{j}\phi}$$

- In other words, we observe the vector now in a coordinate system rotating at ω_m
- In rotating coordinates, the vector is denoted without a superscript and the components are marked with the subscripts d and q

$$\boldsymbol{i}_{\mathrm{s}}=i_{\mathrm{d}}+\mathrm{j}i_{\mathrm{q}}$$

Coordinate Transformation

 $\blacktriangleright\,$ Previous example assumed the rotor speed ω_m to be constant

• General dq transformation and its inverse are

$$m{i}_{
m s}=m{i}_{
m s}^{
m s}{
m e}^{-{
m j}artheta_{
m m}} \ m{i}_{
m s}^{
m s}=m{i}_{
m s}{
m e}^{{
m j}artheta_{
m m}}$$

dq transformation $\alpha\beta$ transformation

where the rotor angle is

$$\vartheta_{\rm m} = \int \omega_{\rm m} \mathrm{d}t$$

Outline

Number of Pole Pairs

Space Vectors

Synchronous Machine Model in Stator Coordinates

Coordinate Transformation

Synchronous Machine Model in Rotor Coordinates

Synchronous Machine Model in Rotor Coordinates

► Substitute
$$\psi_{s}^{s} = \psi_{s} e^{j\vartheta_{m}}$$
, $u_{s}^{s} = u_{s} e^{j\vartheta_{m}}$, and $i_{s}^{s} = i_{s} e^{j\vartheta_{m}}$

$$\boldsymbol{u}_{s} e^{j\vartheta_{m}} = R_{s} \boldsymbol{i}_{s} e^{j\vartheta_{m}} + \frac{d}{dt} \left(\boldsymbol{\psi}_{s} e^{j\vartheta_{m}} \right) \qquad \Rightarrow \qquad \boldsymbol{u}_{s} = R_{s} \boldsymbol{i}_{s} + \frac{d\boldsymbol{\psi}_{s}}{dt} + j\omega_{m} \boldsymbol{\psi}_{s}$$
$$\boldsymbol{\psi}_{s} e^{j\vartheta_{m}} = L_{s} \boldsymbol{i}_{s} e^{j\vartheta_{m}} + \psi_{f} e^{j\vartheta_{m}} \qquad \Rightarrow \qquad \boldsymbol{\psi}_{s} = L_{s} \boldsymbol{i}_{s} + \psi_{f}$$

• Torque is proportional to i_q

$$\overline{ au_{\mathrm{M}}=rac{3n_{\mathrm{p}}}{2}\,\mathrm{Im}\left\{oldsymbol{i}_{\mathrm{s}}oldsymbol{\psi}_{\mathrm{s}}^{*}
ight\}=rac{3n_{\mathrm{p}}}{2}\psi_{\mathrm{f}}i_{\mathrm{q}}}$$

while i_{d} does not contribute to the torque

Power Balance

Stator voltage can be rewritten as

$$\boldsymbol{u}_{\mathrm{s}} = R_{\mathrm{s}}\boldsymbol{i}_{\mathrm{s}} + L_{\mathrm{s}}\frac{\mathrm{d}\boldsymbol{i}_{\mathrm{s}}}{\mathrm{d}t} + \mathrm{j}\omega_{\mathrm{m}}L_{\mathrm{s}}\boldsymbol{i}_{\mathrm{s}} + \boldsymbol{e}_{\mathrm{s}}$$

where $oldsymbol{e}_{\mathrm{s}} = \mathrm{j}\omega_{\mathrm{m}}\psi_{\mathrm{f}}$ is the back-emf

Power balance is obtained from the stator voltage equation

$$p_{\rm s} = \frac{3}{2} \operatorname{Re} \left\{ \boldsymbol{u}_{\rm s} \boldsymbol{i}_{\rm s}^* \right\} = \underbrace{\frac{3}{2} R_{\rm s} |\boldsymbol{i}_{\rm s}|^2}_{\text{Losses}} + \underbrace{\frac{3}{2} \frac{L_{\rm s}}{2} \frac{\mathrm{d} |\boldsymbol{i}_{\rm s}|^2}{\mathrm{d} t}}_{\substack{\text{Rate of} \\ \text{change of} \\ \text{energy in } L_{\rm s}}} + \underbrace{\tau_{\rm M} \frac{\omega_{\rm m}}{n_{\rm p}}}_{\substack{\text{Mechanical} \\ \text{power}}}$$

Middle term is zero in steady state

Vector Diagram

- ► In steady state, d/dt = 0 holds in rotor coordinates
- Stator voltage

$$egin{aligned} m{u}_{
m s} &= R_{
m s}m{i}_{
m s} + {
m j}\omega_{
m m}m{\psi}_{
m s} \ &= R_{
m s}m{i}_{
m s} + {
m j}\omega_{
m m}(L_{
m s}m{i}_{
m s} + \psi_{
m f}) \end{aligned}$$

 Steady-state operating points can be illustrated by means of vector diagrams

