The block diagram of a DC motor is shown in the figure.

(a) Derive the transfer functions

$$G_{\omega u}(s) = \frac{\omega_{\mathrm{M}}(s)}{u(s)}$$
 and $G_{\omega \tau}(s) = \frac{\omega_{\mathrm{M}}(s)}{\tau_{\mathrm{L}}(s)}$

(b) Replace the electric dynamics of the machine with the DC gain and formulate the transfer functions $G_{\omega u}(s)$ and $G_{\omega \tau}(s)$.

Problem 2: Current ripple

The parameters of a DC motor are: $R = 1 \ \Omega$, $L = 10 \ \text{mH}$, and $k_{\text{f}} = 4 \ \text{Vs}$. The average steady-state current taken by the motor is $I = 100 \ \text{A}$ and the rotor speed is 560 r/min. The motor is supplied from a four-quadrant DC-DC converter, where the unipolar PWM is applied. The DC-bus voltage is $U_{\text{dc}} = 450 \ \text{V}$ and the switching (carrier) frequency is $f_{\text{sw}} = 4 \ \text{kHz}$. Calculate the peak-to-peak current ripple.

