Problem 1: Zero sequence and the space vector

Consider the phase voltages

$$
u_{\mathrm{a}}=u_{\mathrm{a}}^{\prime}+u_{0} \quad u_{\mathrm{b}}=u_{\mathrm{b}}^{\prime}+u_{0} \quad u_{\mathrm{c}}=u_{\mathrm{c}}^{\prime}+u_{0}
$$

where $u_{\mathrm{a}}^{\prime}+u_{\mathrm{b}}^{\prime}+u_{\mathrm{c}}^{\prime}=0$ holds and u_{0} is the zero-sequence component. Show that the zero sequence disappears in the space-vector transformation.

Problem 2: Synchronous machine model in rotor coordinates

(a) Equations for the stator voltage and stator flux linkage in stator coordinates are

$$
\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}+\frac{\mathrm{d} \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{~d} t} \quad \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}=L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}+\psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}
$$

Express these equations in rotor coordinates.
(b) Express the previous equations in rotor coordinates in steady state.
(c) Starting from

$$
\tau_{\mathrm{M}}=\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\boldsymbol{i}_{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{*}\right\}
$$

derive the torque expression in rotor coordinates as a function of i_{d} and i_{q}.

Problem 3: Operating points of a permanent-magnet synchronous motor

The datasheet values for a three-phase permanent-magnet synchronous motor are:

maximum continuous torque	$15 \mathrm{Nm} @ 2400 \mathrm{r} / \mathrm{min}$
voltage constant	$0.159 \mathrm{~V} /(\mathrm{r} / \mathrm{min})$
number of pole pairs	$n_{\mathrm{p}}=4$
stator inductance	$L_{\mathrm{s}}=4.86 \mathrm{mH}$
stator resistance	$R_{\mathrm{s}}=0.46 \Omega$

(a) The motor rotates at the speed of $2400 \mathrm{r} / \mathrm{min}$. Calculate the mechanical angular speed, electrical angular speed, and supply frequency.
(b) Calculate the peak-valued phase-to-neutral back-emf induced by the permanent magnets, when the motor rotates at $2400 \mathrm{r} / \mathrm{min}$. Calculate also the permanentmagnet flux constant ψ_{f}.
(c) The torque is 15 Nm . Calculate the output power of the motor at the speed of $2400 \mathrm{r} / \mathrm{min}$ and at zero speed.
(d) The control principle $i_{\mathrm{d}}=0$ is used. Calculate the stator current $\boldsymbol{i}_{\mathrm{s}}$ and the stator voltage $\boldsymbol{u}_{\mathrm{s}}$ in the following operating points: 1) torque is 15 Nm at 2400 $\mathrm{r} / \mathrm{min} ; 2$) torque is 15 Nm at zero speed; and 3) no load at $2400 \mathrm{r} / \mathrm{min}$.

