
Problem 1: Design of a PI current controller

The parameters of a DC motor are $R=0.87~\Omega$ and L=16 mH. An ordinary PI current controller is used. The current-control bandwidth is required to be $\alpha_{\rm c}=2\pi\cdot300~{\rm rad/s}$.

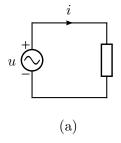
- (a) Derive the expressions for the controller gains according to the principle of internal model control.
- (b) Derive the expressions for the controller gains by cancelling the pole of the open-loop system and by requiring that the 0-dB crossover angular frequency of the loop transfer function is α_c .

Problem 2: Waveforms in a balanced three-phase system

Sketch the waveforms of balanced three-phase voltages on the squared paper (or the grid below).

Hint: It is convenient to use a 6×6 grid to draw these waveforms. You can fist mark the points corresponding to zero crossings and peak values. It is also worth noticing that $\cos(60^\circ) = 1/2$ and mark these points on the grid.

Problem 3: Power in single-phase and three-phase systems

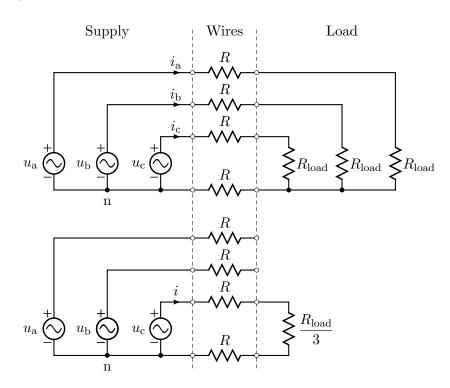

The purpose of this problem is to demonstrate that the instantaneous power in a balanced three-phase system is constant in steady state.

(a) A single-phase load is fed with the voltage $u(t) = \sqrt{2}U\cos(\omega t)$ and it draws the current $i(t) = \sqrt{2}I\cos(\omega t - \varphi)$. Derive the expressions for the instantaneous power and the average power.

Hint: The trigonometric product-to-sum identity may be useful:

$$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos(\alpha - \beta) + \cos(\alpha + \beta) \right]$$

(b) A balanced three-phase load is fed with balanced three-phase voltages. Derive the expressions for the instantaneous power and the average power.



Problem 4: Transmission losses

The figure below shows two different configurations to feed the same power to the resistive load:

- (a) The balanced three-phase supply feeds the three resistors R_{load} . The resistance of the transmission wires is R.
- (b) The single-phase supply, taken from one phase of the previous three-phase supply, feeds the load resistor $R_{\rm load}/3$. The same transmission wires are also used as in the previous case.

The resistance R of the wires can be assumed to be much smaller than the resistance R_{load} . Compare the transmission losses in these two cases.

