Problem 1: Zero sequence and the space vector

Consider the phase voltages

$$
u_{\mathrm{a}}=u_{\mathrm{a}}^{\prime}+u_{0} \quad u_{\mathrm{b}}=u_{\mathrm{b}}^{\prime}+u_{0} \quad u_{\mathrm{c}}=u_{\mathrm{c}}^{\prime}+u_{0}
$$

where $u_{\mathrm{a}}^{\prime}+u_{\mathrm{b}}^{\prime}+u_{\mathrm{c}}^{\prime}=0$ holds and u_{0} is the zero-sequence component. Show that the zero sequence disappears in the space-vector transformation.

Solution

Let us insert the phase voltages into the space-vector transformation:

$$
\begin{aligned}
\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}} & =\frac{2}{3}\left(u_{\mathrm{a}}+u_{\mathrm{b}} \mathrm{e}^{\mathrm{j} 2 \pi / 3}+u_{\mathrm{c}} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right) \\
& =\frac{2}{3}\left[\left(u_{\mathrm{a}}^{\prime}+u_{0}\right)+\left(u_{\mathrm{b}}^{\prime}+u_{0}\right) \mathrm{e}^{\mathrm{j} 2 \pi / 3}+\left(u_{\mathrm{c}}^{\prime}+u_{0}\right) \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right] \\
& =\frac{2}{3}\left(u_{\mathrm{a}}^{\prime}+u_{\mathrm{b}}^{\prime} \mathrm{e}^{\mathrm{j} 2 \pi / 3}+u_{\mathrm{c}}^{\prime} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right)+\frac{2}{3} \underbrace{\left(1+\mathrm{e}^{\mathrm{j} 2 \pi / 3}+\mathrm{e}^{\mathrm{j} 4 \pi / 3}\right)}_{=0} u_{0} \\
& =\frac{2}{3}\left(u_{\mathrm{a}}^{\prime}+u_{\mathrm{b}}^{\prime} \mathrm{e}^{\mathrm{j} 2 \pi / 3}+u_{\mathrm{c}}^{\prime} \mathrm{e}^{\mathrm{j} 4 \pi / 3}\right)
\end{aligned}
$$

It is geometrically clear that $1+\mathrm{e}^{\mathrm{j} 2 \pi / 3}+\mathrm{e}^{\mathrm{j} 4 \pi / 3}=0$ holds (draw these three unit vectors to see it). Hence, the zero sequence does not affect the space vector.

Problem 2: Synchronous machine model in rotor coordinates

(a) Equations for the stator voltage and stator flux linkage in stator coordinates are

$$
\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}}=R_{\mathrm{s}} \mathbf{i}_{\mathrm{s}}^{\mathrm{s}}+\frac{\mathrm{d} \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}}{\mathrm{~d} t} \quad \boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}=L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}+\psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}
$$

Express these equations in rotor coordinates.
(b) Express the previous equations in rotor coordinates in steady state.
(c) Starting from

$$
\tau_{\mathrm{M}}=\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\boldsymbol{i}_{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{*}\right\}
$$

derive the torque expression in rotor coordinates as a function of i_{d} and i_{q}.

Solution

(a) Inserting $\boldsymbol{u}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{u}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}, \boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$, and $\boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$ into the stator voltage equation leads to

$$
\begin{aligned}
\boldsymbol{u}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}} & =R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\frac{\mathrm{d}}{\mathrm{~d} t}\left(\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}\right) \\
& =R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\frac{\mathrm{d} \boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{~d} t} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\boldsymbol{\psi}_{\mathrm{s}} \frac{\mathrm{~d} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}}{\mathrm{~d} t} \\
& =R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\frac{\mathrm{d} \boldsymbol{\psi} \boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{~d} t} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}} \frac{\mathrm{~d}\left(\mathrm{j} \vartheta_{\mathrm{m}}\right)}{\mathrm{d} t}
\end{aligned}
$$

Dividing the both sides of the equation by $\mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$ and noting that $\mathrm{d} \vartheta_{\mathrm{m}} / \mathrm{d} t=\omega_{\mathrm{m}}$, the voltage equation in rotor coordinates becomes

$$
\begin{equation*}
\boldsymbol{u}_{\mathrm{s}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\frac{\mathrm{d} \boldsymbol{\psi}_{\mathrm{s}}}{\mathrm{~d} t}+\mathrm{j} \omega_{\mathrm{m}} \boldsymbol{\psi}_{\mathrm{s}} \tag{1}
\end{equation*}
$$

Inserting $\boldsymbol{\psi}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$ and $\boldsymbol{i}_{\mathrm{s}}^{\mathrm{s}}=\boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$ into the flux linkage equation gives

$$
\boldsymbol{\psi}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}=L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}+\psi_{\mathrm{f}} \mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}
$$

Dividing the both sides by $\mathrm{e}^{\mathrm{j} \vartheta_{\mathrm{m}}}$ gives the equation in rotor coordinates,

$$
\begin{equation*}
\boldsymbol{\psi}_{\mathrm{s}}=L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\psi_{\mathrm{f}} \tag{2}
\end{equation*}
$$

(b) In rotor coordinates, the vectors are constant in steady state and $\mathrm{d} / \mathrm{d} t=0$ holds.

The voltage equation (1) reduces to

$$
\boldsymbol{u}_{\mathrm{s}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\mathrm{j} \omega_{\mathrm{m}} \boldsymbol{\psi}_{\mathrm{s}}
$$

The flux equation (2) holds in steady state as it is.
(c) Inserting the stator flux linkage in (2) into the torque expressions yields

$$
\begin{aligned}
\tau_{\mathrm{M}} & =\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\boldsymbol{i}_{\mathrm{s}} \boldsymbol{\psi}_{\mathrm{s}}^{*}\right\}=\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\boldsymbol{i}_{\mathrm{s}}\left(L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\psi_{\mathrm{f}}\right)^{*}\right\} \\
& =\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}^{*}+\psi_{\mathrm{f}} \boldsymbol{i}_{\mathrm{s}}\right\}=\frac{3 n_{\mathrm{p}}}{2} \operatorname{Im}\left\{\psi_{\mathrm{f}}\left(i_{\mathrm{d}}+\mathrm{j} i_{\mathrm{q}}\right)\right\} \\
& =\frac{3 n_{\mathrm{p}}}{2} \psi_{\mathrm{f}} i_{\mathrm{q}}
\end{aligned}
$$

It can be seen that the torque is proportional to i_{q} while i_{d} does not contribute to the torque at all.

Problem 3: Operating points of a permanent-magnet synchronous motor

The datasheet values for a three-phase permanent-magnet synchronous motor are:

maximum continuous torque	$15 \mathrm{Nm} @ 2400 \mathrm{r} / \mathrm{min}$
voltage constant	$0.159 \mathrm{~V} /(\mathrm{r} / \mathrm{min})$
number of pole pairs	$n_{\mathrm{p}}=4$
stator inductance	$L_{\mathrm{s}}=4.86 \mathrm{mH}$
stator resistance	$R_{\mathrm{s}}=0.46 \Omega$

(a) The motor rotates at the speed of $2400 \mathrm{r} / \mathrm{min}$. Calculate the mechanical angular speed, electrical angular speed, and supply frequency.
(b) Calculate the peak-valued phase-to-neutral back-emf induced by the permanent magnets, when the motor rotates at $2400 \mathrm{r} / \mathrm{min}$. Calculate also the permanentmagnet flux constant ψ_{f}.
(c) The torque is 15 Nm . Calculate the output power of the motor at the speed of $2400 \mathrm{r} / \mathrm{min}$ and at zero speed.
(d) The control principle $i_{\mathrm{d}}=0$ is used. Calculate the stator current $\boldsymbol{i}_{\mathrm{s}}$ and the stator voltage $\boldsymbol{u}_{\mathrm{s}}$ in the following operating points: 1) torque is 15 Nm at 2400 $\mathrm{r} / \mathrm{min} ; 2$) torque is 15 Nm at zero speed; and 3) no load at $2400 \mathrm{r} / \mathrm{min}$.

Solution

(a) The mechanical angular speed of the rotor is

$$
\omega_{\mathrm{M}}=2 \pi n=2 \pi \cdot \frac{2400 \mathrm{r} / \mathrm{min}}{60 \mathrm{~s} / \mathrm{min}}=2 \pi \cdot 40 \mathrm{rad} / \mathrm{s}
$$

The electrical angular speed is

$$
\omega_{\mathrm{m}}=n_{\mathrm{p}} \omega_{\mathrm{M}}=4 \cdot 2 \pi \cdot 40 \mathrm{rad} / \mathrm{s}=2 \pi \cdot 160 \mathrm{rad} / \mathrm{s}
$$

The supply frequency is

$$
f=n_{\mathrm{p}} n=4 \cdot \frac{2400 \mathrm{r} / \mathrm{min}}{60 \mathrm{~s} / \mathrm{min}}=160 \mathrm{~Hz}
$$

(b) The steady-state voltage equation can be represented as

$$
\begin{align*}
\boldsymbol{u}_{\mathrm{s}} & =R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\mathrm{j} \omega_{\mathrm{m}} \boldsymbol{\psi}_{\mathrm{s}}=R_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\mathrm{j} \omega_{\mathrm{m}}\left(L_{\mathrm{s}} \boldsymbol{i}_{\mathrm{s}}+\psi_{\mathrm{f}}\right) \\
& =\left(R_{\mathrm{s}}+\mathrm{j} \omega_{\mathrm{m}} L_{\mathrm{s}}\right) \boldsymbol{i}_{\mathrm{s}}+\boldsymbol{e}_{\mathrm{s}} \tag{3}
\end{align*}
$$

where the last term $\boldsymbol{e}_{\mathrm{s}}=\mathrm{j} \omega_{\mathrm{m}} \psi_{\mathrm{f}}$ is the back-emf induced by the permanent magnets. The back-emf depends only on the speed (but not on the current).
Unless otherwise noted, the voltage values given in the datasheets and nameplates refer to rms-valued line-to-line voltages. Taking this into account, the peak-valued phase-to-neutral back-emf at the given speed is

$$
\left|\boldsymbol{e}_{\mathrm{s}}\right|=\sqrt{\frac{2}{3}} \cdot 0.159 \frac{\mathrm{~V}}{\mathrm{r} / \mathrm{min}} \cdot 2400 \mathrm{r} / \mathrm{min}=311.6 \mathrm{~V}
$$

The flux constant (or the permanent-magnet flux linkage) is

$$
\psi_{\mathrm{f}}=\frac{\left|\boldsymbol{e}_{\mathrm{s}}\right|}{\omega_{\mathrm{m}}}=\frac{311.6 \mathrm{~V}}{2 \pi \cdot 160 \mathrm{rad} / \mathrm{s}}=0.31 \mathrm{Vs}
$$

It is worth noticing that the flux constant does not depend on the speed (i.e., the same value for ψ_{f} would be obtained at any other speeds).
Remark: In order to be able to use the standard equations and equivalent circuits, it is a recommended practice to transform all parameter values to SI units and line-to-line voltages to line-to-neutral voltages (as we did here). The results of the calculations can then be transformed back to the required form.
(c) At the speed of $2400 \mathrm{r} / \mathrm{min}$, the output power (mechanical power) is

$$
p_{\mathrm{M}}=\tau_{\mathrm{M}} \omega_{\mathrm{M}}=15 \mathrm{Nm} \cdot 2 \pi \cdot 40 \mathrm{rad} / \mathrm{s}=3.77 \mathrm{~kW}
$$

At zero speed, the mechanical power is zero (but the power fed to the stator is positive due to the losses).
(d) The q-axis current i_{q} can be solved from the torque expression:

$$
\tau_{\mathrm{M}}=\frac{3 n_{\mathrm{p}}}{2} \psi_{\mathrm{f}} i_{\mathrm{q}} \quad \Rightarrow \quad i_{\mathrm{q}}=\frac{2}{3 n_{\mathrm{p}} \psi_{\mathrm{f}}} \tau_{\mathrm{M}}
$$

Due to the control principle $i_{\mathrm{d}}=0$, the stator current vector is $\boldsymbol{i}_{\mathrm{s}}=i_{\mathrm{d}}+\mathrm{j} i_{\mathrm{q}}=\mathrm{j} i_{\mathrm{q}}$. The stator current is proportional to the torque and independent of the speed.
The stator voltage $\boldsymbol{u}_{\mathrm{s}}$ can be calculated from (3) using the previously calculated values for ω_{m} and $\boldsymbol{i}_{\mathrm{s}}$. The results are collected in the table below.

	$\omega_{\mathrm{m}}=0$	$\omega_{\mathrm{m}}=2 \pi \cdot 160 \mathrm{rad} / \mathrm{s}$
$\tau_{\mathrm{M}}=0$	$\boldsymbol{i}_{\mathrm{s}}=0+\mathrm{j} 0$	$\boldsymbol{i}_{\mathrm{s}}=0+\mathrm{j} 0$
	$\boldsymbol{u}_{\mathrm{s}}=0+\mathrm{j} 0$	$\boldsymbol{u}_{\mathrm{s}}=0+\mathrm{j} 311.6 \mathrm{~V}$
$\tau_{\mathrm{M}}=15 \mathrm{Nm}$	$\boldsymbol{i}_{\mathrm{s}}=0+\mathrm{j} 8.1 \mathrm{~A}$	$\boldsymbol{i}_{\mathrm{s}}=0+\mathrm{j} 8.1 \mathrm{~A}$ $\boldsymbol{u}_{\mathrm{s}}=0+\mathrm{j} 3.7 \mathrm{~V}$
$\boldsymbol{u}_{\mathrm{s}}=-39.4+\mathrm{j} 315.4 \mathrm{~V}$		

Remark: The vector diagram for a positive torque and a positive speed is illustrated in the figure below. The stator resistance $R_{\mathrm{s}}=0$ is assumed for simplicity. Could you sketch the vectors in the previous operating points. What would happen, if the speed or the torque were reversed?

