Problem 1: Steady-state characteristics of a DC motor

A DC motor with a separately excited field winding is considered. The rated armature voltage is $u_{\rm N}=600$ V, rated torque $\tau_{\rm N}=420$ Nm, rated speed $n_{\rm N}=1600$ r/min, and maximum speed $n_{\rm max}=3\,200$ r/min. The losses are omitted.

- (a) The flux factor $k_{\rm f}$ is kept constant at its rated value. When the armature voltage is varied from 0 to $u_{\rm N}$, the speed varies from 0 to $n_{\rm N}$. Determine the rated armature current $i_{\rm N}$.
- (b) A load is to be driven in the speed range from $n_{\rm N}$ to $n_{\rm max}$ by weakening the flux factor while the armature voltage is kept constant at $u_{\rm N}$. Determine the torque available at maximum speed, if the rated current $i_{\rm N}$ is not exceeded.
- (c) Sketch the armature voltage u, flux factor $k_{\rm f}$, torque $\tau_{\rm M}$, and mechanical power $p_{\rm M}$ as a function of the speed, when the armature current is kept at $i_{\rm N}$.

Problem 2: Transfer functions

- (a) A DC motor is considered. Derive the transfer function from the terminal voltage u(s) to the terminal current i(s).
- (b) A lumped thermal capacity model is considered:

$$p_{\rm d}(t) = \frac{1}{R_{\rm th}} \theta(t) + C_{\rm th} \frac{\mathrm{d}\theta(t)}{\mathrm{d}t}$$

Derive the transfer function from the power loss $p_{\rm d}(s)$ to the temperature rise $\theta(s)$.

Problem 3: Properties of first-order systems

Consider a first-order system

$$G(s) = \frac{K}{1 + sT}$$

- (a) What is the steady-state gain of the system?
- (b) Derive the rise time from 10% to 90% for a step input.
- (c) What is the 3-dB bandwidth α of the system?