Problem 1: Zero sequence and the space vector

Consider the phase voltages

$$u_{\rm a} = u'_{\rm a} + u_0$$
 $u_{\rm b} = u'_{\rm b} + u_0$ $u_{\rm c} = u'_{\rm c} + u_0$

where $u'_{a} + u'_{b} + u'_{c} = 0$ holds and u_{0} is the zero-sequence component. Show that the zero sequence disappears in the space-vector transformation.

Problem 2: Synchronous machine model in rotor coordinates

(a) Equations for the stator voltage and stator flux linkage in stator coordinates are

$$\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}} = R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} + \frac{\mathrm{d} \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{d}t} \qquad \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}} = L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}} + \psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$$

Express these equations in rotor coordinates.

- (b) Express the previous equations in rotor coordinates in steady state.
- (c) Starting from

$$au_{\mathrm{M}} = rac{3n_{\mathrm{p}}}{2} \operatorname{Im} \left\{ oldsymbol{i}_{\mathrm{s}} oldsymbol{\psi}_{\mathrm{s}}^*
ight\}$$

derive the torque expression in rotor coordinates as a function of i_d and i_q .

Problem 3: Operating points of a permanent-magnet synchronous motor

The datasheet values for a three-phase permanent-magnet synchronous motor are:

maximum continuous torque	15 Nm @ 2400 r/min
voltage constant	0.159 V/(r/min)
number of pole pairs	$n_{\rm p}=4$
stator inductance	$L_{\rm s} = 4.86 \text{ mH}$
stator resistance	$R_{\rm s} = 0.46 \ \Omega$

- (a) The motor rotates at the speed of 2 400 r/min. Calculate the mechanical angular speed, electrical angular speed, and supply frequency.
- (b) Calculate the peak-valued phase-to-neutral back-emf induced by the permanent magnets, when the motor rotates at 2400 r/min. Calculate also the permanent-magnet flux constant ψ_f .
- (c) The torque is 15 Nm. Calculate the output power of the motor at the speed of 2 400 r/min and at zero speed.
- (d) The control principle $i_{\rm d}=0$ is used. Calculate the stator current $i_{\rm s}$ and the stator voltage $u_{\rm s}$ in the following operating points: 1) torque is 15 Nm at 2400 r/min; 2) torque is 15 Nm at zero speed; and 3) no load at 2400 r/min.