
ELEC-E8405 Electric Drives Exercise 4

Problem 1: Design of a PI current controller
The parameters of a DC motor are R = 0.87 Ω and L = 16 mH. An ordinary PI
current controller is used. The current-control bandwidth is required to be αc =
2π · 300 rad/s.

(a) Derive the expressions for the controller gains according to the principle of in-
ternal model control.

(b) Derive the expressions for the controller gains by cancelling the pole of the open-
loop system and by requiring that the 0-dB crossover angular frequency of the
loop transfer function is αc.

Solution

(a) The block diagram of the current-controlled system is shown in the figure below.
The converter is assumed to be ideal, u = uref . The back-emf e is assumed to be
quasi-constant. The PI controller and the admittance, respectively, are

K(s) = kp +
ki
s

Y (s) =
1

sL+R

e
iref

K(s) Y (s)
iu

The closed-loop transfer function is

i(s)

iref(s)
= H(s) =

K(s)Y (s)

1 +K(s)Y (s)
(1)

and the desired closed-loop transfer function is

H(s) =
αc

s+ αc

=
αc/s

1 + αc/s
(2)

where αc = 2π ·300 rad/s = 1 885 rad/s. Equalling (1) and (2) gives the condition

K(s)Y (s) =
αc

s

from which the controller transfer function can be solved:

K(s) =
αc

sY (s)
=

αc

s
(sL+R) = αcL+

αcR

s

Hence, the PI controller gains are

kp = αcL = 1885 rad/s · 0.016 H = 30.2 V/A

ki = αcR = 1885 rad/s · 0.87 Ω = 1 640 V/(As)
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(b) The loop transfer function is

L(s) = K(s)Y (s) =
kps+ ki

s

1

sL+R
=

s+ ki/kp
s/kp

1/L

s+R/L
(3)

It is worth noticing that L is the inductance while L(s) is the loop transfer
function. In order to cancel the pole of the open-loop system with the controller
zero, the condition

s+
ki
kp

= s+
R

L
⇒ ki

kp
=

R

L
(4)

should hold. Using this condition in (3) gives the loop transfer function

L(s) =
kp
sL

The loop-transfer function is required to have the gain of 0 dB (the unity gain)
at the crossover angular frequency αc:

|L(jαc)| =
∣∣∣∣ kp
jαcL

∣∣∣∣ = 1

The proportional gain can now be solved as

kp = αcL = 1885 rad/s · 0.016 H = 30.2 V/A

Based on (4), the integral gain is

ki =
R

L
kp = αcR = 1885 rad/s · 0.87 Ω = 1 640 V/(As)

The result is equal to the result obtained in Part (a).

Remark: If needed, the gain and phase margins can be determined from L(jω).
In this design example, the controller gains led to the loop transfer function
L(s) = αc/s. As an example, the phase margin ϕ is

ϕ = 180◦ + L(jαc) = 180◦ +
αc

jαc

= 90◦
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Problem 2: Waveforms in a balanced three-phase system
Sketch the waveforms of balanced three-phase voltages on the squared paper (or the
grid below).

ωt0

360◦

ua, ub, uc

√
2U

Hint: It is convenient to use a 6×6 grid to draw these waveforms. You can fist mark
the points corresponding to zero crossings and peak values. It is also worth noticing
that cos(60◦) = 1/2 and mark these points on the grid.

Solution

A balanced set of three-phase sinusoidal AC voltages is

ua = û cos(ωt) ub = û cos(ωt− 120◦) uc = û cos(ωt− 240◦)

The peak value of the voltage û =
√
2U =

√
2/3ULL, where U is the rms line-to-

neutral voltage and ULL is rms line-to-line voltage. The waveforms are shown in the
figure.

ua =
√
2U cos(ωt)

ub =
√
2U cos(ωt− 120◦)

uc =
√
2U cos(ωt− 240◦)ωt0

120◦ 120◦ 120◦

ua, ub, uc ua ub uc

√
2U
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Problem 3: Power in single-phase and three-phase systems
The purpose of this problem is to demonstrate that the instantaneous power in a
balanced three-phase system is constant in steady state.

(a) A single-phase load is fed with the voltage u(t) =
√
2U cos(ωt) and it draws

the current i(t) =
√
2I cos(ωt−φ). Derive the expressions for the instantaneous

power and the average power.

Hint: The trigonometric product-to-sum identity may be useful:

cosα cos β =
1

2
[cos(α− β) + cos(α + β)]

(b) A balanced three-phase load is fed with balanced three-phase voltages. Derive
the expressions for the instantaneous power and the average power.

ua

ub

uc

ia

ib

ic

u

i

(a) (b)

Solution

(a) The voltage and the current are

u =
√
2U cos(ωt) i =

√
2I cos(ωt− φ)

Using the given trigonometric identity, the instantaneous power becomes

p = ui

= 2UI cos(ωt) cos(ωt− φ)

= UI cosφ+ UI cos(2ωt− φ)

The second term is a second-harmonic component, i.e., the instantaneous power
oscillates at twice the supply frequency. The first term is the average power

P =
1

T

∫ T

0

p(t)dt = UI cosφ

where T = 2π/ω is the fundamental period.

(b) The phase voltages are

ua =
√
2U cos(ωt) ub =

√
2U cos(ωt− 2π/3) uc =

√
2U cos(ωt− 4π/3)

where U is the phase-to-neutral rms voltage. The phase currents are

ia =
√
2I cos(ωt−φ) ib =

√
2I cos(ωt−φ−2π/3) ic =

√
2I cos(ωt−φ−4π/3)
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Instantaneous powers in each phase are

pa = uaia = UI cosφ+ UI cos(2ωt− φ)

pb = ubib = UI cosφ+ UI cos(2ωt− φ− 4π/3)

pc = ucic = UI cosφ+ UI cos(2ωt− φ− 2π/3)

The total instantaneous power

p = pa + pb + pc = 3UI cosφ

equals the average power P = 3UI cosφ, i.e., the second-harmonic components
cancel out due their 120◦ phase difference. The power flow of a balanced three-
phase system is smooth (unlike that of the single-phase system).

Problem 4: Transmission losses
The figure below shows two different configurations to feed the same power to the
resistive load:

(a) The balanced three-phase supply feeds the three resistors Rload. The resistance
of the transmission wires is R.

(b) The single-phase supply, taken from one phase of the previous three-phase sup-
ply, feeds the load resistor Rload/3. The same transmission wires are also used
as in the previous case.

The resistance R of the wires can be assumed to be much smaller than the resistance
Rload. Compare the transmission losses in these two cases.

uc

ic

Rloadubua

ib

ia R

R

R

n

Supply

Rload Rload

Wires Load

uc

i

Rload

3

R

n

R

R

ubua

R

R
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Solution

(a) Let us fist consider the three-phase system. Since the system is balanced, the
sum of the phase currents is zero, and, therefore, the current in the neutral wire
is also zero.

We can consider just one phase. The rms phase current is

I =
U

R +Rload

≈ U

Rload

where U is the rms phase voltage. The total load power in the three phases is

Pload = 3RloadI
2 =

3U2

Rload

The total transmission losses are

Pd = 3RI2 = 3R
U2

R2
load

(5)

(b) Let us next consider the single-phase system. The rms current is

I =
U

2R +Rload/3
≈ 3U

Rload

The load power equals that in the tree-phase system

Pload =
Rload

3
I2 =

3U2

Rload

The transmission losses are

Pd = 2RI2 = 2R
9U2

R2
load

= 18R
U2

R2
load

(6)

Comparing (5) and (6) shows that the transmission losses in the single-phase
system are six times those in the three-phase system.

6/6


